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Abstract: The aim of this paper is to show analytically and empirically how ant-based algorithms
for medical image edge detection can be enhanced by using an admissible perturbation of demicon-
tractive operators. We thus complement the results reported in a recent paper by the second author
and her collaborators, where they used admissible perturbations of demicontractive mappings as
test functions. To illustrate this fact, we first consider some typical properties of demicontractive
mappings and of their admissible perturbations and then present some appropriate numerical tests
to illustrate the improvement brought by the admissible perturbations of demicontractive mappings
when they are taken as test functions in ant-based algorithms for medical image edge detection. The
edge detection process reported in our study considers both symmetric (Head CT and Brain CT) and
asymmetric (Hand X-ray) medical images. The performance of the algorithm was tested visually
with various images and empirically with evaluation of parameters.

Keywords: enriched demicontractive operator; edge detection; admissible perturbation; ant-based
algorithm; test function; symmetric medical image; asymmetric medical image

1. Introduction

Iterative algorithms and, in particular, fixed point iterative algorithms, are important
tools in the application of mathematical methods to problems arising in acoustic signal pro-
cessing, optical imaging and medical tomography. Many of the problems and algorithms in
the mathematics of medical image reconstruction are modelled by nonexpansive operators
or nonexpansive type operators such that the resulting fixed point equations are in most
cases solved by appropriate fixed point iterative algorithms (see, e.g., the monograph [1]).

In a recent paper [2], to enhance the quality of the edge detection results in medical
image processing when using ant-based algorithms, the authors used as test functions
admissible perturbations of some demicontractive operators.

The class of demicontractive mappings, which includes, among others, the class of
nonexpansive mappings having a fixed point and also the class of quasi-nonexpansive
mappings, turned out to provide very convenient attenuation properties for medical
images edge detection when using ant-based algorithms, as illustrated by the numerical
tests reported by [2] and in Section 3 of the present paper.

On the other hand, demicontractive mappings have been successfully used to solve
nonlinear functional equations [3], fixed point problems [4–6], multiple-set split feasibility
problems [7], equilibrium problems and variational inequality problems [8–10], as well as
many other important linear and nonlinear problems from applied mathematics.

Starting from the large spectrum of interests related to demicontractive mappings,
the aim of this research is twofold: first, to highlight some interesting properties of these
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mappings and, secondly, to illustrate—in conjunction with an appropriate admissible
perturbation—their attenuation properties when used as test functions for ant-based al-
gorithms in medical images edge detection. The edge detection process reported in our
study considers both symmetric (Head CT and Brain CT) and asymmetric (Hand X-ray)
medical images.

Our approach here is complementing the results reported in [2], where the authors
studied the influence of choosing the appropriate parameter values for the quality of the
edge detection algorithm. In the present paper, we focus on the process of selecting the test
function used in building the heuristic. This work clearly shows that, in ant algorithms for
medical images edge detection, the use of demicontractive operators and especially of the
admissible perturbations of demicontractive operators is beneficial for the quality of the
extracted edges.

To this end, in the next section, we give a brief account of the definition, connections
and main properties of demicontractive mappings, as well as the notion and properties of
the so-called admissible perturbation of an operator.

2. Enriching Nonlinear Mappings by Admissible Perturbations

Let H be a real Hilbert space with norm and inner product denoted as usually by
‖ · ‖ and 〈·, ·〉, respectively. Let C ⊂ H be a closed and convex set and T : C → C be a self
mapping and denote by

Fix (T) = {x ∈ C : Tx = x}

the set of fixed points of T. The mapping T is called:

(1) nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖, for all x, y ∈ C;
(2) quasi nonexpansive if Fix (T) 6= ∅ and ‖Tx − y‖ ≤ ‖x − y‖, for all x ∈ C and

y ∈ Fix (T);
(3) demicontractive [4,6] if Fix (T) 6= ∅ and there exists k < 1 such that

‖Tx− y‖2 ≤ ‖x− y‖2 + k‖x− Tx‖2, (1)

for all x ∈ C and y ∈ Fix (T), and we say T is k-demicontractive;
(4) k-strictly pseudocontractive of the Browder–Petryshyn type [11] if there exists k < 1

such that
‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖x− y− Tx + Ty‖2, ∀x, y ∈ C; (2)

(5) hemicontractive if (1) holds with k = 1; and
(6) pseudocontractive if (2) holds with k = 1.
It is easily seen that any nonexpansive mapping with Fix (T) 6= ∅ is quasi nonexpan-

sive and that any quasi nonexpansive mapping is demicontractive, but the reverses may
not be true, as illustrated by Example 1.

