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Abstract: The Loop-Tree Duality (LTD) theorem is an innovative technique to deal with multi-loop
scattering amplitudes, leading to integrand-level representations over a Euclidean space. In this
article, we review the last developments concerning this framework, focusing on the manifestly
causal representation of multi-loop Feynman integrals and scattering amplitudes, and the definition
of dual local counter-terms to cancel infrared singularities.

Keywords: Feynman integrals; multi-loop calculations; perturbative QFT; higher orders

1. Introduction

The most successful description of the microscopic structure of Nature is currently
given by the Standard Model (SM), which is based on quantum field theories (QFT) with
specific gauge symmetries. The strong interplay between experiment and theory relies on
confronting precise predictions with accurate data. In the context of high-energy particle
physics, the Large Hadron Collider (LHC) and the planned future colliders [1–8] will
keep on reducing the experimental uncertainties, forcing to reach a compatible accuracy
level from the theory side. However, there are huge bottlenecks that prevent straightfor-
ward calculations.

Due to their complexity, exact solutions of QFTs are not available for generic scattering
processes. Thus, extracting predictions from theory requires the use of approximations,
whose applicability is restricted to specific situations. Although lattice methods are reliable
in the low-energy regime, perturbation theory is the most suitable strategy to tackle the phe-
nomenological description of particle collisions at high-energies. Even if the perturbative
approach reduces the original calculation to a series expansion in the interaction couplings,
adding higher orders is far from trivial due to the presence of complicated phase-space and
Feynman loop integrals. Moreover, these objects feature numerical instabilities originated
in threshold configurations, as well as other singularities that cancel only after putting all
the contributions together.

In the last 40 years, a huge effort has been done to develop new methodologies for
an efficient calculation of physical observables at higher orders. As a first step, proper
regularization methods have been applied to make explicit the singular structures of these
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objects. One of the customary choices is Dimensional Regularization (DREG), which
consists of modifying the number of space–time dimensions to achieve integrability [9–12].
However, in the context of QFT, changing the number of space–time dimensions leads
to definition problems, such as the γ5 [13,14], and prevents a straightforward numerical
implementation. For this and other technical reasons, there is an ongoing effort in the
high-energy physics community to develop new strategies that locally regularize QFT
while keeping the standard four dimensions of the space–time [15–20].

Once the Feynman amplitudes and phase-space integrals are properly regularized,
we need to compute them and combine all the ingredients. On the one hand, this requires
calculation of multi-loop multi-leg Feynman integrals. Several techniques are currently
available for this purpose: Feynman parametrization, Mellin–Barnes transformations,
IBP identities [21,22], sector decomposition [23–26], semi-numerical approaches [27–29],
among others [30]. Very recently, algebraic geometry [31–36] was used to develop multi-
loop integrand reduction algorithms [37–44], and to explore alternative representations of
Feynman integrals [45,46]. Additionally, unitarity-based methods [47–50] and intersection
theory [51–54] are being studied to improve the reduction to master integrals and their
subsequent evaluation.

On the other hand, loop contributions must be combined with real-emission correc-
tions and suitable counter-terms to cancel the infrared (IR) and ultraviolet (UV) singularities,
leading to a reliable prediction of the physical cross-sections and differential distributions.
There are several strategies to achieve this cancellation, most of them based on the sub-
traction methods [55–57]. Generally speaking, these frameworks involve adding and
subtracting counter-terms which locally cancel the IR behavior of the real part, but at the
same time they are easy enough to be integrated analytically and subtracted from the vir-
tual contribution. There are several variations of this approach: dipole subtraction [57,58],
qT subtraction/resummation [59,60], antenna subtraction [61], colorful subtraction [62,63],
among others. Additionally, there are alternatives that rely on a different way to achieve the
cancellation of singularities, such as the n-jettiness [64,65] or the local analytic subtraction
frameworks [66,67].

