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Abstract: Biometric template protection (BTP) schemes are implemented to increase public confidence
in biometric systems regarding data privacy and security in recent years. The introduction of BTP
has naturally incurred loss of information for security, which leads to performance degradation at
the matching stage. Although efforts are shown in the extended work of some iris BTP schemes to
improve their recognition performance, there is still a lack of a generalized solution for this problem.
In this paper, a trainable approach that requires no further modification on the protected iris biometric
templates has been proposed. This approach consists of two strategies to generate a confidence
matrix to reduce the performance degradation of iris BTP schemes. The proposed binary confidence
matrix showed better performance in noisy iris data, whereas the probability confidence matrix
showed better performance in iris databases with better image quality. In addition, our proposed
scheme has also taken into consideration the potential effects in recognition performance, which are
caused by the database-associated noise masks and the variation in biometric data types produced
by different iris BTP schemes. The proposed scheme has reported remarkable improvement in our
experiments with various publicly available iris research databases being tested.

Keywords: template protection; biometric system; iris recognition; confidence matrix; recogni-
tion performance

1. Introduction

Biometrics authentication has been widely deployed in our daily lives. Identity
verification based on behavioral and physiological characteristics such as iris, signatures,
face, fingerprint, and palm-print can be conducted through biometric systems. Traditional
password-based systems have been replaced gradually by biometric systems due to high
recognition accuracy [1] and convenience. However, biometric systems are unsecured due
to security threats such as misuse of biometric data and data management [2]. This is an
important concern that needs to be addressed as the compromised biometric traits will
become useless in all the involved applications.

The biometric template protection (BTP) scheme serves as a protection step in securing
the biometric system by repeatedly distorting the biometric data through different transfor-
mations. This scheme transforms the biometric templates and enables the authentication
process to be conducted in a secured domain [3]. The transformed templates under BTP
scheme are irreversible and non-decryptable to protect the privacy and security of the
original biometric data. Thus, it is more secure to store the transformed templates into the
database rather than the original biometric templates [4]. Since the matching stage can be
held in a transformed domain, original biometric data will not be exposed to any potential
threat. A standard secured biometric system has been constructed with the integration of
BTP scheme into a biometric recognition system. There are 3 main criteria to be fulfilled for
a good BTP scheme [5]:

1. Irreversibility [6]: It should be computationally infeasible for a wrongdoer to recon-
struct the original biometric data from multiple protected biometric templates.
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2. Unlinkability [7]: It should be computationally hard to determine whether the pro-
tected biometric templates originate from the same biometric instance or not to avoid
cross-matching across different applications.

3. Performance: The recognition performance should be approximately preserved with
respect to the performance of its original biometric templates.

While the BTP schemes which fulfill the requirements above can secure a biometric
system, there are still drawbacks and remaining issues in the search for optimum balance
between the system’s performance and security. BTP schemes that emphasize more on
security protection most often distort the biometric data severely via different transforma-
tions in order to achieve better entropy, irreversibility, and unlinkability. These processes
inevitably cause higher loss of useful information and thus performance degradation in
exchange for better security. In other words, most of the good iris BTP schemes which
provide stronger security features will expect weaker performance as the main drawback.
Knowing the effect of this tradeoff, there are also efforts by respective iris BTP schemes [8,9]
to introduce remedies such as optimizing the selection of parameters and some of the steps
to mitigate the performance degradation. It is a non-trivial task to offer a security guaranty
to a biometric template while preserving the recognition rate, which is viewed as one of
the major requirements in designing an iris BTP scheme. Some works have been done
(see [10–13] for complete surveys) to support the security of a biometric template without
severely deteriorating the system performance. Nevertheless, since there is a plethora of
iris BTP schemes being proposed, it introduces another issue on how to determine and
select the best iris BTP scheme.

Our approach contributes to tackling the above question via confidence matrix gener-
ation that can be generally adopted for different iris biometric templates generated from
different BTP schemes. In addition, our generalized solution can further improve the recog-
nition performance of the protected (hashed) iris templates in biometric systems. Firstly,
the proposed approach requires no modification to the original algorithms in iris BTP
schemes. The design of this approach is kept simple and implementable onto protected iris
templates generated by any BTP schemes. One important feature contributed by our pro-
posed approach is the ability to improve the iris recognition performance further through
training samples. Apart from this, the potential security threat of using confidence matrix
is analyzed, for instance, information leakage and security attacks through irreversibility
and unlinkability studies.

In different to the treatment of fragile bits, the proposed confidence matrix is not
restricted to only binary iris feature representation but also accepts integer iris feature
representation. As pointed out in [14,15], bit fragility generally occurs when the inner
product between a filter and a region of the examined image produces a value with a small
magnitude. Hence, the fragility of each bit in a code map depends on a combination of
the biometric structure at that particular location, the filter adopted by the coding scheme
and the quantization method for the filter response. However, our works focus more on
the protected template generated from the iris BTP scheme. Since different schemes shall
act as different functions F(.) for the input iris features, the intrinsic biometric structure,
for example, the distribution of genuine and imposter matching scores will thus, behave
differently depending upon the designed iris BTP scheme. Therefore, the fragility of the
generated iris template (after BTP is applied) is random for any random function F(.).
Thus, our proposed approaches enable confidence bits to be applied onto arbitrary hashed
iris template protection schemes through collision theory while fragile bits focused on iris
code instead.

Two reputed BTP schemes in the field of iris recognition, Bloom filter [16] and en-
hanced Indexing-First-One (IFO) hashing [17], are adopted in our experiments on publicly
available research databases. Both methods incur transformation processes such as modulo
function and many-to-one mapping function to increase the strength of security and pri-
vacy protection. These methods have good overall recognition performance and resistance
from attacks such as cross-matching attacks and statistical attacks. Some publicly available
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iris research databases come with noise masks. This is another potential factor affecting
the recognition performance of a protected iris biometric system especially when this
additional feature cannot be utilized in the matching stage.

In view of this shortage, our proposed scheme has incorporated the information from
the noise masks in the generation of our confidence matrices in the matching stage. This
allows our proposed scheme to work on any iris database that comes with or without noise
masks. In this paper, our proposed scheme is able to improve the recognition performance
involving binary, and integer hashed values in the matching stage. Two unique strategies
are proposed to accelerate the recognition performance of protected iris templates from iris
databases with different image quality. In a nutshell, the proposed scheme has shown great
flexibility in dealing with the iris template protection scheme, different hashed iris data
types, and iris databases with varying image quality. The proposed method showed high
adaptability on iris databases with or without noise masks while having good potential
further to improve its recognition performance via its trainable capability.