In addition, any nonexpansive mapping is k-strictly pseudocontractive of the Browder–
Petryshyn type and hence pseudocontractive, but the reverses are not generally valid. More-
over, if we take y ∈ Fix (T) in (2), we see that any k-strictly pseudocontractive mapping of
the Browder–Petryshyn type is k-demicontractive, but the reverse is no longer true.

Example 1. Let H be the real line and C = [0, 1]. Define T on C by Tx =
2
3

x sin
1
x

, if x 6= 0 and

T0 = 0. Then, Fix (T) = {0}, T is demicontractive (and also quasi nonexpansive) but T is not
nonexpansive or pseudocontractive. Indeed, for x ∈ C and y = 0,

|Tx− 0|2 = |Tx|2 =

∣∣∣∣23 x sin(1/x)
∣∣∣∣2 ≤ ∣∣∣∣23 x

∣∣∣∣2 ≤ |x|2 ≤ |x− 0|2 + k|Tx− x|2,
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for any k < 1. Hence, (1) is satisfied. To see that T is not nonexpansive, just take x =
2
π

and

y =
2

3π
to get

|Tx− Ty| = 16
9π

>
4

3π
= |x− y|.

With the same values for x and y, we have

|x− y|2 + |x− Tx− y + Ty|2 =
160

81π2 <
256

81π2 = |Tx− Ty|2,

which shows that T is not pseudocontractive.

Example 2. Let H be the real line with the usual metric and define S on C = [0, 1] by Sx = x2,
x ∈ C. We have Fix (S) = {0, 1} 6= ∅, but T is not demicontractive.

Let now (X, d) be a metric space. A mapping T : X → X is said to be asymptotically
regular if, for each x in X,

d(Tn+1x, Tnx)→ 0 as n→ ∞.

It is well known that any Banach contraction, i.e., any mapping T : X → X, satisfying the
Banach contraction condition

d(Tx, Ty) ≤ cd(x, y), x, y ∈ X (0 < c < 1),

is asymptotically regular.
Despite the fact that a nonexpansive mapping T is the limit case (c = 1) of a Banach

contraction mapping—which is asymptotically regular—a nonexpansive map is, in general,
not asymptotically regular. This is fact is illustrated by the following two simple examples.

Example 3. (1) Let X = R with the usual norm and T : X → X be given by Tx = x + 1, x ∈ X.
Then, Tnx = x + n, n ≥ 1 and so Tn+1x − Tnx = 1, for all n ≥ 1 and hence T is not
asymptotically regular on X. Note that in this case Fix (T) = {x ∈ X : Tx = x} = ∅.

(2) Let X = R with the usual norm and T : X → X be given by Tx = 1− x, x ∈ X. In this
case, we have T2n+1x = 1− x, T2nx = x, n ≥ 1 and hence T is not asymptotically regular on X,
although Fix (T) = {1/2}.

Krasnosel’skiı̌ [12] noted the fact that, for a nonexpansive mapping T, the averaged
mapping associated to T, that is,

Tλ := (1− λ)I + λT, λ ∈ (0, 1), (3)

is asymptotically regular. Thus, by observing that

Fix (T) = Fix (Tλ), (4)

for any λ ∈ (0, 1), in order to approximate the fixed points of T, one can use an enriched
mapping, that is, the average mapping Tλ, which is asymptotically regular, while T is not.

In this way, Krasnosel’skiı̌ [12] proved that the iterative process

xn+1 =
1
2
(xn + Txn), n ≥ 0, (5)

converges to a fixed point of a nonexpansive mapping T (see also [11] for other related results).
On the other hand, Rus [13] introduced the concept of admissible perturbation of an

operator, as an abstract approach to the study of fixed point iterative schemes.
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Definition 1. [13] Let X be a nonempty set. A mapping G : X× X → X is called admissible if it
satisfies the following two conditions:

(A1) G(x, x) = x, for all x ∈ X;
(A2) G(x, y) = x implies y = x.

