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Abstract: We study the potential flow of an ideal fluid through a domain that consists of a reservoir
and a pipe connected to it. The ratio of the pipe’s thickness and its length is considered as a small
parameter. Using the rigorous asymptotic analysis with respect to that small parameter, we derive
an effective model governing the the junction between a 1D and a 3D fluid domain. The obtained
boundary-value problem has a measure boundary condition with Dirac mass concentrated in the
junction point and is understood in the very-weak sense.
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1. Introduction

Fluid flows in pipes are important because they appear in many applications. For
their description, we typically use one-dimensional approximations. In the case of single
pipe, that matter has been extensively studied by various authors (see, e.g., [1–11] and the
references therein). A variant of the two-scale convergence for thin domain is developed
in [4] for that kind of problems. When there is a structure consisting of several pipes,
the main problem is how to derive the effective junction condition. Junctions of elastic
structures have been extensively studied for more than 30 years (see, e.g., [12,13] ). The
study of similar problems in fluid mechanics started a bit later. However, in the last
25 years, several papers can be found, and we mention some of them. The problem of a
structure consisting of several pipes is addressed in [7] (see also [1,14,15]) using the classical
approach of matched asymptotic expansions or in [16] using the two-scale convergence
approach. A particular method of partial domain decomposition was proposed for such
problems by Panasenko et al. (see, e.g., [1,17]).

Junction of thin domains of different kind, such as pipe and fracture or a thin domain
and a thick 3D domain, is more difficult, from the technical point of view, as the problem
of the definition of traces appears. If there is a junction of pipe and 3D reservoir, we
can derive the 1D model for the pipe via asymptotic analysis, as the ratio between the
pipe’s thickness and length tends to zero. However, the junction becomes one point and,
in the classical weak formulation setting, the trace of a function defined in 3D reservoir
cannot be appropriately defined in one point. Furthermore, the boundary value becomes
a measure and not a function. Thus, the usual Sobolev space setting and the weak for-
mulation is not appropriate. Therefore, in this paper, we propose using the very-weak
formulation (see, e.g., [18,19]), which appears to be natural tool for our multi-dimensional
asymptotic analysis.

That kind of problems, with 3D–1D junction domains, was rigorously studied by
Kozlov et al. [20], using the asymptotic expansions and their justification. In fact, Section 2
is devoted to the boundary value problem for the Laplace equation in 3D domain with sev-
eral thin outlets. Complete asymptotic expansion is derived and the reminder is estimated
in H1 norm. The fact that zero-order approximation contains delta mass on the boundary
and is not in H1 is patched by adding the cut-off function, taking out the “bad part”, in
the expansion. One difference, compared to the problem treated by Kozlov et al. [20], is
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that in their original problem the boundary condition is mixed. It is Neumann, except on
the end of the thin cylinders, where the condition is Dirichlet (while we have Neumann
condition all over). That leads to a different effective model. Another difference is that we
use completely a different technique, based on the weak convergence and the very-weak
formulation. In comparison, since they derived the complete asymptotics, the information
they obtained on the asymptotic behavior of the solution is richer. On the other hand, our
method is much simpler and more intuitive. That makes our approach more suitable for
further application to more complex problems, such as the Navier–Stokes system.

Thus, the main novelty of the paper is the method. We use of the very-weak formu-
lation of the problem, which allows a direct application of the weak and the two-scale
convergence for thin domains and the straightforward rigorous derivation of the singular
effective problem. Due to the difference in dimension, the effective model has singular
measure boundary data. Unlike the standard weak formulation, the very-weak formulation
is designed for treatment of such problems with data lacking regularity.

For the sake of simplicity, we consider the incompressible, potential flow of an ideal
fluid. We assume that the fluid is injected in the pipe Pε with thickness ε � 1, by strong
injection gε. The pipe is connected to the reservoir Ω, so that the fluid enters Ω. Due to the
incompressibility it must go out somewhere. We assume that it exits the reservoir on the
other side through some part of its boundary.

Using the rigorous asymptotic analysis, as the thickness of the pipe tends to zero,
we obtain the effective junction condition in the form of a Dirac mass concentrated in the
junction point. Such problem cannot have a weak solution, but it is uniquely solvable in
the very-weak sense.

