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Abstract: DNA N4-Methylcytosine is a genetic modification process which has an essential role in
changing different biological processes such as DNA conformation, DNA replication, DNA stability,
cell development and structural alteration in DNA. Due to its negative effects, it is important to
identify the modified 4mC sites. Further, methylcytosine may develop anywhere at cytosine residue,
however, clonal gene expression patterns are most likely transmitted just for cytosine residues in
strand-symmetrical sequences. For this reason many different experiments are introduced but they
proved not to be viable choice due to time limitation and high expenses. Therefore, to date there
is still need for an efficient computational method to deal with 4mC sites identification. Keeping
it in mind, in this research we have proposed an efficient model for Fragaria vesca (F. vesca) and
Rosa chinensis (R. chinensis) genome. The proposed iRG-4mC tool is developed based on neural
network architecture with two encoding schemes to identify the 4mC sites. The iRG-4mC predictor
outperformed the existing state-of-the-art computational model by an accuracy difference of 9.95%
on F. vesca (training dataset), 8.7% on R. chinesis (training dataset), 6.2% on F. vesca (independent
dataset) and 10.6% on R. chinesis (independent dataset). We have also established a webserver which
is freely accessible for the research community.

Keywords: Convolution Neural Network (CNN); bioinformatics; Long Short-Term Memory (LSTM);
N4-methylcytosine; computational biology

1. Introduction

DNA modification consisting of methylation and demethylation plays a crucial role in
gene regulation. DNA methylation being a heritable epigenetic marker is a kind of chemical
modification of DNA that changes the genetic functionality without disrupting the DNA
sequence [1,2]. Research demonstrates that DNA modification exhibits the property to
modify DNA protein interactions, chromatin structure, stability and conformation [3,4].
It also has a role in the regulation of a few activities such as cell development, chromosome
stability and genomic imprinting [5–7].

In prokaryotes and eukaryotes most commonly observed methylations are
N4-methylcytosine (4mC) [8], 5-methylcytosine (5mC) [9], and N6-methyladenine (6mA) [10].
Each methylation process has its specific altering site, i.e., 4mC, 5mC and 6mC occurs at
4th, 5th and 6th position of the cytosine respectively. Host DNA present in exogenous
pathogenic DNA of prokaryotes can be detected by 6mA and 4mC [11], where 4mC perform
error correction and regulation of DNA replication [12,13]. Additionally, 4mC belongs to a
restriction-modification system that resists the degradation of host DNA caused by restriction
enzymes [14]. 5mC plays an essential role in various activities of eukaryotes, such as gene
imprinting, regulation, and transposon suppression. In eukaryotes, 6mA and 4mC can only
be identified using high sensitive techniques [15].
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The 5mC has been extensively studied and previous studies have proved that 5mC is
responsible for various biological processes [16], such as diabetes, few neurological defects
and cancer [17–19]. The 4mC exhibits the ability to resist enzyme-mediated degradation to
safeguard its own DNA. Furthermore, it can manipulate different activities entailing gene
expression levels, DNA replication, cell cycle, discriminating self and non-self-DNA and
amendment in DNA replication abnormalities [12,20]. Even after extensive research, the
accurate mechanism of 4mC epigenetic modification remains unrevealed. This makes the
identification of 4mC sites to be an important task, as its identification can give a better
understanding of pathological and physiological mechanisms.

Several experimental studies have been conducted to find 4mC sites throughout the
genome, some of them are 4mC-Tet-assisted bisulphite sequencing, Single Molecule of Real
Time (SMRT) sequencing, methylation-precise PCR and mass spectrometry [21,22]. These
methodologies are time exhaustive, laborious, and financially expensive when utilized
for genome-wide testing. Henceforth, it is crucial to follow a computational approach for
finding 4mC sites.

Recently, various 4mC sites identifiers have been suggested for several species entail-
ing A. thaliana, C. elegans, D. melanogaster, G. pickeringii, E. coli and G. subterraneus [23,24].
Further a first computational tool for 4mC identification in Rosaceae genomes is recently
introduced which is, i4mC-ROSE [25]. This tool has been suggested to predict the 4mC sites
within the genome of Rosa chinensis (R. chinensis) [26] and Fragaria vesca (F. vesca) [27]. It pro-
duced six probabilistic scores by utilizing six encoding schemes; k-space spectral nucleotide
composition (KSNC), k-mer composition (Kmer), dinucleotide physicochemical properties
(DPCP), electron-ion interaction pseudopotentials (EIIPs), trinucleotide physicochemical
properties (TPCPs), and binary encoding (BE) that works on different characteristics of
DNA sequence information. These encoded sequences are used to train random forest
classifier to identify the 4mC modification. The scores acquired are concatenated with a
linear regression model for improved prediction results. Studies have suggested that in
plant methylation DNA is mostly found in cytosines belonging to symmetrical sequences,
which makes the classification problem further difficult [28].

