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Abstract: A method for constructing all admissible unitary non-equivalent Wigner quasiprobability
distributions providing the Stratonovic-h-Weyl correspondence for an arbitrary N-level quantum
system is proposed. The method is based on the reformulation of the Stratonovich–Weyl correspon-
dence in the form of algebraic “master equations” for the spectrum of the Stratonovich–Weyl kernel.
The later implements a map between the operators in the Hilbert space and the functions in the phase
space identified by the complex flag manifold. The non-uniqueness of the solutions to the master
equations leads to diversity among the Wigner quasiprobability distributions. It is shown that among
all possible Stratonovich–Weyl kernels for a N = (2j + 1)-level system, one can always identify
the representative that realizes the so-called SU(2)-symmetric spin-j symbol correspondence. The
method is exemplified by considering the Wigner functions of a single qubit and a single qutrit.

Keywords: quantum mechanics on phase space; finite-level quantum systems; SU(2) spin-j symbol
correspondence

1. Introduction

The modern boom in quantum engineering and quantum computing has reinvigorated
the study of the interplay between classical and quantum physics. In particular, a new
insight has been gained into the long-standing problem of finding “quantum analogues”
for the statistical distributions of classical systems. The Wigner procedure [1] to associate
the so-called “quasiprobability distribution” on a phase space with a density operator acting
on a Hilbert space was essentially the definition of the inverse of the Weyl quantization
rule [2]. The discovery of this mapping provided the formulation of one of the most
interesting representations of quantum mechanics, namely the statistical theory on a phase
space, which is usually attributed to Groenewold [3] and Moyal [4]. After almost a century
of elaboration of the initial ideas, diverse aspects of the interrelations between the phase
space functions and the operators in the Hilbert space have been established (e.g., [5–17]).
Nowadays, as already mentioned, special attention is being paid to the consideration of
the phase-space formulation of the quantum theory, including the studies of the Wigner
quasiprobability distributions for finite-dimensional quantum systems, due to quantum
engineering needs (cf. [13] and references therein).

In the present paper, we continue these studies and discuss the issue of the non-
uniqueness of the mapping between quantum and classical descriptions. Based on the pos-
tulates known as the Stratonovich–Weyl correspondence [14], an exhaustive method of
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determining the Wigner quasiprobability distributions (shortened as the Wigner func-
tions (WF)) for generic N-level quantum systems is suggested. The Wigner function is
constructed from two objects: the density matrix $ describing a quantum state, and the so-
called Stratonovich–Weyl (SW) kernel ∆(ΩN) defined over the symplectic manifold ΩN . As
will be shown below, starting from the first principles, the kernel ∆(ΩN) is subject to a set
of algebraic equations. According to these equations, the SW kernel for a given quantum
state $ depends on a set of N − 2 real parameters ν = (ν1, ν2, . . . , νN−2). Moreover, these
SW kernels ∆(ΩN | ν) are unitary non-equivalent for different values of ν. The precise
definition and meaning of the parameter ν , which labels members of the SW family, will be
given in the following sections. Here, we emphasize that the structure of the family, as well
as the functional dependence of the Wigner functions on the coordinates of the symplectic
manifold ΩN , is encoded in the type of degeneracy of the Stratonovich–Weyl operator
kernel ∆(ΩN | ν). For example, if πi is an eigenvalue of the Hermitian N×N kernel ∆(ΩN)
with the algebraic multiplicity k(πi), then its isotropy group H is

H = U(k(π1))×U(k(π2))× · · · ×U(k(πr+1)),

and the family of WF can be defined over the complex flag manifold:

ΩN = FN
d1,d2,...,dr

= U(N)/H, (1)

where (d1, d2, . . . , dr) is a sequence of positive integers with sum N, such that k(π1) = d1
and k(πi+1) = di+1 − di with dr+1 = N. In this case, the family of the Wigner functions of
an N-dimensional system in state $ is constructed according to the Weyl rule:

W(ν)
$ (ϑ) = tr[$ ∆(ΩN | ν)] = tr

[
$ X(ϑ)P(N)(ν)X(ϑ)†

]
, (2)

where the phase space counterpart of density matrix $ is given by an N × N matrix X(ϑ)
from the dF-dimensional coset ΩN with coordinates ϑ = (ϑ1, ϑ2, . . . , ϑdF). The symbol
P(N)(ν) in Equation (2) denotes a real diagonal N × N matrix, the entries of which are
eigenvalues of the Hermitian kernel ∆(ΩN | ν).

Our article is organized as follows. In Section 2, based on the Stratonovich–Weyl
correspondence, “master equations” for the SW kernel matrix ∆(ΩN | ν) will be derived
and the ambiguity in the solution to these equations will be analyzed. In Section 3,
connections between the proposed generic SW mapping and a well-elaborated SU(2)-
symmetric spin-j symbol correspondence (see, e.g., [7] and references therein) will be
described. It will be shown how to obtain the reduced Wigner function performing
the reduction from flag manifold (1) to its two-dimensional submanifold. Sections 4 and 5
are devoted to the exemplification of the suggested scheme of construction of the WF for
a qubit and a qutrit, respectively. We present a detailed description of the Wigner functions
of two- and three-dimensional systems, i.e., qubits and qutrits, respectively. Among others,
representations for the reduced Wigner functions of spin-1/2 and spin-1 systems satisfying
the Stratonovich–Weyl correspondence will be derived from the generic SW mapping. Our
final comments and remarks are given in Section 6.

2. The Wigner Function via the Stratonovich–Weyl Correspondence
2.1. The Stratonovich–Weyl Postulates

Let us consider an N-dimensional quantum system in a mixed state that is defined
by the density matrix operator $ acting on the Hilbert space CN . According to the basic
principles of phase space representation of quantum mechanics, there is a mapping between
the operators on the Hilbert space of a finite-dimensional quantum system and the functions
on the phase space of its classical mechanical counterpart. This mapping can be realized
with the aid of the Stratonovich–Weyl operator kernel ∆(ΩN) defined over a phase space
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ΩN . In particular, the Wigner quasiprobability distribution W$(ΩN) corresponding to
a density matrix $ reads:

W$(ΩN) = tr[$∆(ΩN)]. (3)

The basic principles of quantum theory are expressed through the following set of
requirements (cf. formulation by Stratonovich [14], Brif and Mann [16,17]) of the SW kernel:

(I) Reconstruction: State $ is reconstructed from the Wigner function (3) as

$ =
∫

ΩN

dΩN ∆(ΩN)W$(ΩN). (4)

(II) Hermicity: ∆(ΩN) = ∆(ΩN)
†.

(III) Finite Norm: The state norm is given by the integral of the Wigner distribution

tr[$] =
∫

ΩN

dΩNW$(ΩN),
∫

ΩN

dΩN ∆(ΩN) = 1. (5)

(IV) Covariance: The unitary transformations $′ = U(α)$U†(α) induce the kernel change

∆(Ω′N) = U(α)†∆(ΩN)U(α).