Definition 2. [13] Let X be a nonempty set. If T : X → X is a given operator and G : X×X → X
is an admissible mapping, then the operator TG : X → X, defined by

TG(x) = G(x, f (x)), ∀x ∈ X, (6)

is called the admissible perturbation of T.

Example 4. [13] Let (V,+,R) be a real vector space, X ⊂ V a convex subset, λ ∈ (0, 1),
T : X → X and G : X× X → X be defined by

G(x, y) := (1− λ)x + λy, x, y ∈ X.

Then, TG is an admissible perturbation of T. We denote in the following TG by Tλ and call it the
Krasnoselskij perturbation of T, in view of the pioneering results obtained by Krasnoselskij [12].

Remark 1. The following property of an admissible perturbation

Fix (TG) = Fix (T),

expressed by (4) in the case of Krasnoselskij perturbation, is fundamental in the iterative approxima-
tion of fixed points.

Note that, in general,
Fix (Tn

G) 6= Fix (Tn), n ≥ 2. (7)

Some other authors have studied various properties of the admissible perturbation
of certain classes of operators: nonexpansive operators [14], φ-pseudocontractive oper-
ators [15], nonself generalized pseudocontractive operators [16], α-ψ-pseudocontractive
operators [17,18], demicontractive operators [19,20], multivalued operators [21], etc.

From this point of view, some of the following properties of demicontractive mappings,
on the one hand, and of admissible perturbations of a nonlinear operator, on the other
hand, are important in our numerical applications reported in Section 3.

Proposition 1. Let H be a real Hilbert space and C ⊂ H be a closed and convex set. If T : C → C
is a quasi-nonexpansive mapping, then, for any λ ∈ (0, 1), the Krasnoselskij perturbation Tλ of T
is pseudocontractive.

Proof. By hypothesis, we have Fix (T) 6= ∅ and ‖Tx − y‖ ≤ ‖x − y‖, for all x ∈ C and
y ∈ Fix (T), which is equivalent to

〈Tx− x, x− y〉 ≥ 0, x ∈ C, y ∈ Fix (T).

Then, for all x ∈ C and y ∈ Fix (T), we have

‖Tλx− y‖2 = ‖λ(Tx− x) + x− y‖2 = ‖x− y‖2 + 2λ〈Tx− x, x− y〉

+λ2‖Tx− x‖2 ≤ ‖x− y‖2 + λ2‖Tx− x‖2

+λ2‖Tx− x‖2 = ‖x− y‖2 + ‖Tλx− x‖2,

which shows that Tλ is pseudocontractive.
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Proposition 2. Let H be a real Hilbert space and C ⊂ H be a closed and convex set. If
T : C → C is k-demicontractive, then the Krasnoselskij perturbation Tλ of T is (1 + k/λ− 1/λ)-
demicontractive.

Proof. By hypothesis, we have Fix (T) 6= ∅ and there exists k < 1 such that

‖Tx− y‖2 ≤ ‖x− y‖2 + k‖x− Tx‖2,

for all x ∈ C and y ∈ Fix (T), which is equivalent to

〈Tx− x, x− y〉 ≤ k− 1
2
· ‖x− Tx‖2, x ∈ C, y ∈ Fix (T).

Then, similar to the proof of Lemma 1, for all x ∈ C and y ∈ Fix (T), we have

‖Tλx− y‖2 = ‖λ(Tx− x) + x− y‖2 = ‖x− y‖2 + 2λ〈Tx− x, x− y〉

+λ2‖Tx− x‖2 ≤ ‖x− y‖2 + (λ2 + λk− λ)‖Tx− x‖2

= ‖x− y‖2 +
λ2 + λk− λ

λ2 · ‖Tλx− x‖2, x ∈ C, y ∈ Fix (T),

which shows that Tλ is (1 + k/λ− 1/λ)-demicontractive.

Remark 2. It is important to note that the Krasnoselskij perturbation of a k-demicontractive map
has a better demicontractiveness constant, since

1 +
k
λ
− 1

λ
> k,

for any k < 1.