The paper is organized as follows. Previous work-related to iris template protection
schemes and their recognition performance is described in Section 2. The presentation of
our proposed scheme and its implementation are shown in Section 3. The experimental re-
sults, discussion and security analysis are provided in Sections 4 and 5. Finally, concluding
remarks are given in Section 6.

2. Related Work
Problem Definition

Iris recognition is first introduced by John Daugman [1]. The author encoded the iris
features using quadrature 2-D Gabor wavelet demodulation. The complexity of the phase
information across different persons spans about 249 degrees of freedom and discrimination
entropy of about 3.2 b/mm2. It was also proven improbable that two different irises might
disagree by chance in fewer than at least one-third of their bits. The probability of such an
event is approximated to be 1 in 16 million with 9.1 million comparisons. In this method,
fractional Hamming Distance (HD) was used as the measure of dissimilarity between two
irises for iris recognition. Statistical analysis was then conducted by Kong [18] on the
risk associated with two patented template protection schemes deployed for producing
application-specific iris code is analyzed. The study has shown that the iris code can
be unlocked and the key can be retrieved through statistical dependence detected. The
security risk in these schemes, as well as the iris code, might endanger numerous people
and organizations due to its wide deployment in commercial systems.

The initial work from Ratha et al. [3] had introduced the concept of a cancellable
BTP scheme. Non-invertible geometric transformations consisting block permutation and
feature folding were applied on biometric template. Random projections of discriminative
features were used for cancelability in face biometrics in [19]. Pioneering work in the
field of iris biometric was proposed in [20]. There are 4 non-invertible and revocable
transformations. The first method, GRAY-COMBO transforms Gabor features by circular
shifting followed by random rows addition. Similar transformations on iris codes are
performed in the second method, BIN-COMBO but the combination is conducted through
XOR operation. These methods reduce the amount of information available for recognition
for better security. However, the global linear transformation includes outliers which can
degrade the performance. The other two methods can be referred as biometric salting,
namely GRAY-SALT and BIN-SALT where random patterns can be added to the real-valued
or binarized iris features. It is found to be difficult in determining the relative strength
of the noise patterns to be added to gain the balance between recognition performance
and security. If the added patterns are weak and compromised, original iris pattern can be
obtained by a simple subtraction operation.

Another salting method by Chong et al. [21] proposed S-iris code encoding, which
combined iris features and secret random numbers through iterated inner-product and
thresholding to produce a set of cancellable binary codes per person. Noise mask is
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developed to eliminate the weaker inner-product and improve the accuracy in matching.
Another idea of iris template protection is based on the sectored random projections [22].
Random projections are applied to sectored iris features via user-specific Gaussian matrix.
The random matrices are then concatenated to form new cancellable iris template. This
method limits the effect of outliers but reduces the size of useful information. The author
pointed out that direct projection of the entire image might lead to performance degradation
due to the effects of external noises such as specular reflections and eyelashes. Further
research [18,23] found that the performance of this method was degraded when the same
random matrix was being applied to different users. In addition, the protected template is
likely to be inverted when the user-specific random matrices are disclosed or the adversary
possesses the secret token. Thus, biometric salting is feasible for template protection only if
the auxiliary data are kept secret.

Besides cancellable biometrics, a biometric cryptosystem is another alternative to
BTP aiming at generating cryptographic keys out of or with biometric traits. Generally,
key generation schemes require exact recovery of the input biometric feature via error
tolerance, for instance, error correction code (ECC). This is to ensure that the same key can
be regenerated from the varying biometric feature for authentication. Using error correction
code in biometric system introduces high tension between error-correcting capability and
security [24]. In particular, there is an existing tradeoff in between the error-correcting
capability of an ECC and the system security (in terms of false acceptance), duped as the
granular effect, where it is crucial to know the genuine and imposter distribution before
designing a biometric system with ECC. Analysis has been done in [25,26] and reported
that correcting the large number of errors in the input feature imposes high information
loss, further leads to low attack complexity. It is still an open problem on how to choose
the best ECC for BCS.

There is an attempt made to introduce iris fuzzy vault system [27] based on local
iris features. The circular shape of iris is considered rotational symmetry. The shape
of iris is iden-tical to origin under different angles of head orientation. However, the
alignment issue occurs and affects the matching performance between rotated irises as the
pattern of iris features is not rotational symmetry. Thus, iris features are extracted from
multiple regions with shift-matching applied to solve the alignment issue in this system.
Reed-Solomon (RS) coding scheme is then used for error correction. The best Genuine
Acceptance Rate (GAR) reported was 83.4% and 91.1% respectively for CASIAv1 and
CASIAv3 iris databases (Center for Biometrics and Security Research, Beijing, China) under
adequate system security. Rathgeb et al. [28] have proposed an iris key generation scheme
based on interval mapping for iris features in real values. The highest key generation rate
reported on CASIAv3 was 95.09% for five enrollment samples. However, our approach do
not require exact recovery of the input biometric. Authentication is done by computing the
similarity score between two biometric templates. This is to avoid the usage of ECC that
lead to another code selection problem.

Hamerle-Uhl et al. [29] proposed a BTP scheme that incorporates block-remapping
and image warping to prevent non-invertible transformation. The normalized iris image
is first partitioned into blocks which will be mapped randomly to blocks from the source
texture. Then, a key is used as a seed to represent one particular distortion on the remapped
image to prevent reconstruction of the original iris data. Jenisch and Uhl [30] highlighted
the vulnerability of the remapping process in the scenario of coalition attack presuming
that single or multiple templates are available to an attacker. Increasing the security to
the recommended level will sacrifice the performance of the system with more than 100%
of EER degradation from 1.244 to 2.846. Ouda et al. [31] proposed a tokenless cancelable
biometrics scheme, BioCode. First, consistent bits of several iris codes of the same iris
with lower probability of flipping are extracted. The bits are then grouped into m binary
codewords in each block. Each block is mapped to a single bit of a random binary sequence
with length l = 2m where the location is determined by the decimal value of that specific
block. The mapped binary values are then arranged according to the associated positions
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of the blocks to form the BioCodes. The many-to-one mapping used in the generation of
BioCode fulfils the non-invertibility requirement by making the recovery of original iris
code computationally infeasible. However, BioEncoding scheme recorded the best EER of
6.27% for CASIAv3. Larcharme [32] revisited bioencoding and regarded the scheme as a
simple application of random Boolean function on the original iris code which is invertible.