Besides those methods, a novel strategy to tackle, simultaneously, the efficient cal-
culation of loop integrals and physical observables was developed. This framework is
based on the Loop-Tree Duality (LTD) theorem [68–71], which opens loops into trees and
recasts virtual states into configurations that resemble real-radiation processes. From the
mathematical point of view, the LTD transforms the integration domain of loop integrals
into a Euclidean space. In this way, a more intuitive understanding of the regions respon-
sible for the singular structure of the loop integrals emerges [72]. This knowledge can
be used to explore novel techniques pointing towards more efficient numerical imple-
mentations [73,74], integrand-level simplifications through asymptotic expansions [75–77]
and unveiling the universal structures of scattering amplitudes at higher orders [78–81].
Moreover, the LTD provides the perfect framework to handle cross-section calculations in
a fully unified way. Since the dual representation of loop integrals is defined in Euclidean
domains, the virtual and real contributions can be directly combined at integrand level to
achieve a fully local cancellation of IR singularities. This is the so-called Four-Dimensional
Unsubtraction (FDU) approach [82–85] that profits from a local cancellation of singularities
which makes it possible to bypass additional regulators (such as DREG). Additionally, this
formalism allows us to write local UV counter-terms that exactly reproduce the expected
results in conventional renormalization schemes [80,81,84,85], as well as fully local IR dual
counter-terms [86].

During the last two years, we have explored new features of the LTD approach. In
particular, we discovered that a more general analysis of the singular structure of multi-loop
multi-leg amplitudes is possible. By inquiring into the physical and anomalous thresholds
of one and two-loop amplitudes [87], we proved that it was possible to remove non-physical
singularities and retain only those contributions compatible with causality. Several studies
about the causal structure of scattering amplitudes are available in the literature, using
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different techniques [88–91]. In Ref. [92], we presented for the first time a manifestly causal
integrand-level representation inspired by the LTD theorem. This was applied to remove
unphysical threshold singularities and obtain causal integrand-level representations of
several topological families of multi-loop multi-leg Feynman integrals [92–99]. Moreover,
all-order causal formulae were obtained using novel algebraic relations [100], leading to
an automatized framework to implement these calculations [101]. A purely geometrical
interpretation [102] was also developed, showing a complementary approach to tackle the
causal structure of multi-loop multi-leg scattering amplitudes and Feynman integrals. Very
recently, this last strategy has been also studied in the context of quantum algorithms [103],
to explore novel techniques to speed up the calculations in high-energy physics.

The purpose of this review is to give a brief summary of the latest developments
regarding the LTD-based methods. To ease the presentation, it is organized in two parts.
In the first one, starting in Section 2, we settle the notation of the LTD formalism. Special
emphasis is put on the manifestly causal representation of loop integrands in the Euclidean
space, as well as its derivation from Cauchy’s residue theorem. The basis for a rigorous
mathematical treatment of the nested residue strategy is given in Section 3. Then, we
discuss the advantages of the Euclidean representation of loop integrands. In Section 4,
we focus on the asymptotic expansion, while we discuss how to obtain compact causal
formulae for generic topological families of multi-loop multi-leg Feynman integrals and
scattering amplitudes in Sections 5 and 6. In Section 7, a few words are given to explain
novel developments suggesting a deep connection among graph theory, algebra and the
causal structure of multi-loop scattering amplitudes.

After that, we start the second part of the review, where we center into the computation
of physical observables exploiting the LTD approach. In Section 8 we discuss the basis of
the FDU formalism, showing a physical example. Then, in Section 9, the construction of
local counter-terms for cancelling IR singularities is presented with more general examples,
including γ∗ → 3 jets at NLO. Finally, we present the conclusions and future research
directions in Section 10.

2. Causality within the LTD Formulation

Among the several advantages of the LTD formalism, we have recently explored
the manifestly causal representations. This constitutes a big step towards an efficient
numerical implementation of this approach, since spurious non-physical and noncausal
singularities are completely avoided. In the following, we will introduce some useful
notation and describe the basis of the formalism. In particular, we will explain how the
LTD computation through the nested residue strategy leads to the causal representations
of different topological families to all-loop orders.