1.1. The Geometry

Let Ω ⊂ R3 be a smooth bounded domain, such that the point O(0, 0, 0) ∈ ∂Ω. We
assume that there there is a flat part of the boundary around O, i.e., there exists some δ > 0
such that

Γδ = {(0, x2, x3) ∈ R3 ; x2
2 + x2

3 < δ2} ⊂ ∂Ω .

For ω ⊂ R2 smooth and convex domain contained in the unit ball B(0, 1), and a small
parameter ε� 1 such that ε < δ, we define the small set

ωε = ε ω

and the thin pipe
Pε =] 0, L [ × ωε .

The fluid domain is now defined as

Ωε = Ω ∪ Pε .

We denote

Σε =] 0, L [ × ∂ωε − the pipe’s wall

γε = { L } × ωε − the pipe’s entrance

Γ = ∂Ωε\(γε ∪ Σε)− the reservoir’s boundary.

Please see Figure 1.
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Figure 1. The reservoir Ω and the pipe Pε.

1.2. The Equations

We denote by θε the velocity potential and study the Neumann problem for the Laplace
equation. For the boundary condition, we first define the entering velocity as

gε(x2, x3) =
1
ε2 g

( x2

ε
,

x3

ε

)
, (1)

where g ∈ L2(ω). We denote the total flux through the entrance of the pipe by

τ =
∫

ωε

gε(x2, x3) dx2 dx3 =∫
ω

g(y2, y3) dy2 dy3. (2)

Next, we choose the function h ∈ L2(Γ) such that∫
Γ

h dS = −τ . (3)

Now, our problem reads

∆θε = 0 in Ωε (4)
∂θε

∂n
= gε on γε (5)

∂θε

∂n
= 0 on Σε (6)

∂θε

∂n
= h on Γ . (7)

It is well posed due to (2) and (3) .

2. A Priori Estimates

We start with H1(Ωε) estimate.

Proposition 1. Let θε be the solution of the problem (4)–(7). Then, there exists C > 0, independent
on ε, such that

|θε|H1(Ωε)
≤ C(1 + ε−1) (8)

Proof. We test (4) with θε. It gives∫
Ωε

|∇θε|2 =
∫

Γ
h θε +

∫
γε

gε θε .
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Using the trace theorem, we obviously have∣∣∣∣∫Γ
h θε

∣∣∣∣ ≤ |h|L2(Γ) |θε|L2(Γ) ≤ C|θε|H1(Ωε)
.

By direct integration, it is easy to prove that

|θε|L2(γε)
≤ C|θε|H1(Pε)

,

with C > 0, independent from ε. Thus,∣∣∣∣∫
γε

gε θε

∣∣∣∣ ≤ |gε|L2(γε)
|θε|L2(γε)

≤

≤ C|gε|L2(γε)
|θε|H1(Ωε)

≤ Cε−1|θε|H1(Ωε)
.

2.1. L2(Ω) Estimate

We proceed with sharp (and essential) L2(Ω) estimate.

Proposition 2. Let θε be the solution of the problem (4)–(7). Then, there exists C > 0, independent
on ε, such that ∣∣∣∣θε − 1

|Ω|
∫

Ω
θε

∣∣∣∣
L2(Ω)

≤ C (9)

Proof. We assume, at the beginning, that
∫

Ω θε = 0.
We need an auxiliary problem:

∆φ = θε in Ω (10)
∂φ

∂n
= 0 on ∂Ω . (11)

Since the right hand-side is an H1(Ω) ∩ L2
0(Ω) function, the solution φ ∈ H3(Ω)

(standard elliptic regularity; see, e.g., [21]). Thus, φ ∈ C1,σ(Ω) for some σ > 0. Furthermore,
there exists some C > 0, independent on ε, such that

|φ|H2(Ω) ≤ C|θε|L2(Ω)

|φ|L∞(Ω) ≤ C|θε|L2(Ω)

|φ|H3(Ω) ≤ C|θε|H1(Ω)

|∇φ|L∞(Ω) ≤ C|θε|H1(Ω) ≤
C
ε

.