Cancellable iris biometric without tedious alignment steps was introduced by Rathgeb
et al. [16] using an adaptive Bloom filter. This representation allows biometric templates
such as iris codes to have an alignment-invariant comparison at the matching stage without
degrading the performance of the iris recognition system. In other words, Bloom filtered iris
features have become rotational symmetry in matching. The best EER reported was 1.49%
for CASIAv3. The many-to-one mapping of biometric features to form a Bloom filter is
non-invertible. An application-specific secret bit vector is XORed with each codeword prior
to mapping to provide unlinkability between multiple cancelable templates of a subject.
The scheme has reported a comparable accuracy performance to its original counterparts.
Undesirably low attack complexities of 225 for false positives generation and between 22–28

for key recovery are then reported by [33]. It is proved that this method was susceptible to
cross-matching attack. Bringer et al. [34] successfully performed brute force attack on each
block of the codewords by analyzing the cancelable templates generated from two different
intra-class iris codes. However, [35,36] have demonstrated the solutions to circumvent
the security limitations of the Bloom filter. Sadhya et. al. [37] has recently proposed a
cancelable iris code based on Locality Sensitive Hashing (LSH) with the best EER 0.105%
for CASIAv3. Random bits sampling strategy was implemented by using an arbitrary
number of hash functions, h1, ..., hn to sample n random binary string from the iris code.
Under this framework, intra-class samples are expected to be close to each other and thus,
they will be hashed to the same location. In contrary, inter-class samples are dissimilar
and consequently hashed to different locations. Low EER was reported due to the collision
guarantees from bit sampling based LSH.

Dwivedi et al. [38] proposed a cancellable template protection scheme based on
randomized look-up table mapping. The iris codes are divided into groups of binary
codewords. The corresponding decimal value of each group will be mapped to a look-up
table with random binary bits equivalent to the length of the codewords in each group. A
degradation of 10% to 49% in EER performance reported. A recent research proposed an
iris protection scheme by ranking the decimal value of each group of codewords locally [39].
The highest degradation experienced was 5% compared to a traditional iris recognition
system with EER reported at 1.32% for CASIAv3. Another chaos-based cancelable scheme
encrypted iris features by using a modified Logistic map. The best performance of this
scheme is still inevitably suffered from a 41% of degradation compared to its original
system. Indexing-first-one (IFO) hashing [17] is able to create strong resistance against
numerous privacy attacks with its non-invertible formulations such as Hadamard Product
and Modulo Threshold functions. This protected scheme is able to achieve low EER of 0.54%
with the corresponding degradation of 42.10% in performance. Despite the significant
improvement in performance and security of recent iris template protection schemes,
degradation in performance is still observable when comparing against unsecured iris
recognition system. Besides that, there is also lack of a generalized approach which can
improve the performance of these reputed BTP schemes.

3. Methodology
3.1. Problem Definition

From the previous section of this article, we observed that performance degradation
in terms of accuracy and error rate was inevitable after the implementation of BTP scheme.
This swas due to the fact that intentional matrix distortion, random permutation and
remapping are among the techniques used to achieve irreversibility and unlinkability in
most of the BTP schemes. This implies loss and distortion of biometric information in
this process. In the methodology of Bloom filter [16], binary to decimal value function is
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used along with index remapping technique. Therefore, certain degrees of information
loss can be expected through this mapping. For instance, using a word size of 5 for the
Bloom filter, five neighboring binary bits in a column will be converted to a decimal value.
The decimal value will then be remapped into its respective index position in the Bloom
filter. In this process, part of the information of these binary bits is lost in exchange for a
decimal value as the final outcome. Referring to the recommended level of information for
better security [30] against coalition attack, an information loss of 80% can be anticipated
through block remapping. If we consider this on a decimal value ‘1’ which is produced
by every ‘5’ binary values, the total information loss can be higher for a longer word size.
This improves the strength of the system, but the false non-match rate will increase as well.
Hence, there is always a tradeoff between the security and usability of a system.

In a separate example, another type of information loss can be anticipated in the
process of Hadamard multiplication between permuted iris codes in BTP scheme such as
IFO hashing [17]. In Figure 1b, there are 3 permuted iris codes. Hadamard multiplication
process of IFO hashing can be represented by AND-operation between the permuted iris
codes. The new iris code is now ‘01000’, which has experienced information loss through
AND-operation as illustrated. This is a common methodology in designing BTP scheme
because the anticipated information loss is to prevent the restoration of biometric data. The
scheme has experienced loss of information through the product codes generated from
the permuted biometric data instead of value remapping as shown in Figure 1a like in
Bloom filter. These two methodologies are commonly introduced in BTP schemes with the
purpose of strengthening the privacy or security protection through loss of information.

Symmetry 2021, 13, x FOR PEER REVIEW 6 of 23 
 

3. Methodology 
3.1. Problem Definition 

From the previous section of this article, we observed that performance degradation in 
terms of accuracy and error rate was inevitable after the implementation of BTP scheme. 
This swas due to the fact that intentional matrix distortion, random permutation and re-
mapping are among the techniques used to achieve irreversibility and unlinkability in most 
of the BTP schemes. This implies loss and distortion of biometric information in this pro-
cess. In the methodology of Bloom filter [16], binary to decimal value function is used along 
with index remapping technique. Therefore, certain degrees of information loss can be ex-
pected through this mapping. For instance, using a word size of 5 for the Bloom filter, five 
neighboring binary bits in a column will be converted to a decimal value. The decimal 
value will then be remapped into its respective index position in the Bloom filter. In this 
process, part of the information of these binary bits is lost in exchange for a decimal value 
as the final outcome. Referring to the recommended level of information for better security 
[30] against coalition attack, an information loss of 80% can be anticipated through block 
remapping. If we consider this on a decimal value ‘1’ which is produced by every ‘5’ binary 
values, the total information loss can be higher for a longer word size. This improves the 
strength of the system, but the false non-match rate will increase as well. Hence, there is 
always a tradeoff between the security and usability of a system. 

In a separate example, another type of information loss can be anticipated in the 
process of Hadamard multiplication between permuted iris codes in BTP scheme such as 
IFO hashing [17]. In Figure 1b, there are 3 permuted iris codes. Hadamard multiplication 
process of IFO hashing can be represented by AND-operation between the permuted iris 
codes. The new iris code is now ‘01000’, which has experienced information loss through 
AND-operation as illustrated. This is a common methodology in designing BTP scheme 
because the anticipated information loss is to prevent the restoration of biometric data. 
The scheme has experienced loss of information through the product codes generated 
from the permuted biometric data instead of value remapping as shown in Figure 1a like 
in Bloom filter. These two methodologies are commonly introduced in BTP schemes with 
the purpose of strengthening the privacy or security protection through loss of infor-
mation. 

