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Abstract: Color images have a wider range of applications than gray images. There are two ways
to extend the traditional super-resolution reconstruction method to color images: Super resolution
reconstructs each channel of the color image individually; Change the RGB color bands into YCrCb
color bands, then super-resolution reconstructs the luminance component and interpolates the
chrominance components.These algorithms cannot effectively utilize the property that the edges
and textures are similar in the RGB channels, and the results of those methods may lead to color
artifacts. Aiming to solve these problems, we propose a new super-resolution method based on
cross channel prior. First, a cross channel prior is proposed to describe the similarity of gradient in
RGB channels. Then, a new super-resolution method is proposed for color images via combination
of the cross channel prior and the traditional super-resolution methods. Finally, the proposed
method reconstructs the color channels alternately. The experimental results show that the proposed
method could effectively suppress the generation of color artifacts and improve the quality of the
reconstructed images.

Keywords: image processing; multiframe super resolution; color image; cross channel prior

1. Introduction

Image super-resolution (SR) is an effective image enhancement technology. It uses
mathematical methods to increase image resolution without changing the imaging system
hardware. It has great advantages in terms of technology and cost, and is widely used in
scientific research and engineering [1,2]. Traditional SR methods are mainly based on gray
images. Compared with gray images, color images could provide more information and
are widely used in digital television, remote sensing, medical imaging, and cultural relic
protection and display [3–5]. Color image SR is gradually becoming a new direction of SR
research.

In 1984, Tsai and Huang [6] proposed the concept of multiframe super-resolution
(MFSR) reconstruction, proved the theoretical feasibility of the SR algorithm and success-
fully applied it to the processing of Landsat satellite images. Kim, Bose and Valenzaule [7,8]
improved Tsai’s algorithm by considering image noise, image blurring, and image regis-
tration which extended the application of SR algorithm. Rhee and Kang [9] used discrete
cosine transform (DCT) instead of discrete Fourier transform (DFT) in SR algorithm, which
improved the computational efficiency of the algorithm. After more than 30 years of devel-
opment, the current SR methods can be divided into two categories: reconstruction-based
and learning-based methods.

The learning-based SR technology of a single image has received widespread attention
in recent years [10]. By establishing a training set of high-resolution (HR) images corre-
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sponding to low-resolution (LR) images, a suitable data dictionary [11], neural network [12],
or adversarial network [13] can be trained to achieve the effect of SR reconstruction. This
type of methods has good SR effects and high efficiency, but the training process often
requires a lot of computing resources, and the reconstruction results are limited to the
training set. In contrast, MFSR methods use the sub-pixel displacement between the LR
images to recovery the lost high-frequency information, which would improve the true
(optical) resolution of the image [14].

The reconstruction-based methods can be divided into two categories: frequency
domain methods and spatial domain methods. The frequency domain method uses the
aliasing that exists in the LR images to reconstruct the HR image, the principle is straight-
forward, the computational complexity of the algorithm is low, and it is easy to implement
in hardware. Therefore, the frequency methods can only handle the global translational
motion and cannot utilize the image prior information. The spatial domain methods
mainly include iterative back projection (IBP) [15–17], the convex set projection method
(POCS) [18–20], the maximum a posteriori (MAP) probability estimation method [21–23]
and other methods. These methods use the sub-pixel information existing between LR
images to provide additional information to reconstruct images. The algorithms reconstruct
well and are mainly used in scientific research, satellite remote sensing and other fields.