For our further purposes, it is worth commenting on the measure in (4). Identifying
the phase space ΩN as a flag manifold (1), the measure in the reconstruction integral (4)
can be written formally as

dΩN = C−1
N dµSU(N)/dµH ,

where CN is a real normalization constant, dµSU(N) is the normalized Haar measures
on the SU(N). Since the integrand in (4) is a function of the coset variables only, the recon-
struction integral can be extended to the whole group SU(N),

$ = Z−1
N

∫
SU(N)

dµSU(N) ∆(ΩN)W$(ΩN), (6)

by introducing the normalization constant Z−1
N = C−1

N /vol(H). Here, the factor vol(H)
denotes the volume of the isotropy group H calculated with the measure induced by
a given embedding, H ⊂ SU(N).

Summarizing all these commonly accepted views, the kernel satisfying postulates
(I)–(IV) and providing the mapping from an element of the space state $ to the Wigner
function (3) will hereafter be referred to as the Stratonovich–Weyl kernel.

2.2. Master Equations for Stratonovich–Weyl Kernel

Now, we are in a position to show how one can reformulate the above generic requirements
of the SW kernel in terms of certain simple algebraic equations. In particular, we will prove that
the Stratonovich–Weyl kernel ∆(ΩN) with isotropy group H ∈ SU(N), defined on a phase-
space ΩN identified as a flag manifold U(N)/H, satisfies the following algebraic equations:

tr[∆(ΩN)] = 1, tr[∆(ΩN)
2] = N. (7)

In order to demonstrate this, note that relations (3) and (6) imply the integral identity

$ = Z−1
N

∫
SU(N)

dµSU(N) ∆(ΩN) tr[$∆(ΩN)]. (8)

To proceed further, we use the singular value decomposition of the Hermitian kernel
∆(ΩN):

∆(ΩN) = U(ϑ)PU†(ϑ), P = diag
{ N︷ ︸︸ ︷

π1 . . . π1︸ ︷︷ ︸
k(π1)

, . . . , πr . . . πr︸ ︷︷ ︸
k(πr)

}
, (9)
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with the following descending order of the eigenvalues:

π1 ≥ π2 ≥ · · · ≥ πr. (10)

The unitary matrix U(ϑ) in (9) is not unique and the character of its arbitrariness
follows from the degeneracy of the spectrum σ(∆) of the SW kernel, i.e., it is determined
by the isotropy group H ⊂ SU(N) of the diagonal matrix P. Thus, we assume that
the diagonalizing matrix U(ϑ) belongs to a certain coset U(N)/H. It is convenient to
identify it with a complex flag manifold (1) and use the coordinates ϑ1, ϑ2, . . . , ϑdF for
its description.

Substituting ∆(ΩN) into (8) with the decomposition (9), we obtain the identity,

Z−1
N

∫
SU(N)

dµSU(N)(UPU†)ik(UPU†)js$sj = $ik. (11)

Now, performing the integration in identity (11), we will obtain an algebraic equation
for the SW kernel. Indeed, using the fourth-order Weingarten formula [18–20]:∫

SU(N)
dµSU(N)

Ui1 j1Ui2 j2U†
k1l1U†

k2l2 =
1

N2 − 1

(
δi1l1 δi2l2 δj1k1 δj2k2 + δi1l2 δi2l1 δj1k2 δj2k1

)
− 1

N(N2 − 1)

(
δi1l1 δi2l2 δj1k2 δj2k1 + δi1l2 δi2l1 δj1k1 δj2k2

)
,

on the left side of (11), we arrive at the equations for the kernel:

(tr[P])2 = ZN N, tr[P2] = ZN N2, (12)

Now, taking into account the finite norm condition (III) and the second-order Wein-
garten formula, ∫

SU(N)
dµSU(N) Ui1 j1U†

k1l1 =
1
N

δi1l1 δj1k1 ,

one can verify that (5) is satisfied if

tr[P] = ZN N. (13)

Comparing (13) with (12) allows the determination of the normalization constant,
ZN = 1/N. Finally, using the covariance condition (IV) and U(N) invariance of (12),
we obtain the “master equations” for the SW kernel:

tr[∆(ΩN)] = 1, tr[∆(ΩN)
2] = N. (14)

• Comments on a set of conditions for SW kernel

Finalizing our derivation of the master equations, it is worth commenting on the par-
ticular formulation of the Stratonovich–Weyl correspondence rules that we use in this
paper.

According to the formulation given in [16,17], the Stratonovich rules partially rewrit-
ten in our notations are:

1. Linearity: A→W(s)
A (ΩN) is one-to-one map.

2. Standardization:

Z−1
N

∫
dµSU(N)W

(s)
A (ΩN) = tr[A].

3. Covariance: under transformation of operators Ag = g† Ag, the symbol changes as

W(ν)
Ag (ΩN) = W(s)

A (g ·ΩN)
4. Traciality:

Z−1
N

∫
dµSU(N)W

(s)
A (ΩN)W

(−s)
B (ΩN) = tr[AB]. (15)
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Here, the index s is a label for a family of quasiprobability distributions (namely,
s = −1, 0, 1 correspond to Husimi Q, Wigner W and GlauberSudarshan P functions, re-
spectively) with different SW kernels ∆(s)(ΩN) realizing the Weyl map, A → W(s)

A (ΩN).
In general, the inverse of the Weyl transform is performed by the kernel inverse to the
direct ones:

A =
∫

dµSU(N) W(s)
A (ΩN)∆(−s)(ΩN). (16)

Comparing this list with the requirements (I)–(IV), one can see that our reconstruction
Formula (4) is implemented by the SW kernel ∆(Ω), which is the same as that used in the con-
struction of WF in (3). Below, describing families of non-equivalent Wigner quasiprobability
distributions, originating from the non-uniqueness of the solutions to the master equations (14),
we still restrict our study to this kind of “self-dual” SW kernel, corresponding to s = 0. In this
case, the traciality condition (15) is satisfied automatically for each representative of the “self-dual”
family of SW kernels independently. This follows, once again, from the Weingarten formula for
the integral (15). It results in an identity modulo the “master equations”.

2.3. Dual Picture

Thus, we come to the following dual description of the finite-dimensional system with
two basic ingredients, the quantum state space, the space of operators PN on the Hilbert
space, and the space of matrix-valued functions P∗N on phase-space ΩN .

The quantum state space of N− dimensional system PN is a subspace of N × N
matrices over C, fulfilling the following:

PN = {X ∈ MN(C) | X = X†, X ≥ 0, tr(X) = 1}. (17)

Meanwhile, the space P∗N of matrix-valued functions on phase-space ΩN of the N−
dimensional system, the Stratonovich–Weyl kernel, we define as:

P∗N = {X ∈ MN(C) | X = X†, tr(X) = 1, tr
(

X2
)
= N}. (18)

Now, the Weyl dual pairing:

W$(ΩN) = tr[$ ∆(ΩN)], (19)

defines the Wigner quasiprobability function W$(ΩN) on phase-space ΩN and the inverse
mapping P∗N → PN :

$ =
∫

ΩN

dΩN ∆(ΩN)W$(ΩN) (20)

for all elements $ ∈ P∗N and ∆ ∈ P∗N .