Testing (10) with θε gives∫
Ω
|θε|2 =

∫
Γ

h φ +
∫

γε(0)
φ

∂θε

∂x1
.

The first integral is easily estimated as above, and∣∣∣∣∫Γ
h φ

∣∣∣∣ ≤ C|φ|H1(Ω) ≤ C|θε|L2(Ω) . (12)
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For the second one, we proceed as follows:∫
γε(0)

φ(0, x′)
∂θε

∂x1
= (13)∫

Pε

∇x′φ(0, x′)∇x′θ
ε +

∫
γε

gεφ(0, x′) ≤

≤ Cε|∇x′φ|L∞(Ω)|∇x′θ
ε|L2∞(Pε)

+|gε|L1(γε)
|φ|L∞(Ω) ≤ C(1 + |θε|L2(Ω)) .

so that
|θε|L2(Ω) ≤ C , (14)

of course under the condition that
∫

Ω θε = 0. Thus, in general,∣∣∣∣θε − 1
|Ω|

∫
Ω

θε

∣∣∣∣
L2(Ω)

≤ C . (15)

2.2. L2(Pε) Estimate

The estimate in L2(Pε) is less complicated and follows from the Ponicaré inequality:

Lemma 1. There exists a constant C > 0, independent from ε, such that ∀ ψ ∈ H1(Pε)∣∣∣∣ψ− 1
|Pε|

∫
Pε

ψ

∣∣∣∣
L2(Pε)

≤ Cε|∇ψ|L2(Pε)
. (16)

Proof. The classical Ponicaré inequality on ω yields that ∀ Ψ = Ψ(y2, y3) ∈ H1(ω)∣∣∣∣Ψ− 1
|ω|

∫
ω

Ψ
∣∣∣∣
L2(ω)

≤ C
∣∣∣∇y′Ψ

∣∣∣
L2(ω)

, (17)

with C > 0 depending only on ω. Let ψ ∈ H1(Pε). Then,

Φ(y2, y3) = ψ(x1, εy2, εy3) ∈ H1(ω)

for all 0 < x1 < L. A simple change of variables and (17) imply the claim.

3. The Limit

The very-weak formulation of the problems (4) and (7) reads:
Find θε ∈ L2

0(Ωε) = {v ∈ L2(Ωε) ;
∫

Ωε
v = 0} such that∫

Ωε

θε ∆φ +
∫

Γ
h φ +

∫
γε

gεφ = 0 , (18)

for any φ ∈ H2(Ωε) such that ∂φ
∂n = 0 on ∂Ωε.

It is easy to see that it has a unique solution (see, e.g., [18]).
Our main result is the following convergence theorem:

Theorem 1. Let θε be the solution to the problems (4) and (7). Then, its restriction on Ω satisfies

θε ⇀ θ weakly in L2(Ω) , (19)
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where θ ∈ L2
0(Ω) is the unique very-weak solution to the problem

∆θ = 0 in Ω (20)
∂θ

∂n
= h + τ δ on Γ , (21)

δ is the Dirac measure defined by

〈 δ | ψ 〉 = ψ(0) for any ψ ∈ C(Ω) ,

and τ ∈ R is the boundary flux defined by (2).

Proof. Next, we take the function ψ ∈ C2(Ω) such that ∂ψ
∂n = 0 on ∂Ω . Then,∫

Ω
θε∆ψ =

∫
Γ

h ψ +
∫

γε(0)
ψ(0, x′)

∂θε

∂x
(0, x′)dx′ .

The L2(Ω) bound for θε implies the existence of a subsequence (denoted by the same
symbol) and function θ ∈ L2(Ω) , such that (19) holds. Then, for the first integral, we have∫

Ω
θε∆ψ→

∫
Ω

θ ∆ψ .

For the last integral, we obtain∫
γε(0)

ψ(0, x′)
∂θε

∂x
(0, x′)dx′ =

=
∫

γε(0)

[
ψ(0, x′)− ψ(0)

] ∂θε

∂x
(0, x′)dx′ +

+ψ(0)
∫

γε(0)

∂θε

∂x
(0, x′)dx′ =

=
∫

γε(0)

[
ψ(0, x′)− ψ(0)

] ∂θε

∂x
(0, x′)dx′ +

+τ ψ(0) .