Therefore, as in the case of nonexpansive mappings with respect to asymptotic reg-
ularity, an admissible perturbation of a nonlinear operator enriches this operator. This
explains why the admissible perturbations of the demicontractive operators utilized in [2]
are enhancing the quality of the edge detection results in medical image processing when
using ant-based algorithms.

According to the theoretical results presented above, this fact is mainly due to a kind
of mitigation of the iterations for the perturbed test functions, as clearly illustrated by the
numerical results presented in the next section.

3. Admissible Perturbations of Demicontractive Mappings as Test Functions

In two previous works [2,22], the second author and her collaborators studied some
admissible perturbations of demicontractive operators which were used in an ant colony
optimization algorithm for edge detection of medical images.

The functions we used in our tests are:

• T 1
15

=
(

1− 1
15

)
x + 1

15 Tx, where T is defined in Example 1;

• Tχ = (1− χ(x, Tx))x + χ(x, Tx)Tx, where χ : [0, 1]→ [0, 1],

χ(x, Tx) =
x2(Tx)2

(1 + x2)
(

1 + (Tx)2
);

• Tx = αx2, where α is a parameter which adjusts the shape of the operator, see
Example 2 for the case α = 1;

• Tx = sin

(
πx
2α

)
, where α adjusts the shape of the operator.

The demicontractive operator presented in Example 1 is referred to as T starting from
this point. To approximate the fixed points, we use Picard iteration and Krasnoselskij
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iteration obtained by applying the admissible perturbation for λ = 0.1, λ = 0.2, λ = 0.5
and λ = 0.9, respectively. The Krasnoselskij admissible perturbation operators are denoted
as usually by Tλ, with the value of λ as index, i.e., T0.1 is the admissible perturbation of T
for λ = 0.1, and so on.

We performed tests for various values of the initial approximation x0, but we present
here only the results obtained for x0 = 0.6.

We computed the successive approximation values, xn, for n = 1, 60 of T, T0.1, T0.2,
T0.5 and T0.9. A summary of the results are presented in Table 1. After 60 iterations, the
difference between two successive values was at least 10−3, i.e., |xn+1 − xn| ≤ 10−3, for all
functions we considered.

Table 1. Values of xn computed using the functions T, T0.9, T0.5, T0.2 and T0.1 with the initial guess
x0 = 0.6.

n T T0.9 T0.5 T0.2 T0.1

1 0.3982 0.4183 0.4991 0.5596 0.5798

10 0.0032 0.0062 0.0621 0.2579 0.3970

20 −7.78× 10−10 1.81× 10−8 1.72× 10−5 0.0247 0.1331

30 −4.34× 10−13 1.31× 10−11 1.63× 10−7 0.0058 0.0671

40 2.25× 10−19 2.14× 10−16 3.33× 10−11 5.82× 10−4 0.0231

50 −1.09× 10−24 −3.85× 10−21 1.29× 10−14 6.16× 10−5 0.0081

60 2.41× 10−31 −3.51× 10−27 6.80× 10−18 6.66× 10−6 0.0029

Figure 1 presents the graphs for the values of xn where n takes successively values
from 0 to 60 for the functions T, T0.9, T0.5, T0.2 and T0.1, respectively.

Figure 2 presents the first 60 values of xn calculated for T, T0.5, T0.2 and T0.1, respec-
tively. The functions T0.2 and T0.9 are not presented in Figure 2 due to the fact that their
graphs are too close to the graphs of T0.1 and T, respectively, and so the image would not
be clear enough.

Figure 1. Graph for the successive approximations points corresponding to T, T0.1, T0.2 and T0.5.
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Figure 2. Distribution of iterations xn with respect to the corresponding graphs of operators T, T0.5

and T0.1.

We note that the convergence of the iterative process associated to the operator T 1
15

is slower than the one corresponding to the operator T0.1. The value of xn generated by
T 1

15
reaches to the fixed point with an error of 10−3 at the 77th iteration and xn = 0.009.

Obviously, its graph is very similar to the graph of T0.1.
In [22], the authors presented facts which indicate that the best results may be obtained

when the test functions are admissible perturbations of demicontractive functions and not
the function T itself.