2.1. Dual Scattering Amplitudes

A generic L-loop scattering amplitude with N external legs {pj}N , and n sets of
internal lines, each set being defined by the specific dependence on the loop momenta, is
written as

A(L)
N (1, . . . , n) =

∫
`1,...,`L

A(L)
F (1, . . . , n) , (1)

with
A(L)

F (1, . . . , n) = N
(
{`s}L, {pj}N

)
× GF(1, . . . , n) . (2)

This corresponds to an integral in the Minkowski space of the L-loop momenta,
{`s}L, involving the product of Feynman propagators, GF(qi) = (q2

i − m2
i + ı0)−1, and

numerators, N ({`s}L, {pj}N), given by the Feynman rules of the theory considered. The
d-dimensional integration measure in DREG reads∫

`s
= −ı µ4−d

∫
dd`s/(2π)d , (3)

and the usual Feynman propagator for a single particle is
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GF(qis) =
1

q2
is ,0 −

(
q(+)

is ,0

)2 , (4)

where
q(+)

is ,0 =
√

q2
is + m2

is − ı0 , (5)

is the positive on-shell energy of the loop momentum qis , written in terms of its spatial
components qis , its mass mis , and the Feynman’s infinitesimal imaginary prescription ı0.
Then, we introduce the shorthand notation

GF(1, . . . , n) = ∏
is∈1∪···∪n

(
GF
(
qis
))ais

, (6)

to express the product of Feynman propagators of one set or the union of several sets. In
the former formula, s represents the set of all internal propagators with internal momenta
qis = `s + kis , that depend on the loop momentum, `s, or a specific linear combination
of loop momenta, and a combination of external momenta kis , with is ∈ s and ais arbi-
trary powers.

The LTD representation for scattering amplitudes is obtained by the iterative appli-
cation of the Cauchy’s residue theorem (CRT) integrating out one degree of freedom for
each loop momentum, and closing the Cauchy contour from below the real axis, selecting
the poles with negative imaginary part in the complex plane of the loop momentum. This
results in the modification of the infinitesimal complex prescription of the Feynman prop-
agators [68,69] that needs to be considered carefully to preserve causality. Then, starting
from Equation (1), we set on-shell the propagators that depend on the first loop momentum,
qi1 , and define

A(L)
D (1; 2, . . . , n) ≡ ∑

i1∈1
Res
(
A(L)

F (1, . . . , n), Im(qi1,0 < 0)
)

, (7)

where taking the residue is equivalent to integrating out the energy component of the loop
momenta. Now, we construct the nested residue iterating until the r-th set as,

A(L)
D (1, . . . , r ; r + 1, . . . , n) = ∑

is∈s
Res
(
A(L)

D (1, . . . , r− 1 ; r, . . . , n), Im(qis ,0 < 0)
)

. (8)

All sets before the semicolon contain one propagator that has been set on-shell and
are linearly independent, while all the remaining propagators are kept off-shell. Thus, this
representation is equivalent to open the loop amplitude to nondisjoint trees. Finally, the
integration measure after integrating out the energy component is modified according to

∫
~̀s
≡ −µd−4

∫ dd−1`s

(2π)d−1 , (9)

transforming the d-dimensional Minkowski space into a (d− 1)-dimensional Euclidean one.

2.2. Multi-Loop Topologies through the LTD

By the properties obtained from the nested residues, Equation (8), we can construct
multi-loop amplitudes from the LTD representation which are compact and manifestly
causal to all orders. The first topology under consideration is called Maximal Loop Topol-
ogy (MLT), and is characterized by L + 1 momentum sets where the momenta of the first L
sets depend on one single loop momentum

qis = `s + kis , (10)
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with s ∈ {1, . . . , L}. The momenta of the extra set, L + 1, are given by a linear combination
of all the loop momenta, namely qiL+1 = −∑L

s=1 `s + kiL+1 . Here, kis and kiL+1 denote
linear combinations of external momenta. The LTD representation of the MLT topology,
displayed in Figure 1a, is presented in a compact and symmetric form by evaluating the
nested residue of Equation (8), which leads to

A(L)
MLT(1, . . . , L + 1) =

∫
~̀ 1,...,~̀ L

L+1

∑
i=1
A(L)

D (1, . . . , i− 1, i + 1, . . . , L + 1 ; i) , (11)

where the bars within the integrand indicate a reversal of momentum flow, qīs = −qis ,
which is needed to preserve causality, and is equivalent to select the on-shell modes with
negative energy of the original momentum flow. Each term of the sum in the integrand of
Equation (11) contains one set i with all its propagators off-shell, while the remaining L
sets contain a single on-shell propagator each; a necessary condition to open multi-loop
amplitudes into disjoint trees. The dual representation of Equation (11) becomes singular
when one or more off-shell propagators eventually become on-shell, generating a disjoint
tree dual subamplitude.