The above-mentioned SR algorithm research mainly concentrates on grayscale images.
For color images with a wider range of applications, there is not much targeted research,
mainly involving independently applying SR reconstruction technology to the three RGB
channels of color images for reconstruction [24–26]. Since the independent reconstruction
process ignores the correlation between the color channel components of the color image,
the SR reconstruction of the color image is prone to artifacts. Some scholars have proposed
a new method to extend the single-channel SR reconstruction method to color images based
on the characteristics of human eyes being more sensitive to brightness information [27].
Yang et al. [11] converted the color image from the RGB color space to the YCrCb color
space, performed SR reconstruction of luminance information and performed simple
interpolation processing on chrominance components. Xu et al. [28] improved Yang’s
method with a new conversion method and an improved TV regularization method. The
new conversion method allows the luminance channel to contain more texture information,
and the improved TV regularization method can effectively suppress image artifacts. This
type of method combines the intensity change information of each component of the
image as a whole for processing, which effectively reduces the amount of calculation while
ensuring the basic quality of the image, and at the same time overcomes the problem of
ignoring channel correlation in independent calculations. However, separating image
brightness and chrominance information will inevitably break the correlation between
color channels. Therefore, the reconstruction results of this type of method still face the
problem of color artifacts in the reconstruction results.

Starting from the analysis of the correlation between the channels of the color image,
combining the imaging model and prior information in the traditional grayscale SR re-
construction algorithm, this paper proposes an effective color image SR reconstruction
algorithm. The main contributions of this article are listed below,

• Introduce a new image prior knowledge in multiframe SR algorithm for color images,
which can describe the correlation between each channel of the image well.

• Propose a new SR algorithm based on the introduced cross-channel prior, which effec-
tively utilizes the correlation between color channels and improves the reconstructed
image quality.

• Design experiments to verify the proposed algorithm and compare it with other
algorithms to show the effect.

Through simulation experiments and real data testing, our algorithm can effectively
utilize color image channel correlation and the reconstruction results are better than the
presented algorithms.
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2. Materials and Methods
2.1. Observation Model

A set of LR images can be obtained from an HR image through a set of operations such
as rotation, displacement, bluring, down-sampling, and mixed noisy. The mathematical
expression of the observation model is

yic = SKMixc + Ni, i = 1, 2, ..., s, c = r, g, b, , (1)

where yic and xc denote the cth band(R,G,or B) of the ith LR image and the cth band of the
HR image. S represents the down-sampling matrix, K represents the blurring matrix, Mi
represents the warping matrix, and Ni represents the additive noisy.

2.2. Multiframe Super-Resolution Methods for Grayscale Image

The purpose of the MFSR method is to reconstruct the HR image from a set of LR
images. It is an ill-conditioned problem based on the observation model and cannot be
solved directly. Therefore, a regularization method is used in this problem.

x̃ = arg min
x

s

∑
i=1
‖yi − SKMix‖2

2 + λΓ(x), (2)

where ‖yi − SKMix‖2
2 is the data fidelity terms, which measure the correlation between

the solution and the data, and Γ(x) is the regularization cost function, which imposes a
penalty on the estimated value x to obtain a stable solution. The parameter λ is a scalar
value that controls the tradeoff between the data fidelity term and the regularization terms.

The selection of the regularization term is often related to the a priori information of
the image, and different regularization terms will lead to different reconstruction results.
Here, we use the total variation (TV) regularization [29] to test our algorithm. The TV
regularization, which is based on the assumption that natural images have small TV norm,
is widely employed in image SR methods. The expression of the TV regularization is
as follows,

Γ(x) = ‖∇x‖tv = ‖∆hx‖1 + ‖∆vx‖1, (3)

where ∆h and ∆v respectively represents the horizontal and vertical gradient of the image.
Given the current estimation of the blur kernel K and the motion matrix Mi, we can

estimate the HR image by Conjugate Gradient (CG) method.

2.3. Cross-Channel Prior

The current MFSR algorithm can reconstruct HR grayscale images; therefore, the main
idea of the algorithm in this paper is to enhance the SR results of color images by using
cross channel prior.

The color image consists of RGB color channels. The pixel values of the three color
channels are different, but the shape information is similar. i.e., the edges of the object are
presented in all color channels in the same location the same shape. This corss-channel
prior can be mathematically approximated as,

∇xr

xr
≈
∇xg

xg
≈ ∇xb

xb
, (4)

where xr, xg, xb represent the RGB channels of the image x.