 
Figure 1. The difference in the number of matching outcomes before/after binary-to-decimal 
transformation (a) and the loss of information through the product of binary codes (b). 

(a) (b) 

Figure 1. The difference in the number of matching outcomes before/after binary-to-decimal trans-
formation (a) and the loss of information through the product of binary codes (b).

The purpose of stating the examples above is not to point out the degree of information
loss nor the weakness of the BTP systems. In fact, information loss can happen in almost
every BTP scheme. It serves as a double edge sword in a BTP scheme. The more information
we lose in the process of template protection, the harder it is for others to reconstruct the
raw biometric features. On the contrary, this also means that information loss will inevitably
cause performance degradation.

Ideally, an optimum BTP scheme will need to achieve extensive information loss while
maintaining minimal performance degradation. However, the requirement of stronger se-
curity imposes a trade-off between information loss and recognition performance. Stronger
security in protection scheme is likely to have more severe performance degradation [40]
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while schemes which maintain recognition accuracy are often left with unattended doubts
in security.

3.2. Overview of the Proposed Method

To mitigate the problems outlined in the previous section, confidence matrix gen-
eration scheme is proposed to improve the performance of protected biometric systems.
The proposed method relaxes the tradeoff suffered by most of the BTP schemes in find-
ing a balance between security strength and recognition performance. In other words,
our proposed method enables BTP schemes to gain adequate security strength without
worrying about its drawback in recognition performance. Preliminary work regarding
confidence bits was tested on one BTP scheme in [41]. In this paper, we have proposed a
more comprehensive scheme for confidence matrix generation with thorough experiments
and analysis on various publicly available iris databases.

Our proposed method, confidence matrix generation, will take place only after BTP
scheme. Figure 2 shows the basic design of a protected biometric system with and without
confidence matrix generation scheme. A standard system will first acquire, process, and
extract pertinent features given raw iris data. The extracted iris features will then undergo
BTP in order to conduct matching in a more secured domain during the authentication
stage. Our proposed design consists of a confidence matrix generation stage and the
authentication stage. After BTP, a confidence matrix can be generated directly with at
least two protected biometric samples from each enrolled personnel. When arbitrary iris
data are being tested against another biometric sample, authentication can be carried
out in a secured domain between hashed templates based on our proposed confidence
scoring system.
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3.3. Generation Stage

The main concept of the confidence matrix is to identify the confidence locations in
the matrix, verify the results of a collision between two hashed templates and authenticate
based on the final confidence score. The proposed method is flexible in the sense that there
are no limitations in terms of ways to construct the confidence matrix and its properties. In
this work, we have also proposed methods to construct confidence matrix into binary and
fraction forms with their corresponding computation for confidence scores.
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3.3.1. Generation Method for Binary Confidence Matrix

In the confidence matrix generation stage, multiple hashed templates can be used to
generate a consolidated confidence matrix. The process of generating a confidence matrix
is shown in Figure 3.

Symmetry 2021, 13, x FOR PEER REVIEW 8 of 23 
 

Figure 2. Overview of the standard protected biometrics system and our proposed system. 

3.3. Generation Stage 
The main concept of the confidence matrix is to identify the confidence locations in the 

matrix, verify the results of a collision between two hashed templates and authenticate 
based on the final confidence score. The proposed method is flexible in the sense that there 
are no limitations in terms of ways to construct the confidence matrix and its properties. In 
this work, we have also proposed methods to construct confidence matrix into binary and 
fraction forms with their corresponding computation for confidence scores. 

3.3.1. Generation Method for Binary Confidence Matrix 
In the confidence matrix generation stage, multiple hashed templates can be used to 

generate a consolidated confidence matrix. The process of generating a confidence matrix 
is shown in Figure 3. 

 
Figure 3. Process of generating binary confidence matrix. 

From this illustrated example, three samples are selected randomly. For the genera-
tion of confidence matrix, element-based collision matching can be carried out between 
hashed samples: 

푁 = 퐶 =
푛!

푟! (푛 − 푟)!
 (1)

where 푁  denotes the maximum possible combinations, 푛 is the number of training 
samples to choose from and 푟 is the number of selected samples. 

For this example, the number of combinations, 푁 will equal to 3 when 푟 = 2 and 
푛 = 3 . Therefore, 3 sets of collision matching outcomes 푅  will be obtained. Ele-
ment-wise product rule is then used to obtain the collision matching outcomes to form 
the final confidence matrix, 푀 as shown below: 

푀(푥, 푦) = 1, 푖푓 ∏ 푅 (푥, 푦) = 1
0, 표푡ℎ푒푟푤푖푠푒

  (2)

The construction phase starts by creating a zero matrix with the same size as the 
hashed samples. Our proposed scheme will cross-match every element within the se-
lected hashed training samples. The collision formula in the equation above is mainly 
indicating the confidence locations across multiple hashed samples by fusing all the 
outcomes of a collision via the product rule. The main purpose of the confidence matrix 
here is to identify hashed bits, which can be categorized as confidence bits. When all the 

Figure 3. Process of generating binary confidence matrix.

From this illustrated example, three samples are selected randomly. For the genera-
tion of confidence matrix, element-based collision matching can be carried out between
hashed samples:

N = nCr =
n!

r!(n− r)!
(1)

where N denotes the maximum possible combinations, n is the number of training samples
to choose from and r is the number of selected samples.

For this example, the number of combinations, N will equal to 3 when r = 2 and n = 3.
Therefore, 3 sets of collision matching outcomes Rn will be obtained. Element-wise product
rule is then used to obtain the collision matching outcomes to form the final confidence
matrix, M as shown below:

M(x, y) =

 1, i f
N
∏

n=1
Rn(x, y) = 1

0, otherwise
(2)

The construction phase starts by creating a zero matrix with the same size as the
hashed samples. Our proposed scheme will cross-match every element within the selected
hashed training samples. The collision formula in the equation above is mainly indicating
the confidence locations across multiple hashed samples by fusing all the outcomes of a
collision via the product rule. The main purpose of the confidence matrix here is to identify
hashed bits, which can be categorized as confidence bits. When all the paired training
samples gives the same value in a particular location, a matched collision is fulfilled and
this is defined as the confidence bit location. For instance, if the same value is found in
all the hashed training samples at the same respective location (x, y) as in Figure 3, the
value “1” will be assigned to that confidence location (x, y). If this condition is not fulfilled,
the particular bit location will be labeled as “0” under “no confidence” location. Finally, a
binary confidence matrix will be generated.