2.4. Space of Solutions to the Master Equations

To further understand the dual picture, more detailed knowledge of the structure of
the quantum state space P as well as the SW kernel space P∗ is necessary. In this section,
we will analyze the latter. In particular, the moduli space of SW kernels will be described.

The unitary group SU(N) acting via conjugation defines the unitary equivalence
relations and, as a result, the family of unitary non-equivalent SW kernels is in one-to-
one correspondence with the coadjoint SU(N) orbit modulo the constraints coming from
the master equations (14). This observation allows us to obtain an explicit description
of the corresponding moduli space as follows. Consider the coadjoin orbit Ox of SU(N)
parameterized by decreasingly ordered n-tuple x = (x1, x2, . . . , xN) with components
summed up to zero, ∑N

i xi = 0 and C as the positive Weyl chamber

C : = { x ∈ RN |
N

∑
i

xi = 0, x1 ≥ x2 ≥ · · · ≥ xN } (21)
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It is easy to see that the intersection of (N − 1)−dimensional sphere, ∑N
i x2

i = 2, with
the Weyl chamber C gives the moduli space PN of solutions to the master equations (4):

PN ' C ∩ SN−1(
√

2). (22)

Indeed, consider the SVD decomposition for ∆(ΩN | ν), with its diagonal part ex-
panded over the basis elements of a Cartan subalgebra h ∈ su(N)

∆(ΩN |ν) =
1
N

U(ΩN)

[
I + κ ∑

λ∈h
µs(ν)λs

]
U(ΩN)

†, (23)

where κ =
√

N(N2 − 1)/2, and the orthonormal basis {λ1, λ2, . . . , λN2−1} of the algebra
su(N) concerning the trace norm tr(λiλj) = 2δij is chosen. Here, µs(ν) are real parameters
subject to the master equations (4). The equations in (4), being invariant under the SU(N)
group action, constrain only the parameters µs(ν), which are associated with the orbits
of SU(N) orbit. It is easy to see that substitution of (23) into Equation (14) leads to
the constraint on µs(ν):

N

∑
s=2

µ2
s2−1(ν) = 1. (24)

Now, if we identify the eigenvalues of the traceless part of the SW kernel, ordered
decreasingly (cf. (10)), with the x1, x2, . . . , xN , then Equation (24) reduces to the equation
∑N

i x2
i = 2, proving the representation (22) for moduli space PN .
Hence, for generic orbits, i.e., assuming the existence of N different eigenvalues of the

SW kernel, the maximal number of continuous parameters ν = (ν1, ν2, . . . , νN−2) character-
izing the solution ∆(ΩN | ν) is N − 2. The parameters ν may be chosen as N − 2 spherical
angles. After the corresponding restriction of their range of definition, the fundamental
domain/the moduli space PN represents the locus of points on sphere SN−2(1), which
are in one-to-one correspondence with a given ordered set of eigenvalues of ∆(ΩN | ν).
Geometrically, fixation of a certain ordering of eigenvalues (10) results in cutting out
the moduli space of ∆(ΩN | ν) in the form of a spherical polyhedron on SN−2(1) . (For
example, in the quatrit case, N = 4, any fixed order of eigenvalues corresponds to one out
of 24 tiles tessellating a sphere by the spherical triangles whose angles are (π/2, π/3, π/3).
Such a triangle is one of the four fundamental spherical Möbius Triangles with the tetrahe-
dral symmetry, which is classified as a (2, 3, 3) triangle. Repeated reflections in the sides of
the triangles will tile a sphere exactly once. In accordance with Girard’s theorem, the spher-
ical excess of a triangle determines the solid angle: π/2 + π/3 + π/3− π = 4π/24 .)
Furthermore, the faces, edges and vertices of this polyhedron correspond to the SW kernels,
the isotropy group of which is larger than the maximal torus.

2.5. Parameterizing the Wigner Function

In summary, we are in the position to present the parametrization and the general
form of the Wigner function.

Consider the symplectic manifold ΩN ' U(N)/U(1)N and suppose that a quantum
N−level system is in a mixed state $ characterized by (N2 − 1)-dimensional Bloch vector ξ,

$ =
1
N

(
I +

√
N(N − 1)

2
(ξ, λ)

)
. (25)

The SW mapping implemented by the SW kernel ∆(ΩN |ν) defines a family of Wigner
functions

W(ν)
ξ (θ1, θ2, . . . , θd) =

1
N

[
1 +

N2 − 1√
N + 1

(n, ξ)

]
, (26)
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where n is (N2 − 1)-dimensional unit vector given by superposition of (N − 1) orthogonal
vectors n(3), n(8), . . . , n(N2−1) :

n = µ3(ν)n(3) + µ8(ν)n(8) + · · ·+ µN2−1(ν)n
(N2−1), (27)

with coefficients µ1(ν), µ2(ν), . . . , µN2−1(ν) defined over the moduli space PN(ν). The
vectors n(s) correspond to the basis elements of the Cartan subalgebra λs ∈ h and are
determined by the diagonalizing matrix in (23):

n(s)
µ =

1
2

tr
(

UλsU†λµ

)
, λs ∈ h, µ = 1, 2 . . . , N2 − 1.

As mentioned in the Introduction, the number d(N) of independent variables ϑ
in the Wigner function (26) depends on the isotropy group of the SW kernel. The maximal
number for a given N equals max d(N) = N(N− 1) and corresponds to the maximal torus
T ∈ SU(N). However, depending on the symmetry of the SW kernel and the state, the num-
ber of the independent variable in WF can be reduced. In subsequent sections, we will
derive sufficient conditions for the reduction of the proposed scheme to SU(2)-symmetric
spin j correspondence. It will be shown how to reduce the number of independent phase
space variables to one or two for half-integer and integer values of j, respectively.

3. Reduction to SU(2) Symmetric Spin-j Correspondence

In this section, we clarify connections between the proposed generic SW mapping
and a well elaborated SU(2)-symmetric spin-j symbol correspondence. To make the pre-
sentation self-sufficient, we start with the definitions of the spin-j system and a spin-j
symbol correspondence in the form presented in the work by de Rios and Straum [21].

Definition 1. A spin-j system is a complex Hilbert space Hj ' CN together with an irreducible
unitary representation

φj : SU(2)→ G ⊂ U(Hj) ' U(N), N = 2j + 1 ∈ N,

where G denotes the image of SU(2), which is isomorphic to SU(2) or SO(3) according to whether
j is half-integral or integer.

Definition 2. A symbol correspondence for a spin-j system is a rule which ascribes to each operator
P ∈ B(Hj) a smooth function W j

P on S2, called its symbol, with the following properties:

(i) Linearity: the map P→W j
P is linear and injective;

(ii) Equivariance: W j
Pg =

(
W j

P

)g
, for each g ∈ SO(3);

(iii) Reality: W j
P†(n) = W j

P(n);

(iv) Normalization: 1
4π

∫
S2 W j

P(n)dS = 1
N tr(P).

Definition 3. A Stratonovich–Weyl correspondence is a symbol correspondence that, additionally
to (i)–(iv) axioms, also satisfies the so-called isometry axiom:

(v) Isometry: 〈W j
PWi

Q〉 =
1
N tr
(

P†Q
)
.