1

2

3

L + 1

a) MLT

1

2

12

3

L + 1

b) NMLT

1
2

12

23 3
4

L + 1

c) N2MLT

1

Figure 1. Graphical representations of Maximal Loop Topology (MLT), Next-to-Maximal Loop
Topology (NMLT) and Next-to-Next-to-Maximal Loop Topology (N2MLT). External momenta are
not shown.

It is worth mentioning that the LTD representation exhibits an interesting structure
when all the contributions are added together. For example, in the case of a MLT configu-
ration with one propagator in each loop set and one incoming and outgoing momentum,
we obtain

A(L)
MLT(1, . . . , L + 1) = −

∫
~̀ 1,...,~̀ L

1
xL+1

(
1

λ−1
+

1
λ+

1

)
, (12)

with

xL+k = 2L+k
L+k

∏
i=1

q(+)
i,0 , and λ±1 =

L+1

∑
i=1

q(+)
i,0 ± k0,L+1 . (13)

This expression is free of unphysical singularities, and written in terms of the so-called
causal propagators, λ±1 . The causal propagators encode all the possible physical singularities
that might occur. Both λ±1 in the integrand of Equation (12) are associated with physical
thresholds, as shown in Figure 2. Additionally, Equation (12) is independent of the initial
momentum configuration in the Feynman representation.
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1

2

3

L + 1

+

1

2

3

L + 1

2

Figure 2. Representation of the causal structure of MLT topologies.

Going a step further in the topology complexity, we consider a topology containing
one extra set of momenta that depends on the sum of two-loop momenta, qi12 = −(`1 +
`2) + ki12 , denoted as 12. This configuration, as can be appreciated in Figure 1b, is called
Next-to-Maximal Loop Topology (NMLT), characterized by L + 2 sets of propagators,
with each set categorized by the dependence on a specific loop momentum or a linear
combination of the L independent loop momenta. The LTD representation for the NMLT is
given by the compact and factorized expression

A(L)
NMLT(1, . . . , L + 2) = A(2)

MLT(1, 2, 12) ⊗ A(L−2)
MLT (3, . . . , L + 1)

+ A(1)
MLT(1, 2) ⊗ A(0)(12) ⊗ A(L−1)

MLT (3, . . . , L + 1),
(14)

involving convolutions of MLT subtopologies. The singular structure of the factorized
subtopologies determine the causal thresholds and infrared singularities. For example,
taking L = 3, i.e., three loops, the convolutions within the NMLT configuration are
interpreted as

A(2)
MLT(1, 2, 12)⊗A(1)

MLT(3, 4) =
∫
~̀ 1,~̀ 2,~̀ 3

(
A(3)

D (2, 12, 4; 1, 3) +A(3)
D (1, 12, 4; 2, 3)

+A(3)
D (1, 2, 4; 12, 3) + (4↔ 3)

)
,

(15)

and
A(1)

MLT(1, 2)⊗A(0)(12)⊗A(2)
MLT(3, 4) =

∫
~̀ 1,~̀ 2,~̀ 3

(
A(3)

D (2, 3, 4; 1, 3)

+A(3)
D (1, 3, 4; 2, 12)

)
,

(16)

where the sets after the semicolon are put off-shell.
Following the previous procedure, we also presented in Ref. [92] the LTD represen-

tation for the Next-to-Next-to-Maximal Loop Topology (N2MLT), characterized by L + 3
sets of propagators and depicted in Figure 1c. Again, factorized formulae for the dual
representation are obtained, namely

A(L)
N2MLT(1, . . . , L + 3, 12, 23) = A(L)