3.3.2. Generation Method for Probability Confidence Matrix

In this section, we would like to show the flexibility of our proposed concept by
constructing the confidence matrix alternatively. We determine a confidence location in
this matrix based on the frequency of matched collisions to have the final form in fraction
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instead of a binary bit this round. Note that our proposed method is different than fragile
bits method [14]. First, the fragile bits method identifies bits, which have flipped more
than a preset threshold to determine inconsistent bits. In our proposed method, we do not
set any threshold and fraction is being used to represent the frequency of collisions as the
main idea to construct the proposed confidence matrix for authentication. The method
of generating a probability confidence matrix is different compared to binary confidence
matrix. Instead of using the product rule to combine all the collision results, probability
confidence matrix captures the frequency of matched collisions over the total number of
collisions in a particular location. In binary confidence matrix, confidence location exists
only if all the collisions at this particular location are matched collisions while disabling
other locations, which do not fulfil this criteria. On the contrary, the probability confidence
matrix takes every location in its matrix into account by calculating its respective frequency
of matched collisions. The process of generating a probability confidence matrix is shown
in Figure 4.
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Referring to the visual aid above, a reference template and a fraction matrix need to
be generated. The value of the reference template, R(x, y) is generated based on the value,
which appears the most on coordinate (x, y) across the hashed samples. Otherwise, the
default value at sample 1 will be taken. As information from multiple hashed samples are
utilized in this formation, the reference template has higher reliability in representing the
characteristic of a class. This is because a portion of noise can already be filtered through the
process of template generation. The fraction matrix tabulates the corresponding percentage
of matched collisions in each location of the reference template. This matrix is very
important to determine the degree of confidence in each location. For instance, R(1, 1) in
Figure 4 indicates a confidence of 2/3, which is equivalent to 66.7%. The confidence in
probability is calculated based on the matched collisions for value ‘6’ in 2 out of 3 hashed
samples. Taking R(3, 3) as another example, the corresponding confidence is 3/3 (100%)
indicating that 3 matched collisions out of 3 hashed samples. As a result, the location at
R(3, 3) of the reference template has higher confidence compared to the location at R(1, 1).
Thus, the generation of a reference template and its corresponding fraction matrix will
form the final probability confidence matrix.

3.4. Authentication Stage

The authentication stage takes place after the confidence matrix of each class is suc-
cessfully constructed. The proposed strategy is different from the traditional method where
two hashed templates are directly compared to produce the matching result. Instead, the
confidence matrix serves as the reference in validating matching (collisions) outcomes
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to improve the recognition performance. Note that our focus in this paper is to have a
generalized solution to improve the performance of BTP schemes without any modification.
Knowing the information from the confidence mask would imply that the attacker has
succeeded in performing the frequency analysis based attack on the protected template. In
order to address the mentioned security threat, we propose to adopt AES [42] to encrypt
the confidence mask. Thus, a decryption process is needed before authentication can be
conducted.

3.4.1. Matching Strategy for Binary Confidence Matrix

In authentication, hashed template 1 will first undergo our proposed element-wise
collision matching function with hashed template 2 to produce a collision result matrix
as shown in Figure 4. After that, we can then apply AND logic function to validate the
collision result with a class-specific confidence matrix. This authentication process can
be carried out by determining the total number of matched collisions at the confidence
locations. Finally, a proposed matching score can be formulated as follows:

Matching score =
sum(Final Result == 1)

sum(Con f idence Matrix == 1)
(3)

Referring to Figure 5 below, the matching score of this example is equal to 0.667
where there are two collided bits identified at the confidence bit locations over a total of 3
confidence bit-locations as indicated in the binary confidence matrix. The matching score
of Equation (3) is also formulated mathematically in Equation (7).
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3.4.2. Matching Strategy for Probability Confidence Matrix

On the other hand, class-specific reference template generated at an earlier stage will
be used to authenticate any query hashed template to produce the collision result matrix.
This is then followed by the dot product between the probability confidence matrix and
collision result matrix to obtain the final matrix. The proposed strategy not only determines
the collided bits but also estimates the degree of confidence at the collided bit-locations. As
a result, the final matching score can then be computed as follows:

Matching score =
sum o f f ractions (Final Result)

sum o f f ractions (Con f idence matrix)
(4)

From the Figure 6, the matching score is equal to 0.5291 (3.00/5.67).
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3.5. Iris Database with Noise-Mask

In order to increase the flexibility in implementing our proposed method, the existence
of noise masks in several publicly available iris databases is worth to be considered in the
experiments to improve the recognition performance. As one of the contributions in this
paper, a solution is proposed to enable the integration of noise mask into popular BTP
schemes, Bloom filter [16] and IFO [9] with no feature alignment process, will be used in
our experiments. An example of noise mask is shown in Figure 7.
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First, a brief explanation on the methodology of Bloom filter is demonstrated in
Figure 8 below. Any arbitrary matrix of iris code will be separated into multiple iris blocks
according to the word size, w and number of codeword, n. In each iris block, a column-
wise binary to decimal function is used to convert binary values into decimal values. The
converted decimal values are then remapped into its associated index location (column)
of a row matrix, Rn. The process will be repeated for the next iris block (w× n) and the
converted decimal values will be remapped again according to the indices of the next row
matrix, Rn+1.

In order to enable the implementation of Bloom filter onto database with noise mask,
a threshold based approach is proposed to determine which iris block can be considered as
“noisy block”. By pre-setting a threshold T (T = 0.1 is used in our experiment), if the num-
ber of noisy bits in any iris block is more than the preset threshold, the corresponding row
matrix Rn will be considered as ‘null’ row and excluded from the calculation of matching
score as shown in Figure 9. The proposed approach is also applicable for IFO hashing with
Bloom filter integration to solve alignment-issue when biometric template acquisition.



Symmetry 2021, 13, 910 12 of 22Symmetry 2021, 13, x FOR PEER REVIEW 12 of 23 
 

 
Figure 8. Overview of the methodology of Bloom filter. 

In order to enable the implementation of Bloom filter onto database with noise 
mask, a threshold based approach is proposed to determine which iris block can be con-
sidered as “noisy block”. By pre-setting a threshold 푇 (푇 = 0.1 is used in our experi-
ment), if the number of noisy bits in any iris block is more than the preset threshold, the 
corresponding row matrix 푅  will be considered as ‘null’ row and excluded from the 
calculation of matching score as shown in Figure 9. The proposed approach is also ap-
plicable for IFO hashing with Bloom filter integration to solve alignment-issue when 
biometric template acquisition. 

