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Abstract: This paper proposes a blade sorting method based on the cloud adaptive genetic algorithm
(CAGA), which is used to optimize the unbalanced of asymmetric rotor of aero-engine. Firstly, by
analyzing the unbalance of the arrangement caused by the deviation of the mass moment of the blade,
and considering the concentricity of the disk, an optimization model of the unbalanced amount
of the blade assembly was established. Secondly, the selection operator, crossover operator, and
mutation operator of the algorithm were designed, and the cloud adaptive genetic algorithm was
used to optimize the assembly unbalance. Thirdly, the mass moments of a group of aero-engine
blades were weighed using a moment scale (MW0), and the blade mass moment distribution and
assembly unbalance under the six blade arrangements were analyzed. Finally, by setting different
disk concentricity, the corresponding blade arrangement and the final rotor unbalance were obtained.
Through analysis, it was found that the unbalance of GA is at least 57.5% optimized relative to
the weight sorted, sorting type 2, sorting type 4, and sorting-1/4 skip method, and the unbalance
optimized by the CAGA is 95.7% optimized relative to GA. In the case of different initial concentricity
of the disk, the effective algorithm accuracy is still maintained, which proves the effectiveness of
the method for the arrangement of asymmetric rotor blades. This method establishes an effective
asymmetric rotor blade arrangement model, uses the cloud adaptive genetic algorithm to sort the
blade assembly, and effectively reduces the unbalanced amount of the asymmetric rotor.

Keywords: aero-engine; blade sorting; unbalance minimization; cloud adaptive genetic algorithm;
rotor concentricity

1. Introduction

The optimization of aero-engine rotor unbalance is an important part of the assembly
process [1–3]. Blades need to work under a high-load, high-speed, and high-vibration envi-
ronment, which directly affects the start-stop performance, working reliability, efficiency,
and cost of the aero-engine. The blades have the characteristics of complex shapes and
high precision requirements. Therefore, in the production process, in order to meet the
technological requirements, the blades need to be manually polished, so that the mass mo-
ment of each blade after assembly is different, resulting in the overall rotor having a large
residual unbalance. Therefore, a reasonable blade arrangement can reduce the unbalance
of the rotor, and a large number of scholars have done research in this area [4]. Piskin
et al. introduced the grouping methods of blade assembly. These methods optimize the
imbalance of the rotor and provide a basis for the application of intelligent algorithms [5,6].
Lavagnoli developed a numerical strategy to select the best blade arrangement around the
rotor, taking into account the measured blade weight distribution and any residual disk
unbalance, which makes the algorithm calculate the best blade sort in the fan-constrained
rotor row in a few seconds [7]. Amiouny developed a heuristic of a problem that models

Symmetry 2021, 13, 832. https://doi.org/10.3390/sym13050832 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym13050832
https://doi.org/10.3390/sym13050832
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13050832
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13050832?type=check_update&version=1


Symmetry 2021, 13, 832 2 of 16

the static balance of a turbofan: load point mass at regularly spaced locations on the cir-
cumference so that the residual imbalance around the center corresponding to the fan’s
axis of rotation is as small as possible [8]. Pitsoulis proposed a heuristic algorithm to solve
an NP-Hard combinatorial optimization problem in turbine engine manufacturing and
maintenance [9].

Li et al. used the ant colony algorithm to find the blade arrangement, and success-
fully reduced the impeller unbalance over one year to 1% of the standard value, and the
impeller unbalance over 99% was reduced to 1% of the official value [10,11]. Mason used a
neighborhood search algorithm to determine the best position of the turbine blades, so that
the total time required for balancing could be significantly reduced. It also showed that
using the starting points obtained from the Lagrangian dual scheme can greatly improve
the results of the problem [12]. Thompson et al. used the simulated annealing algorithm
to solve the large-scale combinatorial optimization problem of seeking the best layout
through blade exchange [13–15]. Dai et al. applied it to the optimal arrangement of blades
of impeller machinery on the basis of the genetic algorithm, which solved the problem of a
long solution time and an inability to obtain optimization results that were encountered in
the previous optimization of a large number of blades by the exhaustive method [16–18].
Pan et al. improved the genetic algorithm based on the genetic algorithm, and proposed
an improved genetic algorithm to solve the assembly sort optimization problem [19–21].
Wang improved the non-dominated sorting genetic algorithm (NSGA), introduced the
control elite and dynamic crowding distance, and showed good performance when dealing
with multi-objective optimization problems of wind turbines [22]. In this paper, we use a
cloud adaptive genetic algorithm (CAGA) to solve the blade sorting problem for the rotor
unbalance situation, and its convergence speed and sorting results are explained.