The left-hand side of the equations denotes the normalized L2 inner product of two functions on the sphere,

〈F1, F2〉 =
1

4π

∫
S2

F1(n)F2(n)dS.

We claim that for any N = (2j+ 1), where j = 1
2 , 1, 3

2 , . . . , among solutions to the “mas-
ter equations” (7), one can always find at least one SW kernel ∆(k), of a symmetry type
[Hk], such that a generic dual pairing (3) with a density matrix $(q) of [Hq] symmetry type
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reduces to the SU(2)-symmetric spin-j correspondence. The reduced Wigner function
W(k)

(q) associated with a density matrix is defined either on a one-dimensional subspace of

the phase space for a half-integer, j = 1
2 , 3

2 , . . . , or on a two-dimensional subspace of the
phase space for an integer, j = 1, 2, . . .

We prove this claim by deriving sufficient conditions in the form of algebraic equa-
tions for the reduction and then demonstrating the existence of at least one solution to
the equations for each case of values of j.

Let us first observe that the reduced Wigner quasiprobability distribution W(k)
(q), when

the symmetry groups of the density matrix and SW kernel correspondingly are Hk and Hq,
can be determined as follows.

• Introduce the double coset BN
k,q = Hq\SU(N)/Hk with the following left and right factors:

Hk = S(U(k1)×U(k2)× · · · ×U(kL)),
L

∏
i=1

det(U(ki)) = 1,
L

∑
i=1

ki = N, (28)

Hq = S(U(q1)×U(q2)× · · · ×U(qR)),
R

∏
i=1

det(U(qi)) = 1,
R

∑
i=1

qi = N, (29)

where k = (k1, k2, , . . . kL) and q = (q1, q2, , . . . qR) are degrees of degeneracy of
the decreasingly ordered eigenvalues of a given density matrix and SW kernel, r1 >
r2 > · · · > rL and π1 > π2 > · · · > πR,

r↓ = spec{
k1︷ ︸︸ ︷

(r1, . . . , r1);

k2︷ ︸︸ ︷
(r2, . . . , r2); . . . ;

kL︷ ︸︸ ︷
(rL, . . . , rL)}, (30)

π↓ = spec{
q1︷ ︸︸ ︷

(π1, . . . , π1);

q2︷ ︸︸ ︷
(π2, . . . , π2); . . . ;

qR︷ ︸︸ ︷
(πR, . . . , πR)}, (31)

• Consider a mapping from BN
k,q to the subspace of the Birkhoff polytope BN , by

prescribing to each element Z ∈ BN
k,q the unistochastic matrix:

BN
k,q → BN : Bij = |Zij|2, ∀Z ∈ BN

k,q, (32)

• Define, based on the above mapping (32), the bilinear form:

W(k)
(q) = r↓i Bijπ

↓
j =

(
r↓, π↓

)
B

. (33)

The variety of possible symmetries of SW correspondence is determined by all pairs
of Young diagrams corresponding to a set of {k↓, q↓} solving the master equations. (The
symmetry of a point x ∈ P∗ associated with the adjoint action of group G is given by
the isotropy (stability) group Gx: Gx = {g ∈ G | x = g−1x g}.) The WF corresponding to
another ordering of eigenvalues r obtained by transposition P from r↓ is given by pairing
(33) with the transposed matrix:

BP = PB. (34)

The result of transposition (34) can be moved to the change in the phase space coordinates.
To see this, consider SVD decomposition for density matrices $(q) and SW kernel ∆(k)

with the spectrum of the types of degeneracy (30) and (31):

$(q) = V

r1Ik1 · · · 0
...

. . .
...

0 · · · rLIkL

V†, ∆(k) = U

π1Iq1 · · · 0
...

. . .
...

0 · · · πRIqR

U†. (35)
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These are not unique. The most general family of diagonalizing unitary matrices V
and U in (35) is

V = V↓

Vk1 · · · 0
...

. . .
...

0 · · · VkL

P, U = U↓

Uq1 · · · 0
...

. . .
...

0 · · · UqR

Q, (36)

where V↓ and U↓ denote the unitary matrices constructed of right eigenvectors of matrix $
and ∆ ordered according to their decreasing eigenvalues. The matrices Vk1 , . . . , VkL and
Uq1 , . . . , UqR are arbitrary unitary matrices of order k1, . . . , kL and q1, . . . , qR, respectively,
and P and Q are matrices transposing the columns.

Now, to perform the reduction to SU(2)-symmetric spin-j symbol correspondence,
it is sufficient to find pairs of tuples k↓ = (k1, k2, , . . . kL) and q↓ = (q1, q2, , . . . qR) that
solve the equations

L

∑
i=1

k2
i +

R

∑
i=1

q2
i = 1 + 4j(j + 1),

L

∑
i=1

ki =
R

∑
i=1

qi = 2j + 1. (37)

if j is a half-integer, or

L

∑
i=1

k2
i +

R

∑
i=1

q2
i = 4j(j + 1),

L

∑
i=1

ki =
R

∑
i=1

qi = 2j + 1, (38)

if j is an integer.
To prove this statement, let us make a few observations on unistochastic matrices

in (32). Note that matrices Bij form a subset of space UN of the so-called unistochastic
matrices [22]. Its dimension reads

dimUN = (N − 1)2. (39)

Now, first of all, we are ready to show that WF for the most generic SW kernel
and density matrices has (N − 1)2 dimensional support in accordance with the dimension
of the space of unistochastic matrices (39). Indeed, taking into account that, for a generic
case, without symmetries, the isotropy groups of states and SW kernel are minimal ones,

dim Hq = dim Hk = N − 1,

a real dimension of the coset Bk,q:

dimBN
k,q = N2 − 1− dim Hq − dim Hk (40)

reduces for a generic case to

dimBN
k,q
∣∣
Generic

= N2 − 1− 2(N − 1) = (N − 1)2. (41)

A realization of the SU(2)-symmetric SW correspondence for spin-j assumes that
N = 2j + 1 level system is in specific states possessing a nontrivial isotropy group Hq,
and, at the same time, the SW kernel has a symmetry given by a certain isotropy group Hk
as well.

Now, to determine both symmetry groups, we formulate the set of algebraic equations
for k and q tuples. It is found that the minimal dimension of B2j+1

k is one and two for odd
and even numbers of levels, respectively. Hence, the equation for j = 1

2 , 3
2 , . . . , is

dimB2j+1
k,q = 1, (42)
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while for integer spins, j = 1, 2, . . . , it reads

dimB2j+1
k,q = 2. (43)

Using the expression for the coset dimension:

dimBk,q = N2 − 1− dim Hq − dim Hk = 4j(j + 1)−
L

∑
i=1

k2
i −

R

∑
i=1

q2
i + 2, (44)

we reformulate (42) and (43) as the problem of solving Equations (37) or (38).
We do not have a complete solution to these equations for an arbitrary N, but in order

to establish SU(2) symmetric spin j correspondence, it is enough to find at least a single
solution to (37) and (38). It is straightforward to check that the pairs k = ( 2j+1

2 , 2j+1
2 ),

q = ( 2j+1
2 , 2j+1

2 ) and k = (2j, 1), q = (
︷ ︸︸ ︷
2, · · · , 2

j−1
, 1, 1, 1) for half-integer and integer j,

respectively, fulfil the corresponding equations.
The results for complete solutions of reduction equations 1 ≤ j ≤ 7/2 are given

in Tables 1 and 2.