 
Figure 9. Overview of the methodology of Bloom filter with the proposed noise-mask solution. 

4. Results 
4.1. Iris Databases 

In this project, four publicly available Near Infrared (NIR) iris databases, CASIAv1 [43], 
CASIAv3 Iris-Interval [44], CASIAv4 Iris-Thousand [45] and ND0405 [46] databases are used 
in the experiments. The information of these experimented databases are shown in Table 1. 

Table 1. List of iris databases. 

Figure 8. Overview of the methodology of Bloom filter.

Symmetry 2021, 13, x FOR PEER REVIEW 12 of 23 
 

 
Figure 8. Overview of the methodology of Bloom filter. 

In order to enable the implementation of Bloom filter onto database with noise 
mask, a threshold based approach is proposed to determine which iris block can be con-
sidered as “noisy block”. By pre-setting a threshold 푇 (푇 = 0.1 is used in our experi-
ment), if the number of noisy bits in any iris block is more than the preset threshold, the 
corresponding row matrix 푅  will be considered as ‘null’ row and excluded from the 
calculation of matching score as shown in Figure 9. The proposed approach is also ap-
plicable for IFO hashing with Bloom filter integration to solve alignment-issue when 
biometric template acquisition. 

 
Figure 9. Overview of the methodology of Bloom filter with the proposed noise-mask solution. 

4. Results 
4.1. Iris Databases 

In this project, four publicly available Near Infrared (NIR) iris databases, CASIAv1 [43], 
CASIAv3 Iris-Interval [44], CASIAv4 Iris-Thousand [45] and ND0405 [46] databases are used 
in the experiments. The information of these experimented databases are shown in Table 1. 

Table 1. List of iris databases. 

Figure 9. Overview of the methodology of Bloom filter with the proposed noise-mask solution.

4. Results
4.1. Iris Databases

In this project, four publicly available Near Infrared (NIR) iris databases, CASIAv1 [43],
CASIAv3 Iris-Interval [44], CASIAv4 Iris-Thousand [45] and ND0405 [46] databases are
used in the experiments. The information of these experimented databases are shown in
Table 1.

Table 1. List of iris databases.

Database Number of Eye
Images

Number of
Class Wavelength Noise Mask

(Y/N)

CASIAv1 756 108 NIR Yes
CASIAv3 868 124 NIR No
CASIAv4 331 100 NIR Yes
ND0405 784 100 NIR Yes

CASIAv1 consists of iris images, which are captured in two sessions by a self-developed
camera with 850 nm NIR illuminators. All images are stored in BMP format with resolution
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320× 280. The pupil region is automatically detected and specular reflections from the NIR
illuminators are masked out by a circular region of constant intensity. CASIAv3 Iris-Interval
(referred to as CASIAv3 in this paper) is another database constructed through two sessions
by a close-up homemade iris camera. The 320× 280 iris images have very clear iris texture
details due to its circular NIR LED array with optimal luminous flux for iris imaging. Left
eye images from CASIAv3 are chosen to form a subset of the database, which contains
7 eye images for each class in this project.

CASIAv4 Iris-Thousand (referred to as CASIAv4 in this paper) contains images col-
lected using a dual-eye iris camera IKEMB-100. The high-quality iris images with resolution
640× 480 are captured with optimal pose adjustment. The intra-class variation are mainly
specular reflections and eyeglasses. ND0405 is a large-scale database captured in NIR
wavelength at a close distance by a LG2200 iris imaging system. Many real-world con-
ditions appear in this iris database, leading to degradations such as blurring, occlusion,
specular reflection, off-angle, etc. Some subjects wore contact lenses, which cause distortion
on iris textures. Same as CASIAv4, both databases have uneven number of images per
class. Referring to a similar work [47], CASIAv3 has the highest image quality, followed
by CASIAv4, CASIAv1, and ND0405. To have a compatible variability and reasonable
benchmarking between the databases, the first 100 classes of CASIAv4 and ND0405 are
selected for the following experiments in this project.

4.2. Design of Experiment

The experiment below aims to examine the proposed scheme’s ability to improve
the performance of the iris template protection scheme when tested against iris databases
with and without noise masks. The state-of-the-art BTP schemes, Bloom filter [16], and
enhanced IFO hashing [9] are selected for performance evaluation as these schemes have
been experimented thoroughly and widely applied in this field. Both schemes are well
known with their good recognition performance and resistance against multiple attacks.
Note that, enhanced IFO has incorporated Bloom filter to solve its alignment issue. In this
experiment, these schemes have been tested by the selected databases with their respective
recognition performance. The results are tabulated in terms of equal error rate (EER) when
the false acceptance rate (FAR) is equal to the false rejection rate (FRR).

Table 2 above shows the EER performance of the proposed confidence matrices for
iris databases hashed by enhanced IFO. During the process of obtaining the best results of
Bloom filter from different word size, minimum word size of 3 is set. Smaller word size is
ignored as the security strength will reduce. Different ranges of parameters of enhanced
IFO are tested by referring to the optimal setting published in [9,48]. In this experiment, a
clear decrease in EER (%) is observed from 4 different sets of databases. For iris databases
that come with noise mask (CASIAv1, CASIAv4, ND0405), performance improvement
ranging from 17.38% to 68.68% is observed when using for binary confidence matrix. On
the other hand, performance improvement ranging from 65.40% to 82.33% is achieved
using the probability confidence matrix. For CASIAv3, the database without noise-mask
had achieved a reasonable performance improvement of 26.09% (binary confidence matrix)
and 92.75% (probability confidence matrix).

Table 2. Recognition performance of the proposed scheme and state-of-the-arts BTP schemes.

Database

Equal Error Rate, %

Bloom Filter Enhanced IFO
Hashing

Proposed Binary
Confidence Matrix

Proposed
Probability

Confidence Matrix

CASIAv1 5.91 5.81 4.80 2.01
CASIAv3 1.14 0.69 0.51 0.05
CASIAv4 8.11 6.17 1.64 1.08
ND0405 10.74 7.28 2.28 2.48



Symmetry 2021, 13, 910 14 of 22

As a result, both proposed confidence matrix generation methods have successfully
improved the recognition performance of the BTP scheme. On top of that, the results also
proved the reliability of this approach when dealing with noise-masks associated databases.
In the upcoming experiment, we have evaluated the construction of confidence matrices by
using different number of training samples as shown in Table 3. The probability confidence
matrix is able to generate lowest EER with 3 training samples. For instance, EER as low as
1.08% is reported for CASIAv4 database. In terms of performance, the observed deviation of
error rate using 2 to 4 samples is less than 2% and 3% for binary and probability confidence
matrix, respectively.