The structure of this paper is as follows. Firstly, the vector sum model of blade
mass moment and eccentric moment is established to obtain the unbalanced optimization
function. Secondly, the cloud adaptive genetic algorithm is used to optimize the rotor
unbalance, and the blade sort corresponding to the minimum unbalance is given. Finally,
combined with the blade mass moment weighed by the torque, the effectiveness of the
method is verified by comparing six commonly used blade arrangement methods.

2. Blade Assembly Mass Moment Model
2.1. Physical Model of Blade Sorting Based on Mass Moment

Blade balancing is an important task in aero-engine rotor assembly. The blades are
machined and then are assembled on the blade disk to form a rotor. The residual unbalance
of the bladed rotor should be balanced to be as small as possible. In the blade production
process, mass moment unbalance is generated. The geometry size, shape contour, mass
distribution, centroid deviation, and installation position of each blade are different so that
the non-zero centrifugal force vectors of the blades result in instability of the aero-engine.
Figure 1 shows a random blade sorting model. The mass moments of two blades in the
diagonal lines (No. 1–5, 2–6, 3–7, 4–8) are obviously different and the residual unbalance of
the bladed rotor is very large.

As shown in Figure 2, an optimum sorting model is given to obtain minimization
torque. We sort a pair of blades with similar mass moments in the diagonal lines so that
the mass moment vectors of the blade pairs (No. 1–2, 3–4, 5–6, 7–8) can be cancelled
symmetrically and the residual unbalance of the bladed rotor is minimal.

Ideally, the centrifugal forces generated by the blades are balanced to zero, that is, the
vector sum of centrifugal force is 0, as shown in Equation (1):

F = ∑ Fi = ∑ mi ×ω2 ×→ri = 0 (1)

where mi is the mass of each blade, ri is the radius of the gravity center of each blade, and
ω is the rotation angular velocity.
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Since the rotation angular velocity ω is the same for the whole aero-engine rotor
system, Equation (1) can be simplified to Equation (2):

∑ mi ×
→
ri = 0 (2)

We define mi × ri as the mass moment vector, that is, the product of the blade mass
and the distance from blade gravity center to the rotor axis. It can be seen from Equation (2)
and Figure 2 that mass moment vectors of all the blades can be cancelled out and the
minimum unbalance obtained.
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Figure 1. Random blade sorting model. 

8

6

2

4

5

1
7

3

x

y

o

Blade

Blade disk


ir

im

Exciting force

 

Figure 2. Optimum blade sorting of the torque minimization model. 
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The torque vector sum of the random sorting (Figure 3) and the torque minimization
model sorting (Figure 4) of the installed blades given above is as follows. By comparing
and analyzing the final unbalance of Figures 3 and 4, it is shown that reasonable blade
classification can reduce the imbalance of the components.
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To facilitate the fitness function, the unbalance can be expressed as:

M =
n

∑
i=1

mi ×
→
r i =

n

∑
i=1

mi(xi + jyi) =
n

∑
i=1

mixi + j
n

∑
i=1

miyi =
→
Mx + j

→
My (3)

{
mixi = miri cos θ = miri cos( 2π(i−1)

n )

miyi = miri sin θ = miri sin( 2π(i−1)
n )

(4)
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→
Mx =

n
∑

i=1
mixi

→
My =

n
∑

i=1
miyi

(5)

where mi × ri is the mass moment of the i-th blade, xi and yi are the X-axis and Y-axis
coordinates of the centroid of the i-th blade, and mixi and miyi are the components of the
mass moment of the i-th blade on the X-axis and Y-axis, respectively.

Our goal is to obtain the minimum mass moment unbalance of all the blades:

Z = min
→
M =

∣∣∣∣→Mx + j
→
My

∣∣∣∣ = √Mx2 + My2 (6)

2.2. Physical Model of Blade Assembly on Asymmetric Disk

Ideally, the disk is symmetrical. In fact, the disk is asymmetrical due to processing
errors. Before the best sorting of the blades, we should consider the unbalance of the
mass moment of the blades and the concentricity of the disk at the same time, that is,
the asymmetry of the rotor system. Our best classification goal is to obtain the smallest
unbalance after the blade is assembled on the disk. The vector sum models of the mass
moment of the disk with random and optimum are shown in Figures 5 and 6, respectively.
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Figure 5. Vector sum model of the mass moment both the random sorting blades and disk. Figure 5. Vector sum model of the mass moment both the random sorting blades and disk.