Table 1. Symmetries and partitions corresponding to low-dimensional half-integer SU(2)-symmetric
spin-j correspondence.

List of Solutions for Half-Integer Spins

Spin SW Kernel Degeneracy State Degeneracy
P (N) 4j(j + 1)

j (k1, k2, · · · , kL−1, kL) (q1, q2, · · · , qR−1, qR)

1/2 (1, 1) (1, 1) 2 3

3/2 (3, 1) (2, 1, 1) 5 15

5/2

(4,1,1) (4, 1, 1)

11 35
(3, 3) (3, 3)

(4, 1, 1) (3, 3)

(5, 1) (2, 2, 1, 1)

7/2

(7,1) (3, 1, 1, 1, 1, 1)

22 63

(7, 1) (2, 2, 2, 1, 1)

(6, 2) (4, 2, 2)

(6, 1, 1) (4, 3, 1)

(5, 3) (5, 2, 1)

(4, 4) (4, 4)

In the tables, P(N) is a partition function that gives a number of possible partitions of
a non-negative integer N into natural numbers.
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Table 2. Symmetries and partitions corresponding to low-dimensional integer SU(2)-symmetric
spin-j correspondence.

List of Solutions for Integer Spins

Spin SW Kernel Degeneracy State Degeneracy
P (N) 4j(j + 1)

j (k1, k2, · · · , kL−1, kL) (q1, q2, · · · , qR−1, qR)

1 (2, 1) (1, 1, 1) 3 8

2
(4, 1) (2, 1, 1, 1)

7 24
(3, 1, 1) (3,2)

3

(6, 1) (2, 2, 1, 1, 1)

15 48
(5, 2) (3, 3, 1)

(5, 2) (4, 1, 1, 1)

(5, 1, 1) (4, 2, 1)

In the following sections, we consider in detail examples of low-dimensional quantum
systems. The explicit form of the Wigner functions for N = 2 and N = 3 level systems
will be given. Apart from these, we will describe the reduction of the Wigner functions
to the subspaces of the phase space, constructing the SW mapping when the systems
possess a certain symmetry. The construction of the reduced WF of spin-1/2 and spin-1
is presented.

4. Wigner Function of a Single Qubit

• A qubit mixed state

Consider a generic two-level system in a mixed state, characterized by the Bloch vector
r with spherical components, r = r(sin α∗ cos β∗, sin α∗ sin β∗, cos α∗),

$ =
1
2
I+ 1

2
(r, σ), (45)

where the vector σ refers to the set of the Pauli matrices, σ = (σ1, σ2, σ3). Equivalently, $
in SVD form reads:

$ = V(α∗, β∗)

(
r1 0
0 r2

)
V(α∗, β∗)†. (46)

The eigenvalues of the density matrix r1 and r2 are linear combinations of the radius r
of the Bloch vector:

r1 =
1
2
(1 + r), r2 =

1
2
(1− r),

and matrix V is an element of the coset SU(2)/U(1) in conventional parameterization,

V(α∗, β∗) = exp
(

i
α∗

2
σ3

)
exp

(
i
β∗

2
σ2

)
exp

(
−i

α∗

2
σ3

)
. (47)

• SW kernel

The master equations (7) give a unique solution for the spectrum of the two-dimensional
SW kernel:

spec(∆(Ω2)) =

{
1 +
√

3
2

,
1−
√

3
2

}
. (48)

Therefore, the SW kernel of the qubit

∆(Ω2) =
1
2

U(Ω2)

(
1 +
√

3 0
0 1−

√
3

)
U†(Ω2) =

1
2
I+
√

3
2

(n, σ), (49)
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is defined over two spheres described by the unit vector,

ni = U(Ω2) σ3U(Ω2)
† = (sin θ cos φ, sin θ sin φ, cos θ).

Hence, the Wigner function for the two-level system in a state $ on a two-sphere reads:

W$(n) =
1
2
+

√
3

2
(r, n), n ∈ S2. (50)

• Reduced WF of qubit

For the case of qubit, the symmetry analysis is trivial. The two-level system is associ-
ated with the spin-1/2 system directly. For spin-1/2, there are only P(2) = 2 partitions,
namely (1, 1) and (2).

According to (37), the partition (1, 1) gives the desired symmetric coset with the same
left and right factors S(U(1)×U(1)). Following the procedure described in the previous
section, the reduced Wigner function W(1,1)

(1,1) depending only on the radius of the Bloch
vector and defined over a one-dimensional orbit of SU(2), i.e., on a circle, is

W(1,1)
(1,1) (θ) = tr

[(
r1 0
0 r2

)
∆(1,1)(θ)

]
. (51)

The reduced SW kernel ∆(1,1)(θ) is derived from the generic kernel (49) by projecting
the matrix U ∈ SU(2) written in the symmetric 3-2-3 Euler decomposition to its double
coset, U(1)\SU(2)/U(1),

∆(1,1)(θ) =
1
2

exp
(

i
θ

2
σ2

)(
1 +
√

3 0
0 1−

√
3

)
exp

(
−i

θ

2
σ2

)
,

with the Euler angle θ ∈ [0, π] serving as the double coset coordinate. Evaluation of the trace
in (51) gives the reduced WF in the form of dual pairing with the unistochasic matrix B:

W(1,1)
(1,1) (θ) =

1
2
(r↓, B(θ)π↓), B(θ) =

 cos2 θ

2
sin2 θ

2

sin2 θ

2
cos2 θ

2

. (52)

Hence, explicitly, the reduced WF of the two-level system reads

W(1,1)
(1,1) (θ) =

1
2
+

√
3

2
(r1 − r2) cos θ. (53)

• Comment on the reduced phase space

The WF in Equation (53) is defined over one half of a unit circle. How can we extend
it to a whole circle?

According to the discrete symmetry of SVD decomposition, i.e., symmetry under
the permutation of eigenvalues, there are two WFs corresponding to opposite orders,

↓W =
1
2
+

√
3

2
r cos θ, ↑W =

1
2
−
√

3
2

r cos θ. (54)

One can move the permutations P of eigenvalues $′ = P$P−1 to the following
transformation of the phase-space coordinate θ,

↑W(θ) = (↓W(θ))P = ↓W(θ + π).
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Hence, this relation
↓W(θ)− ↑W(θ) =

√
3 r cos(θ),

gives the rule to extend the domain of definition of WF to a whole circle, θ ∈ [0, 2π].

• Comment on the reduced quasiprobability distributions and observables

Finally, it is worth commenting on the role that the reduced quasiprobability distribu-
tion plays in a description of observables.