2.4. Proposed Method

By adding the cross-channel prior, our algorithm can be formulated as the following
optimization problem,
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x̃c = min
xc

s

∑
i=1
‖yci − SKMixc‖2

2 + λc‖∇xc‖tv + ∑
l 6=c

βcl‖∇xc · xl −∇xl · xc‖1, (5)

where the first and second terms are the same as the terms of the SR methods applied
to the grayscale images, and the third term represents the cross-channel prior. The pa-
rameters λc, βcl with c, l ∈ r, g, b are weights for the image prior and the cross-channel
prior, respectively.

2.5. Deconvolution Algorithm

The conjugate gradient method is used to solve the RGB channels of the image
alternately, where each channel is solved while other two channels kept constant. The
deconvolution algorithm for the RGB channels are similar, so we take the R-channel of the
image as an example to illustrate the deconvolution algorithm. First, since xg and xb are
fixed parameters, the cross-channel prior terms can be written as,

∑
l 6=r

[‖∆hxr · xl − ∆hxl · xr‖1 + ‖∆vxr · xl − ∆vxl · xr‖1]

= ∑
l 6=r

[‖Dl∆hxr − Dhl xr‖1 + ‖Dl∆vxr − Dvl xr‖1]
, (6)

where Dl denotes the diagonal matrix with the diagonal taken from the parameter xl , and Dhl
and Dvl are the diagonal matrices with ∆hxl and ∆vxl as the diagonal elements, respectively.

Since the l1 norm cannot be solved directly using the gradient method, the majorization–
minimization (MM) method [30] is used in this paper to approximate the l1 norm. By
introducing an auxiliary vector w, the l1 norm can be written as:

‖Ax‖1 =

√
(Ax)2 ≤ w + (Ax)2

2
√

w
, (7)

where w > 0, and the equation is established when w = Ax.
Therefore, the solution Equation (5) can be optimized in the following form,

s
∑

i=1

[
(SKMi)

TSKMi

]
+ λc[∆T

h Wh∆h + ∆T
v Wv∆v]

+βcl ∑
l=g,b

[
(Dl∆h − Dhl)

TWlh(Dl∆h − Dhl)

+(Dl∆v − Dvl)
TWlv(Dl∆v − Dvl)

]
x(t+1)

r =
s

∑
i=1

(SKMi)
Tyir, (8)

where xt+1
r is the (t + 1)th estimate to be computed, and the auxiliary matrix

Wh = diag
[(

∆hx(t)r

)2
]

, (9)

Wv = diag
[(

∆vx(t)r

)2
]

, (10)

Wlh = diag
{[

(Dl∆h − Dhl)x(t)r

]2
}

, (11)

and

Wlv = diag
{[

(Dl∆v − Dvl)x(t)r

]2
}

, (12)

are calculated by the tth estimate x. The termination condition of our iteration is set as:∥∥∥x(t+1) − x(t)
∥∥∥2

2∥∥x(t)
∥∥2

2

≤ ε. (13)
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3. Results

In this paper, we test our proposed algorithm by comparing it with various state-of-
the-art SR algorithms. The algorithm results are evaluated by the objective evaluation
methods peak signal to noise ratio (PSNR) and structural similarity (SSIM) [31].

3.1. Simulation Images

Four HR images with the size 256× 256 are used as original images for simulation
experiments. The four original images are show in Figure 1. Each original image is used to
create eight synthetic images through image degradation described in Formula (1). The
degradation process is as follows. The HR images are first shifted with random sub-pixel
displacement and rotated with random angle to creat the image sequence of eight images.
Then the image sequence is blurred by a Gaussian kernel of 5× 5 size and unit variance,
and downsampled by a factor of 2 in both the vertical and horizontal directions. Finally,
the LR image sequence is obtained by adding 20 dB Gaussian noise. In order to evaluate
our proposed algorithm, four representative methods are used in our experiment:

1. Grayscale image SR performed on RGB color channels independently.
2. color image SR performed on YCrCb color space [27].
3. color image SR performed on chrominance regularization [32].
4. color image SR performed on cross-channel prior.