Table 3. Recognition performance of the proposed scheme with a different number of training samples.

Iris Database Training Sample
Equal Error Rate (%)

Binary Confidence
Matrix

Probability
Confidence Matrix

CASIAv1

2 4.80 4.40
3 5.01 2.01
4 4.67 2.17
5 3.11 2.12
6 2.10 2.05

CASIAv4

2 3.02 3.90
3 1.64 1.08
4 1.41 2.82
5 0.97 2.99
6 1.42 2.89

ND0405

2 3.43 4.27
3 2.28 2.48
4 2.34 3.12
5 2.11 3.17
6 2.71 3.80

CASIAv3

2 0.51 0.49
3 0.20 0.20
4 0.27 0.05
5 0.76 0.03
6 0.88 0.09

From Table 3, the probability confidence matrix has outperformed the binary confi-
dence matrix in our experiments conducted on CASIAv1 and CASIAv3. The deviation in
performance can range from 0.5 to 3%. Both methods have reported equally low EER for
CASIAv4. Binary confidence matrix, which extracts only the exact collisions, has a slightly
better performance compared to the probability confidence matrix for ND0405, which is
noisier. This is expected as the former method tends to eliminate more noise where there is
no collision within all the training samples used.

The upper row of Figure 10 has shown the normalized genuine-imposter matching
scores for all the adopted iris databases. The score distributions generated by the confidence
mask are shown in the left column, whereas the plots in the right column are generated
without the implementation of the confidence matrix. We can see that the confidence
matrix enables better spread between genuine and imposter distributions visually. The
mean matching scores of genuine and imposter are separated in a wider manner. This
phenomena has greatly reduced the area of the overlapped region between genuine and
imposter while shifting the intersected matching score more to the right. Empirically, the
decidability indices [49] between IFO and our proposed method are recorded in Table 4.
According to John Daugman [49], “decidability” of a decision is determined by the degree
of overlap between two distributions. A standard measure of decidability for genuine-
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imposter score distribution can be defined as follows if the means of the two distributions
are µ1 and µ2 and their standard deviations are σ1 and σ2:

d =
|µ1 − µ2|√
1
2
(
σ2

1 + σ2
2
) (5)
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Table 4. Decidability measure for IFO and confidence matrix.

Methods
Iris Databases

CASIAv1 CASIAv4 ND0405 CASIAV3

Enhanced IFO 2.772 2.521 2.641 4.94

Confidence Matrix
(binary/probability) 3.624/3.404 4.567/3.859 4.12/3.7064 5.92/4.91

Better decidability indices for genuine-imposter distributions are proven achievable
through the implementation of our proposed scheme as shown in Table 4. As an additional
reference, Receiver Operating Characteristic Curves (ROCs) are also plotted with True
Positive Rate (TPR) against the False Positive Rate (FPR) to measure the separability of
classes. The ROCs of binary confidence matrix in Figure 11a and probability confidence
matrix in 11b are plotted against enhanced IFO for iris databases CASIAV1, CASIAV4, and
ND0405 (arranged in rows). Improvement in recognition performance have been observed
in all ROC graphs. In overall, all the statistical and empirical studies conducted on the
proposed method have indicated an increase in recognition performance and decidability.
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5. Security Model

The security model will be focused on the case when an attacker is trying to attack
the reference template to get confidential information. If confidence information leaks, it
leads to permanent identity loss as biometrics are individually associated. In view of this,
frequency analysis-based attacks like Attack via Record Multiplicity (ARM) is the common
threat for this approach.

Under binary confidence matrix, the reference template contains the locations of
confidence bits. Compromising the reference template indeed enables the construction of
binary mask. Thus, we would like to calculate the complexity in getting all ones in the
mask. Randomly taking a hashed reference template of size 5940× 50 from the databases,
which is equivalent to 297, 000 elements with 143,038 confident bits. The complexity of this
attack to be successful can be estimated as 297,000C143,038 � 6.39× 1089,315 combinations.

For the probability confidence matrix, non-binary values in each reference template
are non-zero. The confidence values are calculated as a probability instead of binary. It is
difficult for the attacker to know the exact confidence location where the perfect matched
collision happens (i.e., confidence score of 3/3 if the same number occurs at the same
position across 3 hashed samples). Given a more relaxing security situation by assuming
that the system can be compromised with a success probability of 0.33 instead of 1, the
complexity of this probability can be assessed. In other words, his scenario is equivalent
to the probability of guessing the positions in the reference template with probability of
1/3 (1 occurrence out of 3) correctly. The probability of the attacker in getting k positions
among n tries given unlimited computation power can be estimated through:

pX(k) = Pr(X = k) =

(
K
k

)(
N−K
n− k

)
(

N
n

) (6)

where N is the population size, K is the number of success states in the population, n is the

number of draws, k is the number of observed successes and
(

a
b

)
is a binomial coefficient.

The success probability of attacker pX(k) in this case is equivalent to the matching score of
our probability confidence matrix as shown in Equation (4) since (#1/3)

sum of probabilities from all positions .
In another words, the attacker can only achieve the matching score if he can get k positions
with probability 1/3. Same scenario is applicable to obtain positions for other probabilities such
2/3 or 3/3. If an attacker is able to get most of the positions of a probability, other probabilities
can be revealed. Using the same random protected template, the number of positions with
probability 1/3 are found to be K = 25, 543 from a template size of N = 297, 000. Referring to
Rathgeb et al. [50], it is acceptable that 2200 can be considered as computationally infeasible for
an attack on arbitrary secure iris template. Thus, this is approximately 297,000C13 for our case
where the number of trials allowed are only as low as n = 13. Using the determined parameter,
the success probability for an attack can then be estimated at:

pX(k) = Pr(X = k) =

(
25, 543

k

)(
297, 000− 25, 543

13− k

)
(

297, 000
13

) =

(
25, 543

k

)(
271, 457
13− k

)
(

297, 000
13

) (7)

The success probability in Equation (7) is positive when 0 ≤ k ≤ 13. Theoretically,
k ≈ n