The reduced WF allows reconstruction of the spectrum of a density matrix $. Indeed,
this verifies that the diagonal matrix of a qutrit state can be reconstructed

$diag =
∫

dθ W(1,1)
(1,1) (θ)∆(1,1)(θ), (55)

and, thus, the complete state can be reconstructed via the SVD for density matrix
$ = V(α∗, β∗)$diagV†(α∗, β∗).

Using the reconstruction Equation (55), we can build the reduced symbols of operators
and corresponding observables. The expectation value of spin-1/2 operator in the state $,

〈S〉$ =
1
2

tr(σ$) =
1
2

r, (56)

can be derived using the symbol of the spin operator and WF. The symbol of spin-1/2
operator S = 1

2 σ reads:

WS(Ω2) = tr(S∆(Ω2) =

√
3

2
n.

On the other hand, (56) can be written as convolution,

〈S〉$ =
∫

dΩ2W$(Ω2)WS(Ω2) =

√
3

4

∫
S2

dn [1 +
√

3(n · r)] n =
1
2

r. (57)

Based on the reconstruction Equation (55), one can obtain the same result integrating
the reduced Wigner function with the spin symbol for the spin operator in the rotated
frame, S′ = VS′V†:

〈S〉$ =
∫
S1

dθ W(1,1)
S′ (θ)W(1,1)(1, 1)(θ). (58)

The spin symbol is calculated with the aid of a reduced SW kernel,

W(1,1)
S′ (θ) = tr

(
S′∆(1,1)(θ)

)
.

5. Wigner Function of a Single Qutrit

We start with the construction of WF for a three-level system in a mixed state us-
ing a generic one-parametric kernel defined over a six-dimensional symplectic manifold.
Then, we perform its reduction to WF defined over two spheres and associated with
a conventional SU(2)-symmetric spin-1 SW correspondence.

• Generic qutrit state

Assume that the qutrit is in a mixed state $ ∈ P3 :

$ =
1
3
I+ 1√

3

8

∑
ν=1

ξνλν. (59)
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The eight-dimensional Bloch vector ξ in (59) obeys the following constraints due to
the non-negativity of the density matrix, $ ≥ 0:

0 ≤
8

∑
ν=1

ξνξν ≤ 1, 0 ≤
8

∑
ν=1

ξνξν −
2√
3

8

∑
µ,ν,κ=1

ξµξνξκdµνκ ≤
1
3

,

where dµνκ denotes the “symmetric structure constants” of the su(3) algebra. Equivalently,
the mixed state $ in (59) can be rewritten in the SVD form as

$ = V

 r1 0 0
0 r2 0
0 0 r3

V† (60)

with a unitary diagonalizing matrix V and SU(3)-invariant content of a state $ accumulated
in its ordered set of eigenvalues. The eigenvalues in (60) are in one-to-one correspondence
with points of the ordered 2-simplex,

3

∑
i=1

ri = 1, 1 ≥ r1 ≥ r2 ≥ r3 ≥ 0. (61)

This simplex describes the SU(3) orbit space O[P3] of a qutrit. Taking into account
the unit norm condition, it is convenient to introduce two independent variables, I3 and I8:

r1 =
1
3
+

1√
3

I3 +
1
3

I8, r2 =
1
3
− 1√

3
I3 +

1
3

I8, r3 =
1
3
− 2

3
I8. (62)

As result of this mapping, the ordered 2-simplex (61) in new variables I3 and I8 defines
the following representation for orbit space O[P3] of a qutrit:

O[P3] :
{

I3, I8 ∈ R
∣∣∣∣ 0 ≤ I3 ≤

√
3

2
,

1√
3

I3 ≤ I8 ≤
1
2

}
. (63)

• SW kernel

For a three-level system, the master Equations (14) determine a one-parametric family
of kernels,

∆(Ω3) = U(Ω3)
1
3
[I + 2

√
3(µ3λ3 + µ8λ8)]U(Ω3)

†, (64)

Here, the standard Gell–Mann basis of the su(3) algebra {λ1, λ2, . . . , λ8} λ3 and λ8
from its Cartan subalgebra is used. Two coefficients µ3 = sin ζ and µ8 = cos ζ are co-
ordinates of a unit circle and the moduli space of qutrit represents an arc of this circle
with a polar angle ζ ∈ [0, π/3] , and all SW kernels constructed from the solutions to
the Equations (14) are divided into two classes, namely the generic and degenerate ones.

1. A generic SW kernel with three different eigenvalues is parameterized as follows:

spec(∆3) =

{
1
3
+

2√
3

µ3 +
2
3

µ8,
1
3
− 2√

3
µ3 +

2
3

µ8,
1
3
− 4

3
µ8

}
. (65)

with angle ζ ∈ (0, π/3);
2. The degenerate kernels have a double algebraic multiplicity of eigenvalues and rep-

resent two unitary non-equivalent solutions, corresponding to the edges ζ = 0
and ζ = π/3 of the arc (the second SW kernel (66) defines the Wigner function of
a qutrit, derived by Luis in [23]):

spec(∆3) = { 1, 1, −1 }, spec(∆3) =

{
5
3

, −1
3

,−1
3

}
. (66)
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The angle ζ serving as the moduli parameter of the unitary non-equivalent Wigner
functions of a qutrit is related to the third-order SU(3)-invariant polynomial of the SW kernel:

det
(

1
3

I − ∆3

)
=

16
27

cos(3ζ),

which remains “unaffected” by the master equation (14).

• WF of qutrit in terms of the Bloch vector

Now, we pass to the derivation of an explicit form of the Wigner function for a qutrit.
With this aim, the diagonalizing matrix U(Ω3) ∈ SU(3) in (23) can be presented in the form
of a generalized Euler decomposition (see, e.g., [24–26], and references therein) with
coordinates Ω3 = {α, β, γ, a, b, c, θ, φ},

U(Ω3) = V(α, β, γ) exp(iθλ5)V(a, b, c) exp(iφλ8), (67)

where the left and right factors V denote two copies of the SU(2) group embedded in SU(3):

V(a, b, c) = exp
(

i
a
2

λ3

)
exp

(
i
b
2

λ2

)
exp

(
i
c
2

λ3

)
.

The angles in decomposition (67) take values from the intervals

α, a ∈ [0, 2π]; β, b ∈ [0, π]; γ, c ∈ [0, 4π]; θ ∈ [0, π/2]; φ ∈ [0,
√

3π].

These ranges allow parameterizing almost all group elements (except the set of points
on the group manifold whose measure is zero).

Substituting the Bloch representation for a mixed three-level state (59) and SW kernel
decomposition (64) with Euler parametrization (67) in the expression (3), we arrive at
the following representations for the Wigner function of a single qutrit:

W(ν)
ξ (Ω3) =

1
3
+

4
3
[
µ3 (n(3), ξ) + µ8 (n(8), ξ)

]
, (68)

with two orthogonal unit 8-vectors n(3) and n(8),

n(3)
ν =

1
2

tr
[
Uλ3U†λν

]
, n(8)

ν =
1
2

tr
[
Uλ8U†λν

]
.

The explicit expressions for the components of these vectors in the Euler parametriza-
tion (67) are listed in Appendix A (see Equations (A2) and (A3), respectively).