The method in [32] is a learning-based method with color constraint; here, we replace
it with an MFSR method using the same color constraint. All methods use the same
grayscale SR algorithm [26] to eliminate the error caused by different convolution methods.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Four HR images that often used in SR experiments. (a) airplane, (b) parrot, (c) boat, (d) kid, (e) butterfly, (f) face,
(g) child, (h) bird.

The PSNR is the most common and widely used objective evaluation index for images,
which evaluates the image quality through the pixel error between images. Given a test
image x̂ with size M× N and its original image x, the PSNR is defined as:
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PSNR = 10log10

L2

MSE

MSE = 1
3MN

N
∑

n=1

M
∑

m=1
∑

c=r,g,b
[x(n, m, c)− x̂(m, n, c)]2,

, (14)

where L is the peak value in the image data and if it a 8-bit image, the L is 255. The
evaluated results of PSNR is shown in Table 1. It is obvious that our proposed method
outperforms other SR methods.

Table 1. Comparison of the PSNR of different SR methods.

Image Bicubic SR Method 1 SR Method 2 SR Method 3 SR Method 4

airplane 23.3448 25.2329 23.6477 25.8175 26.7506
parrot 27.9443 29.2376 27.7819 29.9670 30.8983
boat 24.4134 27.4984 25.8517 29.4892 30.8083
kids 25.1000 25.3873 24.0937 27.8454 28.8605

butterfly 22.3581 24.5738 24.3927 25.7262 26.8961
face 27.5945 29.3142 25.9966 29.3134 30.5205
child 26.4463 28.3403 24.4222 28.3416 30.7550
bird 28.1778 31.1675 29.0075 32.1796 33.6357

Smoothing the image will improve the image PSNR, but it will lead to the loss of
image texture details. Therefore, it is not accurate to evaluate the algorithm results from
the PSNR alone. SSIM [31] is another widely used objective evaluation standard. SSIM can
measure image similarity in terms of brightness, contrast, and structure, which are more
sensitive to edge information. Hence, the combined use of the SSIM and the PSNR can
accurately evaluate the quality of the reconstructed image.

The SSIM is defined as follows:

SSIM =
(2µxµx̂ + C1)(2σxx̂ + C2)

(µ2
x + µ2

x̂ + C1)(σ2
x + σ2

x̂ + C2)
, (15)

where µx and µx̂ are the means and σx and σx̂ are the standard deviations of the original
image x and the test image x̂, respectively. σxx̂ is the covariance between x and x̂, and C1
and C2 are constants. The SSIM is equal to 1 only if x = x̂. The comparison of the SSIM
of different SR methods is show in Table 2. It appears that our algorithm provides better
results than other SR methods.

Table 2. Comparison of the SSIM of different SR methods.

Image Bicubic SR Method 1 SR Method 2 SR Method 3 SR Method 4

airplane 0.7757 0.7965 0.7638 0.8065 0.8956
parrot 0.9319 0.9331 0.9351 0.9396 0.9631
boat 0.8307 0.8620 0.8920 0.9052 0.9388
kids 0.8375 0.8306 0.8425 0.8575 0.9067

butterfly 0.9039 0.9351 0.9437 0.9483 0.9631
face 0.8154 0.8441 0.8263 0.8440 0.8757
child 0.8619 0.8847 0.9027 0.8848 0.9328
bird 0.9380 0.9472 0.9361 0.9519 0.9646

Figures 2–9 show our experiment’s results of different SR methods. It is clear from the
images that our algorithm works better than the other comparison algorithms.
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(a) (b) (c) (d) (e) (f)

Figure 2. SR results of image airplane by different SR methods. (a) the first frame of the LR images, (b) traditional
bicubic interpolation, (c) reconstruct the RGB color channels independently, (d) SR with YCbCr color space, (e) SR using
chrominance regularization, (f) our proposed method.