NMLT(1, 2, 3, 12, 23)⊗A(L−3)
MLT (4, . . . , L + 1)

+A(2)
MLT(1∪ 23, 2, 3∪ 12)⊗A(L−2)

MLT (4, . . . , L + 1) ,
(17)

showing a recursive construction similar to the one reported for the NMLT configurations.
Expanding the first term on the right-hand side of Equation (17) into its corresponding
subtopologies, we have

A(L)
NMLT(1, 2, 3, 12, 23) = A(2)

MLT(1, 2, 12)⊗A(3)
MLT(3, 23)

+
∫
~̀ 1,~̀ 2,~̀ 3

(
A(3)

D (1, 3, 23; 2, 12) +A(3)
D (12, 3, 23; 1, 2)

)
,

(18)

where the last two terms of the right-hand side in the integrand remain fixed by the
condition that the sets (2,3,23) cannot generate a disjoint subtree. We can observe that
the second term in Equation (17), contain a two-loop subtopology involving five sets of
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momenta grouped into three sets. Therefore, the propagators in the set 1 and 23 cannot be
simultaneously off shell.

Noteworthy, there are very compact explicit formulae for the NMLT and N2MLT
configurations which make use of the causal propagators. In Section 5, we will enter into
more detail, and provide a nice conceptual interpretation of the manifestly causal dual
representation in terms of entangled thresholds.

3. Mathematical Properties of the Nested Residues

Generic scattering amplitudes are defined by integrals of rational functions. As
already explained in Section 2, the multi-loop LTD framework is based on the CRT and,
in this section, the formal foundations for an L-loop Feynman diagram and some of their
immediate consequences are explained. As discussed in Ref. [97], iterated residues can
be easily computed taking into account the quadratic structure of Feynman propagators.

Let us start with the space C(R
L) of the functions with domain RL and co-domain C. If

the natural inclusion of R into C is denoted by i, then the iterated residues are defined as
the recursive application of the functor −Res ◦ i : C(Rn) → C(R

n−1), where Res represents
the residue of the argument for all its negative imaginary part poles and the minus sign
appears in agreement with CRT as the integration is performed clockwise.

For the computation of multi-loop Feynman integrals and scattering amplitudes,
internal momenta are given as linear combinations of external and loop momenta. For
instance, for the scalar sunrise diagram, the associated integrand has the form

I(p) =
1(

q2
1,0 − q(+)2

1,0

)(
q2

2,0 − q(+)2
2,0

)(
(q1,0 + q2,0 + k3,0)2 − q(+)2

3,0

) . (19)

In this case, the first iteration of the iterated residues can be developed with respect to
the variable q1,0. This means that we extend q1,0 to the complex plane, and as q2,0 is still a
real variable, the poles are located in the complex plane as shown in Figure 3, where the
dashed line represents the poles ±q(+)

3,0 − q2,0 − k3,0. As they depend on q2,0, they can be
located at some point along each of the dashed lines.

×

×

q
(+)
1,0

−q
(+)
1,0

q
(+)
3,0 − q2,0 − k3,0

−q
(+)
3,0 − q2,0 − k3,0

q1,0

Figure 3. Pole structure of a rational function of two variables.

Then, after the computation of the first iterated residues, we obtain

Res[I(p), {q2,0, Im(q2,0) < 0}] = 1

2q(+)
1,0

(
q2

2,0 − q(+)2
2,0

)((
q(+)

1,0 + q2,0 + k3,0

)2
− q(+)2

3,0

)
+

1

2q(+)
3,0

((
q(+)

3,0 − q2,0 − k3,0

)2
− q(+)2

1,0

)(
q2

2,0 − q(+)2
2,0

) .
(20)
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The function obtained after the first residue iteration is given as a sum of terms. The
next step corresponds to the extension of the variable q2,0 to the complex plane. There,
the pole structure of each term of Equation (20) is quite similar. This can be represented
pictorially as shown in the Figure 4, where the pole structure of each term is presented
as a complex plane term. The gray blob in both terms represents the dependence of the
imaginary part of the pole q(+)

3,0 − q(+)
2,0 − k3,0 on the three-momenta q2 and q3, with no

definite imaginary part sign.