2 can be the approximation for the lower bound of the observed success, while the
highest observed success can be 12 out of 13 draws. As a result, the success probability of
an attack is estimated to be within the range of 1.92× 10−12 ≤ Pr(X = k) ≤ 3.48× 10−5.
An attacker needs to go through a computation complexity of 2200 steps before he can
achieve a low success probability of 1.92× 10−12. In view of this, the attack becomes highly
complicated. This is because more n positions are needed to increase the matching score in
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real case scenario and this will extensively increase the computation complexity of NCn
before obtaining the low success probability. In addition, note that the increase of template
size, N will increase the complexity exponentially. Using the example above, the matching
score of the confidence matrix can be further expressed as:

Matching score =
k1
( 1

t
)
+ k2

( 2
t
)
+ k3

( 3
t
)

n1
( 1

t
)
+ n2

( 2
t
)
+ n3

( 3
t
) =

(
ki

∑t
i=1 ni

)
(8)

where i = 1, 2, . . . , t is the i − th number of training samples used for the construction
of confidence matrix (t = 3 is used for the example above). Theoretically, the higher the
expected number of collisions ki, the higher is the matching score. However, the increase
of k1 will inevitably reduce the success probability of an attacker, as shown in Equation (7).
Hence, we can fairly say that it is computationally infeasible by looking at the large amount
of steps incurred even before achieving the success probability, which can be negligible.
This is because the computation will also become infeasible if a larger template size is used
due to the asymptotic behavior caused by the increase of N or k. Thus, the requirement of
irreversibility for our proposed scheme has been fulfilled.

Unlinkability emphasizes that multiple protected templates generated from the same
Iriscode should be indistinguishable from each other. To evaluate the unlinkability of our
proposed scheme, the method proposed by Gomez et al. [7] is adopted. The unlinkability
can be evaluated by the mated and non-mated score distributions. The mated scores are
generated by matching between protected templates of the same subject using different
sets of hashing functions, h while non-mated scores refer to the matching of protected
templates belonged to different subjects using different sets of h. The unlinkability property
of a biometric system is fulfilled if there is an overlap between the score distributions of
mated and non-mated distributions [7].

Let P(s|Ms) be the conditional probability of a similarity score s ∈ [0, 1] that belongs
to the mated matching group Ms and P(s|M′s) denotes the conditional probability of a
similarity score s that belongs to the non-mated group M′s. Two protected templates are
said to have linkage if it is more likely that both templates are mated samples (Ms) rather
than non-mated samples (M′s) given a score s: P(Ms|s) > P(M′s|s). The unlinkability
property is characterized by the local linkability:

D(s) = 2
ωLR(s)

1 + ωLR(s)
− 1 (9)

Given that ωLR(s) = P(s|Ms)
P(s|M′s)

> 1 where LR(s) is the likelihood ratio between the
known probabilities P(s|Ms)/P(s|M′s) and ω = P(Ms)/P(M′s) denotes the ratio between
the unknown probabilities of the mated samples and non-mated samples distributions. We
can assume that P(Ms) = P(M′s), thus set ω = 1. The system’s overall linkability can be
further defined as:

Dsys =
∫

D(s)·P(s|Ms)ds (10)

This measure is within the range of Dsys ∈ [0, 1] with zero represents full unlinkability
and unity for system, which is completely linkable. Therefore, to attain the unlinkability of
a BTP scheme, it is desirable to show that Dsys is negligibly small.

Figure 12 depicted three different graphs of CASIAv1, CASIAv4 and ND0405 gen-
erated using our proposed binary (first row) and probability (second row) confidence
matrices using the same parameter settings with 3 training samples. All the mated and non-
mated score distributions showed significant overlapping and negligibly small value of
Dsys (binary) = 0.008, 0.014, 0.05; Dsys (probability) = 0.005, 0.01, 0.009 respectively. Therefore,
we assert that the proposed scheme fulfills the criteria on unlinkability.
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6. Discussion

From the result obtained in the previous section, improvement in performance has
been proven on all four different publicly available iris databases using our proposed
methods. The proposed scheme is able to mitigate the performance degradation caused
by BTP scheme in existing biometrics recognition system. However, there are still several
key points, which are worth to be discussed. First, a solution has to be formulated to
overcome the implementation problem since most of the publicly available databases come
with noise masks. The conventional Bloom filter and Indexing-first-one hashing scheme
did not attempt to solve this problem, which can potentially be a roadblock in mitigating
performance degradation.

A noise mask serves as an aid to determine the noisy pixels within the biometric
template. These pixels will be excluded at the matching stage of protected biometric
templates. The enhanced IFO hashing scheme, which does not require alignment, will
first divide the iris data into different blocks of Bloom filters. Our proposed solution is to
first determine the acceptable noise level of a protected iris recognition system through a
noise threshold. When a Bloom filter block has exceeded the acceptable noise level, the
corresponding row of hashed data will be considered as null and thus excluded during
the matching stage in the secure domain. This approach enables our proposed method
to work with any iris database with associated noise masks. However, note that higher
requirement on the noise level of your protected iris recognition system might cause a
larger amount of null rows. This can lead to unnecessary information loss and greatly
reduce the amount of information available for confidence matrix generation. Therefore,
our proposed probability confidence matrix is useful in optimizing the matching accuracy
through probabilities of collision in this situation.

On the other hand, experiments between the two proposed methods have been carried
out in this research. Firstly, we studied the relationship between the number of training
samples and the performance of our proposed methods. The generated results have
indicated that 3 training samples have the optimum performance in most of the tested
databases. Our proposed binary confidence matrix has shown better performance when it
is tested with lower quality iris images, while the probability confidence matrix performs
better when dealing with better quality iris images. In a nutshell, the proposed binary
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confidence matrix has a higher tolerance to noise because of its nature in eliminating noise
via the implementation of AND logic operation. Thus, this approach is more suitable to
improve the performance of protected biometric templates, which are captured under
challenging and non-cooperative environments.

7. Conclusions

In this paper, we have proposed two methods to mitigate the performance degradation
in a protected iris recognition system due to the implementation of a BTP scheme. The
reported EER is as low as 0.05% for higher quality iris images, around 1% for moderately
good quality iris images, and less than 2.5% for the lowest quality iris images tested on
the publicly available iris databases. As shown in Table 2, the proposed methods have
successfully improved the performance of state-of-the-art BTP in our experiments by 68.68%
in the best scenario. Our proposed binary-based confidence matrix is capable of mitigating
the performance degradation of noisy protected biometric templates, whereas the proposed
probability-based approach performs better with higher quality iris images captured under
a more controlled environment. In addition, our proposed confidence matrix has also taken
into consideration the existence of a noise mask in this implementation. In this case, our
design provides flexibility with no modification required on BTP schemes while reducing
performance degradation at the secured matching stage.
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