In recent years, neural networks have acquired great importance due to their high per-
formance in different fields like medical imaging [29–31], agriculture [32–37], image quality
assessment and others. Moreover, neural networks have exhibited great performance in
the identification of 6mA sites [38,39], m6A sites [40,41], 4mC sites [23,24,42], functional
piRNAs [43], N4-acetylcytidine sites [44], promoters classification [45] and others. Inspired
from the high performance given by neural network tools for modification identification in
different sites, we have proposed a neural network based tool for 4mC identification in
Rosaceae genomes.

The proposed iRG-4mC tool encodes the input sequence using two techniques which
are one-hot encoding and nucleotide chemical properties (NCP). The outputs of the two
encoding scheme are combined and given to the Convolution Neural Network (CNN) model.
The CNN model extracts the features using convolution layers and then gives optimal
representation to these features using Long Short Term Memory (LSTM). The optimized
features are used for the prediction of 4mC sites. The proposed architecture has obtained
high performance. Performance analysis is carried out by using K-fold cross-validation on
the training dataset and by using an independent dataset. While in comparison with the
existing state-of-the-art tool which is i4mC-Rose, the proposed iRG-4mC tool have achieved
higher performance for training as well as an independent dataset.

2. Benchmark Dataset

The benchmark dataset used in this study is acquired from MDR database [46].
The dataset contains two genomes which are F. vesca and R. chinensis. All of the sequences
present in the dataset have a length of 41 base pairs (bp) and centered with cytosine nu-
cleotide. For maintaining the high quality of the dataset, the positive sequences are verified
with the help of modification score (ModQV). The cytosine nucleotide is considered to
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be modified if the modification score is greater than 19. Further, CD-HIT software [47] is
utilized to encounter the homology bias problem, where sequences with more than 65%
similarity are removed.

A large number of negative 4mC sites were gathered too and CD-HIT was applied
to remove the the sequences that were having more than 65%. Out of this big dataset of
negative samples, we have randomly selected the same numbers of sites as available for
positive 4mC, so that there would be no class imbalance problem. The total sites collected
were 6471 and 3116 for F. vesca and R. chinensis respectively for each class. Each dataset is
further divided into two sets where 75% is kept for training and remaining 25% is kept as
an independent dataset. Table 1 shows the summary of the database.

Table 1. Summary of the databases utilized in this study.

Specie Sequence Class Number of Sequences of Seq Sequence Length

F. vesca (training) 4mC 4854 41 bpnon-4mC 4854

R. chinensis (training) 4mC 2337 41 bpnon-4mC 2337

F. vesca (Independent) 4mC 1617 41 bpnon-4mC 1617

R. chinensis (Independent) 4mC 779 41 bpnon-4mC 779

3. Methodology

The DNA sequences were in string form, therefore, an encoding scheme was required
before feeding the data to the model. Previous methods in site identification have used
different encoding schemes. One-hot encoding and NCP [48] encoding schemes are the
most commonly used schemes. In this study, we used both of these schemes, by combining
them both. Table 2 shows the summary of the encoding schemes. One-hot encoding
assigned 4 bits for each nucleotide, while NCP allocated 3 bits for each nucleotide. The
fusion of both encoding schemes resulted in 7 bits for each nucleotide. Each input DNA
sequence was 41bp long, the encoding mechanism converted the sequence into a matrix of
size 41 × 7.

Table 2. Summary of encoding scheme.