• Symmetry adapted parametrization for SW kernel

The symmetries of the system set some limitations on the WF dependence on the sym-
plectic coordinates. It is found that, since the regular and degenerate kernels have different
isotropy groups, the corresponding diagonalizing matrices U(Ω3) in (64) belong to dif-
ferent cosets and, as a result, the WF admits a reduction to certain invariant subspaces
of Ω3. The symmetry types of the SW kernel for the three-level system are dictated by
the corresponding isotropy groups:

(i). For the regular kernels, H = U(1)×U(1).
(ii). The degenerate kernel with ζ = 0 is characterized by two equal eigenvalues of

∆(Ω3 | − 1) in the upper corner, which means that H = SU(2)×U(1) and therefore
the Wigner function depends only on four angles:

W(−1)
ξ (α, β, γ, θ) =

1
3
+

4
3
(n(8), ξ).
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(iii). For the degenerate kernel with ζ = π/3 , the coefficients take the values µ3 →√
3/2, µ8 → 1/2 and the Wigner function takes the form

W(−1/3)
ξ (α, β, γ, θ, a, b) =

1
3
+

2√
3

(
n(3) +

1√
3

n(8), ξ
)

. (69)

Despite the fact that the kernel with ζ = π/3 in (66) has the isotropy group H =
U(1)× SU(2), the Wigner function in (69) shows dependence on six angles. This indicates
that the choice of Euler parametrization (67) is not adapted to the isotropy group structure.
To find a minimal set of four functionally independent coordinates {α′, β′, γ′, θ′} on the coset
SU(3)/U(1) × SU(2), it is necessary to consider another embedding of su(2) ⊂ su(3).
Namely, using the Gell–Mann basis, we fix the subalgebra su(2) = span{λ6, λ7,− 1

2 λ3 +√
3

2 λ8}. With this choice, the Euler decomposition for the SU(3) group resembles (67),
but with the difference that both U(2) subgroups are embedded in the “lower corner”:

V(a′, b′, c′) = exp

(
−i

a′

2

(
1
2

λ3 −
√

3
2

λ8

))
exp

(
i

b′

2
λ7

)
exp

(
−i

c′

2

(
1
2

λ3 −
√

3
2

λ8)

))
.

As a result, the angles a′, b′, c′ and φ′ turn out to be redundant. The Wigner function
in the newly adapted parametrization depends only on the four remaining angles through
the eight-dimensional vector n′:

W(−1/3)
ξ (α′, β′, γ′, θ′) =

1
3
+

4
3
(n′, ξ).

The explicit dependence of the vector n′ on the angles {α′, β′, γ′, θ′} is given by
Equation (A6). As expected, the vector n′ can be obtained from n(8) by rotation

n′
(
α′, β′, γ′, θ′

)
= −On(8)(α, β, γ, θ).

with the constant orthogonal 8× 8 matrix O, which is the adjoint matrix AdT corresponding
to the permutation T of the first and third eigenstates of the SW kernel. Its explicit form
can be found in Equation (A5), together with the components of n′ in Equation (A6) (see
Appendix B).

• SW spin-1 correspondence from WF of qutrit

Having the expression for WF of a generic three-level system defined on U(3)/U(1)2,
we are able to show how to reduce WF to the subset SU(2)/U(1). The reduced Wigner
function realizes the SU(2) symmetric SW spin-1 correspondence. In the construction
of this SW correspondence, we will proceed similarly to the spin-1/2 case. First of all,
we introduce the reduced SW kernel:

∆(1,1,1)(χ) = Z(χ)

 π1 0 0
0 π2 0
0 0 π3

Z†(χ), (70)

where 3× 3 matrix Z(χ) is an element of the double coset S
(
U(1)3)\SU(3)/S

(
U(1)3)

Z(χ) = V(0, β, γ) exp(iθλ5)V(a, b, 0). (71)

In (71), we use the Euler representation (67) with the left and right factors fixed by
an embedding of SU(2) into the SU(3) group such that the five angles χ form a subset
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of χ = (a, b, θ, β, γ) of eight Euler angles {α, β, γ, a, b, c, θ, φ}, in (67). Hence, the reduced
three-level WF is

W(1,1,1)
(1,1,1) (χ) = tr

 r1 0 0
0 r2 0
0 0 r3

∆(1,1,1)(χ)

. (72)

Taking into account (71), the reduced Wigner function defined in (33) can be written
for the three-level system similarly to the case of a qubit (52) as the bilinear form

W(1,1,1)
(1,1,1) (χ) = (r↓, B(χ)π↓), (73)

with 3× 3 matrix B(χ) :

B(χ) =


B11 B12 sin2 θ cos2 β

2

B21 B22 sin2 θ sin2 β

2

sin2 θ cos2 b
2

sin2 θ sin2 b
2

cos2 θ

, (74)

where elements of 2× 2 submatrix are:

B11 = cos2
(

a + γ

2

)
F(π − θ, π − β, π − b)2 + F(θ, π − β, π − b)2 sin2

(
a + γ

2

)
, (75)

B12 = cos2
(

a + γ

2

)
F(θ, π − β, b)2 + F(π − θ, π − β, b)2 sin2

(
a + γ

2

)
, (76)

B21 = cos2
(

a + γ

2

)
F(θ, β, π − b)2 + F(π − θ, β, π − b)2 sin2

(
a + γ

2

)
, (77)

B22 = cos2
(

a + γ

2

)
F(π − θ, β, b)2 + F(θ, β, b)2 sin2

(
a + γ

2

)
. (78)

The function F from the above expressions reads:

F(θ, β, b) = cos
β

2
cos

b
2
+ cos θ sin

β

2
sin

b
2

.

Assuming that θ is the angle between sides β/2 and b/2 of a spherical triangle,
the function F can be written as

F(θ) = cos Θ,

where Θ is the side opposite to angle θ (see Figure 1; note, considering the corresponding
polar triangle, the function F(π− θ, π− β, π− b) can be interpreted as a cosine of the angle
opposite to the side θ). Taking into account expressions for the qutrit density matrix (62)
and eigenvalues of the SW kernel

π1 =
1
3
+

2√
3

µ3 +
2
3

µ8, π2 =
1
3
− 2√

3
µ3 +

2
3

µ8, π3 =
1
3
− 4

3
µ8, (79)

the reduced Wigner function (73) can be written as:

W(1,1,1)
(1,1,1) (χ) =

1
3
+

2
3
(

I3, I8,
)

B′
(
µ3, µ8

)T (80)

=
1
3
+

2
3
(

I3, I8,
)( (B11 + B22)− (B12 + B21)

√
3(B23 − B13)√

3(B32 − B31) −(1− 3B33)

)(
µ3
µ8

)
.
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Figure 1. Geometrical meaning of the angle Θ.