On the other hand, ∫
γε(0)

[
ψ(0, x′)− ψ(0)

] ∂θε

∂x
(0, x′)dx′ ≤

≤
∣∣ψ(0, x′)− ψ(0)

∣∣
H

1
2 (γε(0))

×

×
∣∣∣∣∂θε

∂x
(0, x′)

∣∣∣∣
H−

1
2 (γε(0))

≤ Cε .
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We use here two estimates:

1.)
∫

γε(0)

∂θε

∂x
w =

= −
∫

Ω
∆θε +

∫
Ω
∇θε∇w =

=
∫

Ω
∇θε∇w ≤ |∇θε|L2(Ω)|∇w|L2(Ω) ≤

≤ C
ε
|∇w|L2(Ω) ≤

C
ε
|w|H1/2(γε(0)) ,

∀ w ∈ H1(Ω) ,

2.)
∣∣ψ(0, x′)− ψ(0)

∣∣
H

1
2 (γε(0))

≤

≤ |γε(0)|
1
2 ε
∣∣∣D2ψ

∣∣∣
L∞(Ω)

≤ Cε2 .

Finally, ∫
γε(0)

ψ(0, x′)
∂θε

∂x
(0, x′)dx′ → τ ψ(0) . (22)

We conclude from the above that the limit θ satisfies∫
Ω

θ ∆ψ =
∫

Γ
h ψ + τ ψ(0) , (23)

which is exactly the very-weak formulation of the problems (20) and (21). It remains to
prove that it has a unique solution (implying that the whole sequence θε converges, and
not only a subsequence) in L2

0(Ω). However, (22) is the very weak formulation of the linear
boundary value problem for the Laplace equation with non-smooth data, and it is well
known that it has the unique very weak solution in L2

0(Ω) = {v ∈ L2(Ω) ;
∫

Ω v = 0} (see,
e.g., [18]).

4. Example

To illustrate the obtained model, we solve the effective problems (20) and (21) with
measure boundary data for rectangular domain Ω = 〈−1, 1〉 × 〈0, 1〉. The problem reads

∆θ = 0 for − 1 < x, y < 1 , 0 < z < 1
∂θ
∂x (−1, y, z) = ∂θ

∂x (1, y, z) = ∂θ
∂x (x,−1, z) = ∂θ

∂x (x, 1, z) = 0 , 0 < z < 1
∂θ
∂y (x, y, 1) = 0 , −1 < x < 1 , −1 < y < 1
− ∂θ

∂y (x, , y, 0) = h(x, y) + τ δ , −1 < x < 1 − 1 < y < 1

. (24)

We assume, for simplicity, that h is a smooth even function defined on [−1, 1]2.
Of course,

τ = −1
4

∫ 1

−1

∫ 1

−1
h(s, t) ds dt .

Due to the simple geometry, we can solve the problem (in the very-weak sense) using
the Fourier method. We look for the solution of the form

θ(x, y) =
∞

∑
k,j=0

Akj cos(kπx) cos(jπy)
[
sinh(π z

√
k2 + j2 )−

− tanh(π
√

k2 + j2) sinh(π z
√

k2 + j2 )
]

, (25)

where the coefficients Akj are picked such that

Akj =
4

π
√

k2 + j2 tanh(π
√

k2 + j2 )

[∫ 1

0

∫ 1

0
h(t) cos(kπt) cos(jπs)dt ds + τ

]
. (26)
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If, in particular, we choose h as a constant

h = H0 = const. ,

then
Akj = −

H0

π
√

k2 + j2 tanh(π
√

k2 + j2 )
.

5. Conclusions

We rigorously derive a model for describing the potential flow of an ideal fluid
through a reservoir with several pipes connected to it. The flow through the pipes is,
usually, described by mono-dimensional models, while the flow through the reservoir is
described by a three-dimensional model. The effective junction condition between the
pipe and the reservoir is described by a Dirac delta measure concentrated in a junction
point. The obtained problem has unique solution, but only in the very-weak sense, since
the boundary value is not a function but a measure. The future goal is to do the same for
the viscous flow using the concept of the very-weak solution for the Navier–Stokes system
developed in [19].
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