Comparing Figures 5 and 6, we can see that the disk mass moment destroys the
minimum unbalance of optimal blade sorting. How to obtain the minimum unbalance of
the whole bladed disk is the subject of the next study.

It can be seen from Figures 5 and 6 that the minimum unbalance under the considera-
tion of the eccentric mass moment of the disk is:

→
M1 =

→
M +

→
Me (7)

Z1 = min
∣∣∣∣→M +

→
Me

∣∣∣∣ = √(Mx + Mex)
2 + (My + Mey)

2 (8)
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{
Mex = Me cos θ1
Mey = Me sin θ1

(9)

where Me is the mass moment of the disk, and θ1 is the angle between Me and the positive
direction of the X-axis.
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Figure 6. Vector sum model of the mass moment both the optimum sorting blades and disk.

Regardless of the blade mounting error, the angle between the first blade mounting
position and the blade disk mass moment is 30◦; then:

θ1 = θ2 −
2π

n
(i− 1) (10)

Mex = Me cos(θ2 −
2π

n
(i− 1)) (11)

Mey = Me sin(θ2 −
2π

n
(i− 1)) (12)

2.3. Optimization Sorting Model

The blade sequencing problem is a kind of linear programming problem in combina-
torial optimization. The optimization goal of the problem is how to assign to minimize the
total cost of the work. Specifically, it can be described that a blade can only be installed in
one position, so there is an unbalance on this position. How to arrange all the blades is
to obtain the total minimized unbalance. Resources i(I = 1,2, . . . ,n) can only be uniquely
assigned to work k(k = 1,2, . . . ,n) at a certain time, resulting in a corresponding cost cik. The
relationship between the blade and installation position is expressed by the 0–1 variable xik:

xik =

{
1 i = k
0 i 6= k

(13)
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The optimizing objective function and constraint function can be expressed as:

min
n

∑
i=1

n

∑
k=1

cikxiksub.to



n
∑

i=1
xik = 1 i = 1, 2, · · · , n

n
∑

j=1
xjk = 1 k = 1, 2, · · · , n

xik = 0, 1 i, k = 1, 2, · · · , n

(14)

3. Cloud Adaptive Genetic Algorithm

The genetic algorithm (GA) was first proposed by the American professor Holland in
1975 [23]. It is a kind of random search algorithm that draws lessons from natural selection
and the natural genetic mechanism in the biological world. The genetic algorithm simulates
the selection, crossover, and mutation phenomena of natural selection and the genetic
process. Each iteration of blades with a set of candidate solutions, the optimal chromosomes
are selected according to the indicators, and these chromosomes are combined with genetic
operators to generate a new generation of candidate groups. The process is repeated until
the convergence index is satisfied. The specific flow chart is shown in Figure 7.
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The initial population is the size of the search area, which determines the search time
and search accuracy. Fitness is the only measure of population evolution. The greater the
population fitness, the higher the accuracy of the search results. The number of iterations
is used as the number of population updates. The selection operation selects individuals
with high fitness from the parent population as the offspring. The crossover operation
randomly selects the two chromosomes left by the selection operation for gene exchange,
thereby forming a new individual and placing it in the offspring. The mutation operation
randomly selects the chromosomes in the selection operation for gene mutation, to form a
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new individual. Both crossover and mutation operations have crossover probability and
mutation probability to determine whether to perform the operation.

Genetic algorithm has the characteristics of a low order, short defining moment, and
high average fitness. If the probability of crossover and mutation is small and the fitness is
low, it is difficult to produce excellent new chromosomes. If a large crossover and mutation
probability are adopted, the population will easily fall into local optimization. Therefore,
the adaptive genetic algorithm (AGA) appeared, while AGA only considers the trend of
the evolutionary process and ignores the randomness of environmental evolution.

The cloud adaptive genetic algorithm improves the above defects. It adopts the cloud
model theory [24]. The cloud model is a set of random numbers with stable regularity
following the regular distribution law, represented by the expected value (Ex), entropy
(En), and hyper entropy (He). The cloud model makes use of the uncertain transformation
model between qualitative and quantitative concepts of linguistic values, which is both
random and fuzzy, and provides an effective means for the combination of qualitative and
quantitative information. It is mainly reflected in the crossover and mutation operators of
the genetic algorithm.