The 2× 2 matrix B′ in terms of Euler angles reads

B′ =
(

(1 + cos2 θ) cos β cos b− 2 cos θ cos(a + γ) sin β sin b −
√

3 sin2 θ cos β

−
√

3 sin2 θ cos b −(1− 3 cos2 θ)

)
. (81)

• Reduction to SU(2) symmetric SW spin-1 correspondence

According to Table 2, the symmetry type of the SW kernel and mixed state allowing
us to realize the desired reduction to SU(2)/T1 is given by pairs of Young diagrams (1, 1,
1) and (2, 1); the necessary value of the sum of squares is 4× 1× 2 = 8 describing SU(2)
symmetric SW correspondence for spin-1 as:

(1, 1, 1)2 + (2, 1)2 = 3 + 5 = 8.

1. SW kernel with symmetry S(U(2)×U(1)). The expression for the Wigner function
with S(U(2)×U(1)) symmetric kernel follows from (80) when µ3 = 0:

W(2,1)
(1,1,1)(θ, β) =

1
3
+

2
3

[√
3 (I3 cos β +

√
3 I8) cos2 θ − (

√
3 I3 cos β + I8)

]
; (82)

2. State with symmetry S(U(2) × U(1)). The expression for the Wigner function
S(U(2)×U(1)) symmetric state follows from (80) when I3 = 0:

W(1,1,1)
(2,1) (θ, b) =

1
3
+

2
3

I8

[√
3 (µ3 cos β +

√
3 µ8) cos2 θ − (

√
3 µ3 cos β + µ8)

]
. (83)

• Comments on the reduced phase space

Note that the reduced WF in both cases, 1 and 2, is definite on one-fourth of a
unit sphere:

0 ≥ θ ≥ π

2
, 0 ≥ β ≥ π. (84)

According to the Equations (75)–(78), the left action of the permutation matrix P12
on the matrix B can be moved to the following shifts in angles θ and β:

P12B(θ, β, b) = B(θ + π, β + π, b), P12 =

0 1 0
1 0 0
0 0 1

. (85)

Therefore, the domain of definition of angles in (84) can be extended to cover an entire
two-sphere unit.

6. Concluding Remarks

In the present article, we argue for the existence of the unitary non-equivalent repre-
sentations for the Stratonovich–Weyl kernels corresponding to the Wigner functions of an
arbitrary N- dimensional quantum system. The admissible Wigner functions can be classified
by the values of SU(n)-invariant polynomials in the elements of the SW kernel. As shown,
the “master equation” (14) fixes the values only of the lowest degree polynomial invariants,
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the first and second ones, while values of the remaining N − 2 algebraically independent
invariants distinguish members of the family of SW kernels. We have derived the sufficient
conditions for the reduction of our scheme to SU(2) symmetric spin-j symbol correspondence.
In conclusion, it is necessary to mention that the present consideration of the quasiprobability
functions does not distinguish between elementary and composite systems. A comprehensive
study of restrictions on the SW kernel for composite systems is still needed.
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Appendix A. The Adjoint Vectors of SU(3)

Using the Euler decomposition (67), we determine the adjoint matrix AdU of SU(3)
transformations U:

UλiU† = (AdU)ijλj, AdU ∈ SO(8). (A1)

Below, only expressions for vectors n(3)
i = (AdU)3i and n(8)

i = (AdU)8i, specifying
the Wigner function of a single qutrit (68), will be presented. Components of the vector
n(8) read:

n(3)
1 =

(
sin(α) sin(a + γ)− cos(α) cos(β) cos(a + γ)

)
sin(b) cos(θ)

+ cos(α) sin(β) cos(b)
(

1− 1
2

sin2(θ)
)

,

n(3)
2 =

(
cos(α) sin(a + γ) + sin(α) cos(β) cos(a + γ)

)
sin(b) cos(θ)

+ sin(α) sin(β) cos(b)
(

1− 1
2

sin2(θ)
)

,

n(3)
3 = − cos(a + γ) sin(β) sin(b) cos(θ) + cos(β) cos(b)

(
1− 1

2
sin2(θ)

)
,

n(3)
4 = cos

(
α− γ

2
− a
)

sin
(

β

2

)
sin(b) sin(θ)− 1

2
cos
(

α + γ

2

)
cos
(

β

2

)
cos(b) sin(2θ),

n(3)
5 = sin

(
α− γ

2
− a
)

sin
(

β

2

)
sin(b) sin(θ) +

1
2

sin
(

α + γ

2

)
cos
(

β

2

)
cos(b) sin(2θ),

n(3)
6 = cos

(
α + γ

2
+ a
)

cos
(

β

2

)
sin(b) sin(θ) +

1
2

cos
(

α− γ

2

)
sin
(

β

2

)
cos(b) sin(2θ),

n(3)
7 = sin

(
α + γ

2
+ a
)

cos
(

β

2

)
sin(b) sin(θ) +

1
2

sin
(

α− γ

2

)
sin
(

β

2

)
cos(b) sin(2θ),

n(3)
8 = −

√
3

2
cos(b) sin2(θ).

(A2)
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The 8-vector n(8) depends only on four angles {α, β, γ, θ} and its components are:

n(8)
1 = +

√
3

2
cos(α) sin(β) sin2(θ), n(8)

2 = −
√

3
2

sin(α) sin(β) sin2(θ),

n(8)
3 = −

√
3

2
cos(β) sin2(θ), n(8)

4 = −
√

3
2

cos
(

α + γ

2

)
cos
(

β

2

)
sin(2θ),

n(8)
5 = +

√
3

2
sin
(

α + γ

2

)
cos
(

β

2

)
sin(2θ), n(8)

6 = +

√
3

2
cos
(

α− γ

2

)
sin
(

β

2

)
sin(2θ),

n(8)
7 = +

√
3

2
sin
(

α− γ

2

)
sin
(

β

2

)
sin(2θ), n(8)

8 = 1− 3
2

sin2(θ).

(A3)

Appendix B. The Adjoint Action of the Permutation Matrix T

Let us consider the matrix which permutes the first and third entries of a diagonal
3× 3 diagonal matrix

T =

 0 0 1
0 1 0
1 0 0

. (A4)

The corresponding adjoint matrix, TλµT = (AdT)µνλν, reads:

AdT =



0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0
0 0 1/2 0 0 0 0 −

√
3/2

0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −

√
3/2 0 0 0 0 −1/2


. (A5)

The 8-dimensional vector n′ in Equation (70) reads

n′1 = −
√

3
2

cos
(

α′ − γ′

2

)
sin
(

β′

2

)
sin(2θ′), n′2 = −

√
3

2
sin
(

α′ − γ′

3

)
sin
(

β′

2

)
sin(2θ′),

n′3 =

√
3

2

[
cos2(θ′)− sin2

(
β′

2

)
sin2(θ′)

]
, n′4 = −

√
3

2
cos
(

α′ + γ′

2

)
cos
(

β′

2

)
sin(2θ′),

n′5 =

√
3

2
sin
(

α′ + γ′

2

)
cos
(

β′

2

)
sin(2θ′), n′6 =

√
3

2
cos(α′) sin(β′) sin2(θ′),

n′7 = −
√

3
2

sin(α′) sin(β′) sin2(θ′), n′8 =
1
2

[
1− 3 cos2

(
β′

2

)
sin2(θ′)

]
.

(A6)
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