Nucleotide One-Hot NCP Fusion

A 1,0,0,0 1,1,1 1,0,0,0,1,1,1

C 0,1,0,0 0,0,1 0,1,0,0,0,0,1

G 0,0,1,0 1,0,0 0,0,1,0,1,0,0

T 0,0,0,1 0,1,0 0,0,0,1,0,1,0

Figure 1 shows the proposed iRG-4mC architecture. The final encoded sequence was
given to a CNN model that contained multiple layers in a stacked way. The proposed CNN
model had two main feature extraction blocks. Each feature extraction block contained
a convolution layer followed by a batch normalization layer, max-pooling layer and a
dropout layer. The convolution layer fetched the features from the input encoded sequence
by a self-regulating mechanism. To get the optimized model, different layers had different
parameter settings. In the first feature extraction stage, the convolution layer used 32 filters
of size 9 with strides equal to 1 with the dropout layer being set with a ratio of 0.1, while the
convolution layer of the second feature extractor used eight filters of size 5 with a single
stride and the dropout ratio in this block was set to 0.25. The max-pooling layer of both
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stages used a pool-size of 4 and the stride value was kept at 1. Batch normalization was
used in both blocks to achieve model stability by normalizing the extracted features.

MDR Database

Non-4mC Sequences 4mC Sequences

Redundancy reduction using 

CD_HIT_EST with 65% 

similarity

Dataset 

Training Datasets

F.vesca R.chinensis
4mc Seq. = 4854 4mc Seq. = 2337
Non-4mC Seq. = 4854 Non-4mC Seq. = 2337

Independent Datasets

F.vesca R.chinensis
4mc Seq. = 1617 4mc Seq. = 779
Non-4mC Seq. = 1617 Non-4mC Seq. = 779

One-Hot Encoding
Nucleotide Chemical 

Properties

Fusion of Encoding 
Schemes

4mC 

Sequences

Non-4mC 

Sequences

Conv1D BatchNormalization MaxPooling1D Dropout LSTMFlatten Dense

CNN Model

Figure 1. iRG-4mC Architecture for Identification of 4mC sites.

Feature extractor blocks were followed by an LSTM layer which gives an optimal
interpretation to the extracted features. It helped the architecture to learn the internal
representation of the input sequence. Further LSTM also solved the vanishing gradient
problem by adding extra interactions. The output of the LSTM layer was unstacked using
the flatten layer. The final feature vector was then given to the three fully connected layers
to get the classification of 4mC and non-4mC sites. Table 3 shows the neural network
architecture details for iRG-4mC.
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Table 3. Neural Network Architecture of iRG-4mC.

Layer Output Shape Number of Parameters

Input (41,7) -
Conv1D (32,9,1) (33,32) 2048

Batch Normalization (33,32) 128
Max Pooling (4,2) (15,32) 0

Dropout (0.1) (15,32) 0
Conv1D (8,5,1) (11,8) 1288

Batch Normalization (11,8) 32
Max Pooling (4,2) (4,8) 0

Dropout (0.25) (4,8) 0
LSTM (16) (4,16) 0

Flatten 64 0
Dense (64) 64 4160
Dense (32) 32 2080
Dense (1) 1 33

To avoid the over-fitting problem, we used L2 regularization mechanism for weights
and bias of the filters. The regularization rates were set to 0.0001. The ReLU activation
function was used in convolution, LSTM and first two dense layers. The numerical
representation of ReLU is,

F(x) = max(0, x) (1)

The third dense layer is have a single neuron, so it uses a sigmoid activation function
which is represented as,

Sigmoid(x) =
1

1 + e−x (2)

The loss function used in this study was binary cross entropy and stochastic gradient
descent (SGD) was used as an optimizer with momentum set at 0.7 and learning rate set at
0.005. The SGD was used as it achieved faster iterations to reduce the system complexity.
All filter sizes, number of filters, number of convolution layers, pool sizes, stride length
and dropout values were optimized using hyper-parameter tuning.

4. Figure of Merits

The iRG-4mC tool for training datasets was evaluated using k-fold cross-validation,
with the value of k set to 10 for a fair comparison with the previous methodology. The whole
dataset under consideration was divided into k subsets, where a single subset was kept
for testing while the other subsets were used for training purpose. This method was
iteratively repeated till the time all subsets were considered for testing. For getting the
final performance evaluation of the model, an average was taken of k-trials. For selecting
the figure of merits, we followed the previous related work so that we could compare
the similar figure of merits including sensitivity (Sn), specificity (Sp), accuracy (ACC) and
Matthews correlation coefficient (MCC). The metrics can be defined mathematically using
the equations:

Sn =
TP

TP + FN
(3)

Sp =
TN

TN + FP
(4)

ACC =
TP + TN

TP + TN + FP + FN
(5)
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MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

where,
True Positive (TP) = 4mC correctly classified as 4mC

False Positive (FP) = Non 4mC incorrectly classified as 4mC
True Negative (TN) = Non 4mC correctly classified as Non 4mC

False Negative (FN) = 4mC incorrectly classified as Non 4mC
Besides these matrices, we used the Receiver Operating Characteristic (ROC) curve to

evaluate the performance of the proposed model.