When the test function is considered S in Example 2, then the obtained edges were
unclear. This is mainly because S is not demicontractive.

We present numerical results produced by the edge detection algorithm described
in [2] for a set of medical images using T, T 1

15
, T0.1, T0.2, T0.5, T0.9 and S, respectively, as

test functions. Various images of the detected edges obtained for the test images using
operators T, T 1

15
, T0.5 and T0.9 are also presented.

The images used are shown in Figure 3. The images are: Head CT from [23] with a
resolution of 128× 128 pixels, an image which is available online for free; Brain CT with a
resolution of 128× 128 from personal library; and Hand X-ray from [24] with a resolution
of 225× 225, available online for free. The resolution of each image does not influence
the conclusions presented, since comparisons are made separately for each image, among
results obtained with different test functions.

The images in Figure 3 were used in the edge detection algorithm first presented
in [25] and then studied in [2,22].

The present study follows the effect of changing the value of λ, the variable implied
in the admissible perturbation of the demicontractive mapping T.
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Figure 3. Test-data: medical images (Head_CT (a) [23], Brain_CT (b) and Hand_X−ray [24] (c)).

Each image is represented as a matrix. For each image presented in Figure 3, the
values in the matrices are integers with values which range from 0 to 255 inclusively. The
values in the matrices corresponding to the generated edges are only values of 0 or 255
exclusively. For the edge, we have the value 0 in the matrix; for the white region, the matrix
corresponding value is 255. We consider the best detected edge the one with the matrix
which contains the most zeros. The most similar and the least similar detected edges are
also established.

Detected edges for Head CT, Brain CT and Hand X-ray are presented in Figures 4–6,
respectively.

Figure 4. Detected edges for Head CT with test function: (a) T; (b) T0.9; (c) T0.5; and (d) T 1
15

.

Figure 5. Detected edges for Brain CT with test function: (a) T; (b) T0.9; (c) T0.5; and (d) T 1
15

.

Figure 6. Detected edges for Hand X-ray with test function: (a) T; (b) T0.9; (c) T0.5; and (d) T 1
15

.

Some notations were used: D is the edge matrix generated by operator T, K0.9 is the
edge matrix generated by operator T0.9 and similarly for K0.5, K0.2, K0.1and K 1

15
, respectively,

and N is the edge matrix generated by the operator S.



Symmetry 2021, 13, 885 9 of 12

We counted the pixels which form the edge. The results of the counting are presented
in Table 2.

Table 2. Number of pixels detected on the edge of Head CT [23], Brain CT and Hand X-ray [24] images.

Number of Pixels on the Edge Head CT Brain CT Hand X-ray

D 2233 2745 3060

K0.9 1902 2737 2728

K0.5 2262 2780 3172

K0.2 2879 2886 3987

K0.1 3170 2940 4408

K 1
15

3231 2968 4605

N 1969 1593 1800

It can be easily observed in Figures 4 and 6 that the most compact edge is generated
by operator T 1

15
.

In Figure 5, on the other hand, the differences among detected edges is less visible, but
we can see in Table 2 that operator T 1

15
extracted the largest number of pixels and therefore

generated the most compact edge.
In addition, in Table 2, the greater numbers of pixels correctly identified are in the

row of operator T 1
15

for all images: Head CT, Brain CT and Hand X-ray. When we consider
only the admissible perturbation operators, the extracted edges contain more pixels as
the parameter λ decreases. Hence, the weakest edge is obtained by T0.9, while the most
compact one was obtained for T 1

15
.

We should also note that, when we consider the unperturbed functions, namely T and
S, we observe that the demicontractive function extracted a better edge than S, because S is
not demicontractive.

Table 3 presents the values obtained by applying the norm (Euclidean norm) to the
difference of the edge matrices as the first column of the table indicates. The larger the
value is, the less similar the edge contained in the matrix is, and, similarly, the smaller the
value is, the more similar the edge is.

For each image, we mark the least and most similar matrices.
The method of detecting edges using ant colonies is, in our opinion, comparable

with other methods such as Prewitt, Sobel and Roberts edge detection. To support this
statement, we present Figure 7. The edges presented in Figure 7a–c were obtained using in
MATLAB the command edge for the edge extraction methods Prewitt, Sobel and Roberts,
while Figure 7d was obtained by ACO with test function T 1

15
.