×

×

×

q
(+)
2,0

−q
(+)
2,0

q
(+)
3,0 − q

(+)
1,0 − k3,0

−q
(+)
3,0 − q

(+)
1,0 − k3,0

q2,0

+

×

×

×

q
(+)
2,0

−q
(+)
2,0

q
(+)
3,0 − q

(+)
1,0 − k3,0

q
(+)
3,0 + q

(+)
1,0 − k3,0

q2,0

Figure 4. Pole structure of the first residue of a rational function of two variables.

These poles with no definite imaginary part sign are, in general, called displaced poles,
and they happen to cancel their contributions to the iterated residues through the relation

Res
(

Res
(

F(qi,0, qj,0),
{

qi,0, q(+)
i,0 + ai

})
,
{

qj,0, q(+)
k,0 − q(+)

i,0 + aij − ai

})
= −Res

(
Res

(
F(qi,0, qj,0),

{
qi,0, q(+)

k,0 − qj,0 + aij

})
,
{

qj,0, q(+)
k,0 − q(+)

i,0 + aij − ai

}) (21)

with

F(qi,0, qj,0) =
P(qi,0, qj,0)(

(qi,0 − ai)2 − q(+)2
i,0

)γi
(
(qi,0 + qj,0 − aij)2 − q(+)2

k,0

)γk
, (22)

for ai and aij linear combinations of energy components of external momenta. Due to this
cancellation, displaced poles can be ignored in the computation, leading to the concept of
nested residues. Furthermore, the final result of the nested residues is independent of the
order of the iteration, although the expressions are not identical term by term. A rigorous
proof of Equation (21) is shown in Ref. [97].

As a consequence of the nested residue strategy, we can infer a general formula for
the causal structure of the MLT diagram (see Figure 1a). This is directly reached applying
partial fractions to each term in the nested residue, leading to

GF(1, . . . , L + 1)→ − 1
L+1
∏
i=1

2q(+)
i,0

 1
L+1
∑

i=1
q(+)

i,0 + p0

+
1

L+1
∑

i=1
q(+)

i,0 − p0

. (23)

Additionally, this result can be used for the insertion of an MLT diagram within a
more general topology. In this manner, it is possible to consider any MLT insertion as
a single propagator whose on-shell energy is the sum of the on-shell energies of all the
internal propagators of the MLT.

Furthermore, with the computation of the nested residues, every family of a given
topological complexity k, Nk−1MLT, can be re-expressed as a linear combination of convo-
lutions of lower topological complexity families, as it is for the NMLT and N2MLT, both
defined by their amplitudes,
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A(L)
NMLT(1, . . . , L + 2) ≡

∫
`1,...,`L

N ({`i}L, {pj}N)× GF(1, . . . , L + 1, 12),

A(L)
N2MLT(1, . . . , L + 3) ≡

∫
`1,...,`L

N ({`i}L, {pj}N)× GF(1, . . . , L + 1, 12, 23).
(24)

This decomposition is shown in Figures 5 and 6 for each of these topological families.
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=

⊗

1
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⊗
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L + 1

=

⊗
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3

L + 3
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6

L + 1

+

L + 3 1

2

L + 23

⊗

4

5

6

L + 1

Figure 5. Dual decomposition of NMLT(L) in terms of loop configurations with lower topologi-
cal complexity.
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⊗
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=

⊗
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+
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⊗

4
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Figure 6. Dual expansion of a N2MLT(L) diagram.

It is worth mentioning that the convolution symbol does not represent a pure factor-
ization, as it implies the use of the on-shell conditions to express all the off-shell momenta.
The NMLT(L) diagram decomposes into two terms with two MLT diagrams. One of these
terms contains an MLT(L− 2) in convolution with an MLT(2), while the other term con-
tains a convolution of an MLT(L− 2) diagram with all its internal lines on-shell with an
MLT(1) diagram and one off-shell momentum. In the case of the N2MLT diagram, it is also
decomposed into two terms. One of these terms is a convolution of an NMLT(3) diagram
with an MLT(L− 3) diagram, and the other term is a convolution of one fully on-shell
MLT(L− 3) diagram with an MLT(3) diagram with two external momenta inserted in the
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first and third internal set. These external momenta play a fundamental role in splitting the
internal sets into two propagators each. In this manner, the following relations are fulfilled