5. Results and Discussion

We evaluated the iRG-4mC tool on four datasets, where two datasets were for F. vesca
genome and the other two are for R. chinensis. For each genome one training dataset and
one independent dataset was taken into consideration. The performance evaluation of the
training dataset was done using k-fold cross-validation where the value of k was kept
at 10. The 10-fold cross-validation was adopted because i4mC-ROSE have also used the
same technique and keeping a similar experimental setup allowed having better compar-
ative analysis between both techniques. For the performance evaluation of independent
datasets, the training was performed on its respective training dataset and tested on the
independent dataset.

Table 4 shows the performance comparison between the proposed model and the
i4mC-ROSE model for all datasets taken into account. As can be seen, the proposed iRG-
4mC tool showed a noticeable improvement in performance than i4mC-ROSE. In the case
of F. vesca (training/independent) dataset, the proposed model showed better results on all
evaluation matrices, while in the case of R. chinensis (training/independent) an improvement
was seen in all of the matrices except specificity. The specificity of i4mC-ROSE was slightly
higher than the proposed model. As can be observed however, that i4mC-ROSE had a high
difference between sensitivity and specificity for all the datasets. This difference depicted
that the i4mC-ROSE tool was biased towards one class and that led to a biased decision
from the tool. However, in the case of iRG-4mC, the difference between sensitivity and
specificity was minimum, which also led to an improvement in MCC. The iRG-4mC tool
achieved high accuracy in all the datasets. The achieved accuracies for F. vesca (training),
F. vesca (independent), R. chinensis (training) and R. chinensis (independent) were 0.867, 0.859,
0.871 and 0.865 respectively.

Table 4. Performance comparison of proposed iRG-4mC tool with existing i4mC-ROSE model (The
highest values for different performance parameters are shown in bold).

Dataset Tool Sensitivity Specificity Accuracy MCC

F. vesca (training) i4mC-ROSE 0.635 0.899 0.767 0.545
iRG-4mC 0.825 0.908 0.8665 0.732

R. chinensis (training) i4mC-ROSE 0.668 0.9 0.784 0.563
iRG-4mC 0.869 0.864 0.871 0.739

F. vesca (independent) i4mC-ROSE 0.721 0.873 0.797 0.601
iRG-4mC 0.835 0.882 0.859 0.706

R. chinensis (independent) i4mC-ROSE 0.636 0.881 0.759 0.535
iRG-4mC 0.854 0.875 0.865 0.714

Figure 2 shows the graphical performance comparison between the two techniques.
Figure 3 shows the ROC curve of 10 folds for F. vesca dataset. An ROC curve is the plot
between sensitivity and specificity at different classification thresholds, while the area
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under the ROC curve (AUC) is the accumulated performance measure over all possible
thresholds. The mean AUC achieved was 0.903 with a standard deviation of 0.03.

Figure 2. Visual performance comparison between state-of-the-art i4mC-ROSE and proposed iRG-4mC.

Figure 3. ROC curve.
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6. Conclusions

Getting inspired from the importance of N4-methylcytosine sites identification, we
have proposed an identification computational tool named as iRG-4mC. The proposed
identification tool is for the Rosaceae genome and that is why two different species F. vesca
and R. chinensis are considered in this study. In proposed tool the input sequences are
encoded using combination of one-hot encoding and nucleotide chemical properties (NCP).
The final attained sequence is given to the neural network architecture for classification
between 4mC and non-4mC sites. The neural network architecture contains two blocks for
feature extraction followed by LSTM for feature optimization and three fully connected
layers for final prediction. The architecture is optimized by hyper parameter tuning. Differ-
ent figure of merits are taken into account to have comparison with existing method. The
achieved results have illustrated great improvement in performance by the iRG-4mC tool.
This computational tool can be of great importance for the researchers from the field of biol-
ogy and bio-informatics. A user friendly web-server is made for the researcher’s convenience.
The webserver is freely available at: http://nsclbio.jbnu.ac.kr/tools/iRG-4mC/.
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