Figure 7. Extracted edges for Hand X-Ray with different edge extraction methods: (a) Prewitt;
(b) Sobel; (c) Roberts; and (d) ACO with test function T 1

15
.
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Table 3. Similarity comparison of correctly identified edges for medical images Head CT [23], Brain
CT and Hand X-ray [24].

Operator/Image Head CT Brain CT Hand X-ray∥∥∥D− K 1
15

∥∥∥ 2854 1054 3437

‖D− K0.1‖ 2710 966 4388

‖D− K0.2‖ 2090 885 6946

‖D− K0.5‖ 1127 671 982

‖D− K0.9‖ 1117 413 4301

‖D− N‖ 1164 2987 4481∥∥∥K 1
15
− K0.1

∥∥∥ 534 471 4826∥∥∥K 1
15
− K0.2

∥∥∥ 1271 610 6803∥∥∥K 1
15
− K0.5

∥∥∥ 2799 921 3048∥∥∥K 1
15
− K0.9

∥∥∥ 3558 1022 4872∥∥∥K 1
15
− N

∥∥∥ 3412 3541 5274

‖K0.1 − K0.2‖ 1113 529 5533

‖K0.1 − K0.5‖ 2641 805 4335

‖K0.1 − K0.9‖ 3399 936 3429

‖K0.1 − N‖ 3250 3473 4936

‖K0.2 − K0.5‖ 1951 715 6841

‖K0.2 − K0.9‖ 2714 823 5438

‖K0.2 − N‖ 2538 3367 5299

‖K0.5 − K0.9‖ 1261 615 4248

‖K0.5 − N‖ 1022 3086 4394

‖K0.9 − N‖ 898 2979 2324

Of course, improvements can be made in order to obtain better edges. Such improve-
ments may be:

• applying filters to reduce the noise in the source image;
• segmenting the image before edge extraction, extracting the edge and reunite the

obtained edges for more details;
• finding a method to eliminate the possible noise in the edge.

In our future research, we intend to use the presented edge detection method in Canny
edge detection at the step in which intensity gradient of the image is found.

Edge detection methods are still a domain in which progress is desirable. The aim
is to improve the quality in such a way that a view of the generated edges should offer a
better understanding of the original image.

4. Conclusions

(1) We show, both analytically and empirically, that one can improve ant-based al-
gorithms for image edge detection by using admissible perturbations of demicontractive
mappings as test functions. For another possible way to find more selective test functions
that can improve ant-based algorithms for image edge detection, we refer to the classes of
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the so-called enriched mappings—which are in fact admissible perturbations of various
contractive operators—which were very recently studied by the authors of [26–34].

(2) Thus, we support theoretically the empirical results reported in the recent
papers [2,22], and we also performed relevant new numerical experiments and comparison
studies of the numerical results obtained. The edge detection process reported in our
study considers both symmetric (Head CT and Brain CT) and asymmetric (Hand X-ray)
medical images.

(3) Our extensive numerical experiments clearly indicate that the ant-based algorithms
are significantly improved by using as test functions various admissible perturbations
of demicontractive mappings and also that a less accurate edge is extracted when using
non-demicontractive test functions.

(4) We also raise an interesting open question for further studies. As observed from
the experimental results obtained, by considering two different test functions, the extracted
edge by the first function could be essentially different from the edge extracted by the
second function. Thus, even if the edge extraction rate of a certain function is not very high,
it will be useful to find a way to combine it with another (better) test function to form a
single one test function with an even better edge extraction rate.

(5) It will also be of real theoretical and practical interest to find some of the analytical
reasons for the above property.
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pseudocontractive operators. An. Univ. Vest Timiş. Ser. Mat.-Inform. 2018, 56, 13–27. [CrossRef]
27. Berinde, V. Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces.

Carpathian J. Math. 2019, 35, 293–304. [CrossRef]
28. Berinde, V. Approximating fixed points of enriched nonexpansive mappings in Banach spaces by using a retraction-displacement

condition. Carpathian J. Math. 2020, 36, 27–34. [CrossRef]
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