NMLT(L) = MLT(2)⊗MLT(L− 2) + GF(L + 2)⊗MLT(1)⊗MLT(L− 2) ,

N2MLT(L) = NMLT(3)⊗MLT(L− 3) + MLT(2)⊗MLT(L− 3) ,
(25)

which justifies the factorization relations presented in Section 2.
The topological complexity of the subdiagrams in the convolutions is an additive

quantity whose sum coincides with the topological complexity of the original diagram.
Recalling that the family of Feynman diagrams with topological complexity k with L loops
is Nk−1MLT(L), for the NMLT(L) has kNMLT = 2 and the term in the decomposition with
no fully on-shell diagrams is given as the convolution of MLT diagrams (with kMLT = 1),
thus 2kMLT = kNMLT. For the N2MLT(L) it is given kN2MLT = 3, while the term in its
decomposition with no fully on-shell diagrams is the convolution of an NMLT(L) and an
MLT(L) diagram, hence, kNMLT + kMLT = kN2MLT.

These results suggest a factorization formula for each topological complexity family.
Indeed, these formulae can be reached through the nested residues and reveal a relation
between one topological family with topologies with lower complexity. Within such an
approach, every topological family can be expanded by factorizing the MLT diagrams; thus,
for any topological family, its causal structure can be expressed following Equation (23).
We profited from these structures to derive all-order formulae for N3MLT and N4MLT
families, as explained in Section 6.

4. Asymptotic Expansions within LTD

The LTD formalism is straightforwardly applicable to obtain several simplifications of
the integrand-level representations of loop amplitudes, such as asymptotic expansions.

The reason asymptotic expansions are an important topic is that they allow the obtain-
ing of analytic expressions, albeit restricted to certain kinematic configurations, for integrals
that in their non-expanded form can as of yet not be analytically evaluated. In calculations
of physically relevant observables a universally valid analytic expression is indeed not al-
ways necessary-be it that the relevant physical effects or the occurrence of computationally
relevant artefacts such as soft singularities are restricted to a certain kinematic limit. An
example of the former would be the identification of new physics contributions which tend
to have unequal effects on different kinematic regimes of an amplitude. When it comes
to cancellations between soft singularities and their real-emission counterparts being able
to obtain simplified expressions for the divergent limit through asymptotic expansions
of the virtual contributions is expected to reduce computation time when ensuring the
cancellations during numerical integration.

Since after the application of LTD an amplitude is reduced to an integral over Eu-
clidean three-momenta, the size of the appearing scalar products can be unambiguously be
compared to external scales. This provides a good starting point for the development of a
well-defined formalism for asymptotic expansions of the integrand. Specific asymptotic
expansions in the context of LTD have been presented for the first time for the process
H → γγ at one loop [75]. Recent advances in the generalization of the formalism have
been published in Refs. [76,77].

Since scattering amplitudes are determined by their analytic properties, general con-
siderations for integrand-level expansions should start with the propagators as the origin
of divergences. The numerator, while playing a role in the appearance of UV divergences,
is not relevant for the discussion of asymptotic expansions since within LTD the singular
UV behavior is neutralized through local renormalization before integration.

We can reparametrize the dual propagators in the following form that is more suitable
for asymptotic expansions

δ̃(qi) GD
(
qi; qj

)
=

δ̃(qi)

2qi · k ji + Γij + ∆ij − ı0η · k ji
, (26)
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where Γij + ∆ij = k2
ji + m2

i −m2
j . If Γij + ∆ij vanishes, the dual propagator is not expanded.