3.1. The Coding and Operation of the Genetic Algorithm for Optimal Blade Sorting

In this paper, N sets of blades were randomly generated as the initial population. Each
blade is equivalent to a chromosome, which has a certain code. Sequential coding is adopted
in blade sorting, that is, there is a one-to-one correspondence between the blade and feasible
position. Since the wheel disk is a circle, it is stipulated that the position that coincides with
the positive direction of the X-axis is the first position, and the counterclockwise direction
is the positive direction of blade installation. The sorting scheme given in Figure 2 is [6, 8,
4, 2, 5, 7, 3, 1].

3.1.1. Selection

The selection reflects the survival principle of the fittest. It retains large fitness and
eliminates low fitness chromosomes. Its role is to avoid gene deletion, and improve the
global convergence and computational efficiency. In this paper, the operator is selected
using roulette, and chromosomes with large fitness are highly likely to be selected. For
each chromosome, if its fitness value is f (xi), then the relative value of its fitness is:

pi =
f (xi)

pop
∑

i=1
f (xi)

(15)

where pop is the size of the population, and we take A as the selection probability of selecting
this chromosome. The specific operation of the roulette blade selection is: Accumulate the
chromosome’s selection probability(pi) one by one to get the cumulative probability(pj), and
divide the interval [0–1] into pop intervals. Then, generate a random number belonging to
[0–1]. If the number falls in the interval [pj−1, pj], select the chromosome corresponding to
pj. For example, if the selection probabilities of chromosomes A, B, C, and D are 0.1, 0.2, 0.3,
and 0.4, then their cumulative probabilities set the interval to [0–0.1], [0.1–0.3], [0.3–0.6],
and [0.6–1]. If the random number is 0.5, then the chromosome C is selected.

3.1.2. Crossover

Crossover allows the exchange of genetic material between chromosomes to produce
better chromosomes. In this paper, a blade is regarded as a gene in a chromosome, so two
blades of the same code cannot appear in a chromosome. General single-point crossover
operators and multi-point crossover operators are obviously not eligible, so we use the
recombination crossover operator. This method first builds an edge list for the blades in the
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two parent chromosomes, indicating the blades connected to this blade and the number of
occurrences. Assume two parental chromosomes are:

P1 = (1,2,3,4,5,6,7,8)

P2 = (3,8,1,6,5,4,7,2)

The two chromosomes are crossed, and the resulting edge list is shown in Table 1. If
an edge appears twice in the parents, a “−” sign is added to the vertex of the edge in the
list. The edge recombination crossover operator starts constructing offspring by selecting
an initial point.

Table 1. Blade edge list.

Blade Adjacent Blades Blade Adjacent Blades

1 2, −8, 6 5 −4, −6
2 1, 7, −3 6 1, 7, −5
3 −2, 4, 8 7 4, 6, 2, 8
4 3, −5, 7 8 −1, 3, 7

We can choose the first position of the parent (P1) as the starting point of the descen-
dants. Then, the offspring (C1) is:

C1 = (1,#,#,#,#,#,#,#)

The principle of selecting a chromosome from the parents is to select the blade with
the least number of blades adjacent to it. If the number of blades connected to a certain two
are equal, the blade with “−” is preferred. If the above conditions are the same for both
blades, then one of them is selected at random. As shown by P1 and P2, there are two, six,
and eight blades connected to blade 1. They have the same number of blades, but there is a
“−” sign before eight, so eight is chosen. There are one, three, and seven blades connected
to eight, and one has been selected before, so we chose between three and seven; because
there are more adjacent blades to seven, we chose three. Repeatedly, we can get:

C1 = (1,8,3,2,7,6,5,4)

The crossover probability(pc) is given by the cloud adaptive genetic algorithm:

pc =

 k1e−( f ′−Ex)2

2(En′)2 f ′ ≥ f

k3 f ′ < f

s.t.


Ex = f
En = ( fmax − f )/c1
He = En/c2
En′ = RANDN(En, He)

(16)

3.1.3. Mutation

The mutation can restore the lost or untapped genetic material of the chromosome to
prevent the chromosome from converging prematurely during the formation of the optimal
solution. For the problem of blade arrangement, this paper uses a two-element optimization
mutation operator. That is, the chromosomes selected according to the mutation probability
are randomly selected at a certain position of the chromosome to exchange blades, and a
new blade order is obtained. All the chromosomes of the parents are mutated according to
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the mutation probability until the next generation population is generated. The mutation
probability(pm) is given by the cloud adaptive genetic algorithm:

pm =

 k2e−( f−Ex)2

2(En′)2 f ≥ f

k4 f < f

s.t.