(a) (b) (c) (d) (e) (f)

Figure 3. SR results of image parrot by different SR methods. (a) the first frame of the LR images, (b) traditional bicubic
interpolation, (c) reconstruct the RGB color channels independently, (d) SR with YCbCr color space, (e) SR using chrominance
regularization, (f) our proposed method.

(a) (b) (c) (d) (e) (f)

Figure 4. SR results of image boat by different SR methods. (a) the first frame of the LR images, (b) traditional bicubic
interpolation, (c) reconstruct the RGB color channels independently, (d) SR with YCbCr color space, (e) SR using chrominance
regularization, (f) our proposed method.

(a) (b) (c) (d) (e) (f)

Figure 5. SR results of image kid by different SR methods. (a) the first frame of the LR images, (b) traditional bicubic
interpolation, (c) reconstruct the RGB color channels independently, (d) SR with YCbCr color space, (e) SR using chrominance
regularization, (f) our proposed method.
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(a) (b) (c) (d) (e) (f)

Figure 6. SR results of image butterfly by different SR methods. (a) the first frame of the LR images, (b) traditional
bicubic interpolation, (c) reconstruct the RGB color channels independently, (d) SR with YCbCr color space, (e) SR using
chrominance regularization, (f) our proposed method.

(a) (b) (c) (d) (e) (f)

Figure 7. SR results of image face by different SR methods. (a) the first frame of the LR images, (b) traditional bicubic
interpolation, (c) reconstruct the RGB color channels independently, (d) SR with YCbCr color space, (e) SR using chrominance
regularization, (f) our proposed method.

(a) (b) (c) (d) (e) (f)

Figure 8. SR results of image child by different SR methods. (a) the first frame of the LR images, (b) traditional bicubic
interpolation, (c) reconstruct the RGB color channels independently, (d) SR with YCbCr color space, (e) SR using chrominance
regularization, (f) our proposed method.

(a) (b) (c) (d) (e) (f)

Figure 9. SR results of image bird by different SR methods. (a) the first frame of the LR images, (b) traditional bicubic
interpolation, (c) reconstruct the RGB color channels independently, (d) SR with YCbCr color space, (e) SR using chrominance
regularization, (f) our proposed method.

3.2. Real Data

In the real data experiment, a dataset is used to verify our proposed algorithm. The
dataset is a sequence of 40 images of size 115× 138 obtained from the MDSP dataset [33].
The real data is SR with a magnification factor of 3, and the blur kernel is a Gaussian kernel
with variance of 1 and size of 5× 5. The SR results of the real data are show in Figure 10.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 10. Comparison of the reconstruction results of real images. The images are reconstructed by the comparison
algorithms and our proposed algorithm respectively. (a,f,k) traditional bicubic interpolation and it details, (b,g,l) reconstrut
the RGB color channels independently and the details, (c,h,m) SR with YCbCr color space and the details, (d,i,n) SR using
chrominance regularization and the details, (e,j,o) our proposed method and the details.

The traditional bicubic interpolation method has little effect on image SR. The SR
method with RGB channels reconstruct independently can restore the lost details by SR
and correct color image chromatic aberration due to the robustness of the SR algorithm.
The results of SR method 2 are seriously affected by chromatic aberration because that only
the luminance channel is reconstructed when SR is performed in the YCbCr color space.
When the chromatic aberration is not severe, the SR method 3 can use the chrominance
regularization prior to enhance the SR effect, but when the chromatic aberration is severe,
the chrominance regularization prior used in SR method 3 will cause the image resolution
to be unclear. It is obvious from the figure that our proposed method with cross-channel
prior has the best SR results.

4. Conclusions

In this paper, we propose a multiframe SR algorithm for color images based on a new
cross-channel prior. The results of the simulation show that our proposed algorithm can
effectively suppress the noise and preserve edge details with a good reconstruction effect.
The real data experiments show that the proposed algorithm can also suppress chromatic
aberration and achieve the state-of-the-art SR results.
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