Ex = f
En = ( fmax − f )/c3
He = En/c4
En′ = RANDN(En, He)

(17)

where RANDN(En,He) generates a normal random number with an expected value of En
and a standard deviation of He. f max is the maximum fitness of the population, f is the
average fitness, f ′ is the fitness of the mutant chromosomes, and f is the larger value of the
fitness of the crossed chromosomes, k1~k4 ε[0~1]. In this paper, k1 = k3 = 1.0, k2 = k4 = 0.5,
c1 = 2.9, c3 = 3.0, c2 = c4 = 10.

3.2. Fitness Function

According to the principle of biological evolution, the larger the fitness requirement,
the better, and it is non-negative. Combined with the total unbalance given above, the
fitness function given in this paper is as follows:

f =
1

Z1
=

1∣∣M1x + iM1y
∣∣ = 1√

(Mx + Mex)
2 + (My + Mey)

2
(18)

4. Data Validation

In order to view the actual optimization effect and calculation speed of the algorithm,
the blades of the first-stage rotor of an aeroengine were selected for cloud adaptive genetic
algorithm assembly optimization. Due to special requirements, we cannot disclose the test
pieces of blades and disk, so we used the rotor in Figure 8 as the experimental schematic
diagram. There are 32 blades in this group. The mass moment of this group of blades was
measured on the mass moment scale (MW0). The value is shown in Table 2.
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Table 2. Mass moment values of aeroengine blades.

Serial
Number

Mass Moment
(g.mm)

Serial
Number

Mass Moment
(g.mm)

Serial
Number

Mass Moment
(g.mm)

Serial
Number

Mass Moment
(g.mm)

1 1,762,040 9 1,762,720 17 1,757,760 25 1,749,600
2 1,761,980 10 1,758,240 18 1,762,280 26 1,779,360
3 1,726,720 11 1,758,040 19 1,769,660 27 1,756,400
4 1,755,640 12 1,740,860 20 1,754,920 28 1,767,280
5 1,755,000 13 1,754,680 21 1,757,900 29 1,756,540
6 1,756,880 14 1,742,080 22 1,761,320 30 1,758,020
7 1,762,720 15 1,754,580 23 1,755,700 31 1,772,240
8 1,762,200 16 1,754,380 24 1,754,700 32 1,772,960

According to the mass moments given in Table 2, it was assumed that the disk
unbalance is 0 g.mm. The cloud adaptive genetic algorithm was used to sort the blades.
The set algorithm parameters were as follows: the population size N is 30; the maximum
number of iterations is 500. The C sharp language was used to program the algorithm, and
the algorithm was run on an ordinary PC with I7 2.4 GHz 4 GB running memory. It was
found that the minimum unbalance of the population obtained varies with the number of
iterations as shown in Figure 9.
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According to Figure 9, we can see that when the number of iterations reaches 235,
the maximum fitness result was achieved. For general or unreasonable sorting, the rotor
unbalance amount can reach 6000 g.mm or more. As the number of iterations of the
algorithm increases, the unbalance becomes smaller and smaller, until the minimum
unbalance is 99.63 g.mm when the number of iterations reaches 235. The corresponding
sorting result is shown in Table 3.

In order to compare the optimization effect of the cloud adaptive genetic algorithm,
the blades were sorted according to several methods (weight sorted, sorting type 2, sorting-
1/4 skip) mentioned in the paper [5], and the obtained unbalance sorting results are shown
in Figure 10a–c. According to sorting type 2, this paper designed sorting type 4, that
is, sorting type 2 was used to re-distribute the blades in four sectors, and the resulting
unbalance sorting result is shown in Figure 10d. The unbalance sorting results obtained by
the genetic algorithm (GA) and cloud adaptive genetic algorithm (CAGA) are shown in
Figure 10e,f.
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Table 3. The result of blades sorting optimized by CAGA.

Assembly Location Serial Number Mass Moment
(g.mm) Assembly Location Serial Number Mass Moment

(g.mm)

1 20 1,762,040 9 29 1,762,720
2 27 1,761,980 10 25 1,758,240
3 12 1,726,720 11 21 1,758,040
4 32 1,755,640 12 18 1,740,860
5 15 1,755,000 13 16 1,754,680
6 2 1,756,880 14 10 1,742,080
7 6 1,762,720 15 26 1,754,580
8 9 1,762,200 16 14 1,754,380

17 30 1,757,760 25 24 1,749,600
18 22 1,762,280 26 1 1,779,360
19 28 1,769,660 27 5 1,756,400
20 3 1,754,920 28 13 1,767,280
21 7 1,757,900 29 23 1,756,540
22 8 1,761,320 30 11 1,758,020
23 31 1,755,700 31 19 1,772,240
24 4 1,754,700 32 17 1,772,960

Figure 10 describes the assembly position of each blade and the arrangement of the
mass moment under the six blade arrangement methods. These methods can obtain the
unbalance value under several blade arrangements. Assuming that a mass block needs to
be added to the circumference of a disk with a radius of 500 mm for the balancing process,
the required balance mass is recorded in Table 4.

Table 4. Unbalance under different assembly methods.

Assembly Method Weight Sorted Sorting Type 2 Sorting-1/4 Skip

Unbalance (g.mm) 10,039.8 7777.93 19,664.58
Balance mass (g) 200.080 15.556 39.329

Assembly method Sorting Type 4 GA CAGA

Unbalance (g.mm) 5390.11 2292.83 99.63
Balance mass (g) 10.780 4.586 0.199

It can be seen from Table 4 that the weight sorted method causes the largest unbalance
in the assembly process. The sorting type 2, sorting type 4, and sorting-1/4 skip method
reduce the unbalance after arrangement to a certain extent relative to the weight sorted. GA
also optimized the unbalance to a certain extent, but it still cannot meet the requirement
that the unbalance cannot be brought into the tolerance range from the process, and the
mass of the corresponding mass that needs to be balanced does not meet the requirements.
From the perspective of the balance method, the intelligent algorithm optimization effect is
better than the empirical method. The unbalance of GA is at least 57.5% optimized relative
to the first four methods, and the unbalance of the CAGA algorithm is optimized by 95.7%
relative to GA.

In order to check the accuracy and calculation time of the cloud adaptive genetic
algorithm and genetic algorithm, the results of the two methods when the number of
iterations are 50, 100, 200, and 500, respectively, are shown in Figures 11 and 12.
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Figure 10. The mass moment arrangement of the blades under the 6 arrangement methods: (a) Weight sorted; (b) Sorting
Type 2; (c) Sorting-1/4 skip; (d) Sorting Type 4; (e) GA; (f) CAGA.
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Figure 11 shows that CAGA is much better than GA in terms of the algorithm accuracy,
and the imbalance of the two methods decreases with the increase of the number of times.
Figure 12 illustrates that CAGA is slower than GA in terms of the calculation time.

For the general blade sorting process, the initial unbalance of the disk is not considered.
This approach reduces the unbalance of the blade sorting result, but due to the existence of
the initial unbalance of the disk, the assembly unbalance after the sorting is not reduced.
Therefore, the calculation results obtained by setting the disk unbalance in the X direction
as 100, 200, and 500 g.mm in this paper are shown in Table 5.

Table 5. Blade arrangement under different initial unbalance.

Disk Unbalance (g.mm) Unbalance (g.mm) Blades Unbalance/g.mm Calculation Time (s)

0 99.63 99.63 70
100 101.87 152.7 74
200 5.75 194.6 71
500 51.76 458.04 72

It can be seen from Table 5 that at the same time, different initial unbalance can still
get better results. When the unbalance amount is 200 g.mm, the unbalance amount after
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optimization even reaches 5.75 g.mm, which shows that the method is still effective for
the optimization of blade sorting with the initial unbalance amount. The second and third
columns of the table compare the final imbalance of the same blade sequence when the
imbalance of Table 5 is included, and the imbalance of the blade is only considered when
the optimal rotor imbalance is reached. It can be seen from the table that the model that
considers the imbalance of the leaf disc is much smaller than the imbalance that only
considers the residual error of the blade, which proves the effectiveness of the model.

5. Conclusions

The cloud adaptive genetic algorithm was used to sort rotor blades with eccentric
disk-mass moment unbalance. The rotor mass moment model, the specific process of blade
sorting by the genetic algorithm, and improvement of the crossover and mutation operators
by the cloud adaptive genetic algorithm were introduced. The experimental results show
that this method greatly reduces the asymmetry of the rotor mass moment, reduces the
relative manual operation time and manpower, and optimizes the local optimization of the
relative general genetic algorithm. However, the rotor mass moment unbalance cannot be
eliminated generally. The minimum unbalance is related to the actual blade and disk mass
moment unbalance as well as the blade distribution angle, so the blade sorting can only
make the rotor mass moment meet the design requirements after sorting. This method
provides a fast rotor moment balance method and can also be used to optimize the order of
other unbalance blades.
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