Otherwise, the starting point for the asymptotic expansion is to demand that the condition

|∆ij| � |2qi · k ji + Γij| (27)

be fulfilled for the whole range of the loop integration space except for potentially small
regions around physical divergences. Please note that since dual propagators only appear
in integrands where one-loop momentum has been set on-shell, the condition must be
fulfilled in the Euclidean space of the loop-three momentum. The dual propagator can
then be expanded as

GD
(
qi; qj

)
=

∞

∑
n=0

(
−∆ij

)n(
2qi · k ji + Γij − i0η · k ji

)n+1 . (28)

Further simplifications arise whenever kji = 0. (The bold denotes here the space
component of the corresponding four-vector.) In that case, with the change of variables
|~qi| = mi/2 (xi − x−1

i ), the denominator of the expanded dual propagator takes the easily
integrable form

2qi · k ji + Γij − ı0 η · k ji = Q2
i
(
xi + rij

)(
x−1

i + rij

)
. (29)

The intention to rewrite the denominator in this shape determines the parameters Γij
and rij appearing in the expansion to be restricted by the conditions

Γij − ı0 η · k ji = Q2
i

(
1 + r2

ij

)
, (30)

rij =
mi k ji,0

Q2
i
− ı0 η · k ji

Q2
i

, (31)

assuming |rij| ≤ 1. In the types of limits where one hard scale Q is available, Q2
i = ±Q2

can be identified. The sign is determined by the sign of the hard scale in the expression
k2

ji +m2
i −m2

j . This type of expansion facilitates the analytical integration based on integrals
of the form ∫ ∞

1

dxi

xi(xi + rij)(x−1
i + rij)

=
log(rij)

r2
ij − 1

, |rij| < 1 . (32)

In addition to the relations in Equation (30) further conditions must be respected
by the expansion parameters to ensure that the expansion converges both at integrand
and at integral level. Specifically, it is fundamental that the analytic behavior of the dual
propagator is not fundamentally changed, i.e., that for a propagator with a singularity
the expansion also must display that singularity, while the expansion of a non-singular
propagator is to be finite throughout the whole integration domain. The infinitesimal
imaginary prescription of rij given in Equation (30) accounts properly for the complex
prescription of the original dual propagator and therefore its causal thresholds. A different
approach must be taken for threshold limits where a hard scale is not identifiable. In this
case, the pole position of the non-expanded propagator can be expanded to identify the
correct rij for the asymptotic expansion.

The formalism of expanding the dual propagator has been developed through its
application on the locally renormalized scalar two-point function

A(1,R) =
∫
`

[
GF(q1; M) GF(q2; m)− (GF(`; µUV))

2
]

. (33)

Applying Equation (28) on the appearing dual propagators GD(q1; `) and GD(`; q1)
leads to a simplified expression that can be integrated without needing to specify what
type of limit is considered, giving the very general result
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A(1,R) =
1

16π2 ∑
i,j

[
2 + c0,ilog

(
µUV

mi

)
+

∞

∑
n=0

(
c(n)1,i + c(n)2,i log

(
rij
))]

. (34)

The coefficients c are simple functions of the appearing scales and are given in Ref. [77]
just as with the parameters needed for different limits. The expansion converges well
both at integrand- and at integral level in the limits of one large mass, a large external
momentum as well as when approaching the physical threshold both from below and
from above. Comparison with the established method of expansion by regions [104–108]
has shown faster convergence as well as emphasized the advantage of decreasing degree
in UV divergence with each order in the expansion. Renormalization within our method
thus only involves the lowest orders of the integrand-level expansion. Higher terms are
optional for increasing precision and can be added straight-forwardly without the need to
ensure further UV cancellation.

Using the same approach, we have found integrand level expansions for the scalar
three-point function

A(1)
3 =

∫
`

GF(q1, q2, q3; M) , (35)

both for the limit of a large mass

A(1)
3 (s12 � M2) = − 1

16π2
1

2M2

(
1 +

r
12

+
r2

90

)
+O(r3) , (36)

as well as for a small mass

A(1)
3 (s12 � M2) =

∫
`

δ̃(`; M)s12

(2` · p12)(2` · p1)

∞

∑
n=0

{
M2n

(−2` · p12 + Γ)n+1 +
M2n

(2` · p12 + Γ)n+1

}
. (37)

The Euclidean structure of the dual integrand, a(`), can be exploited into an even
more direct way by applying Taylor expansions. Here it is important to use different
assumptions on the size of the loop-three momentum in separate parts of the integration
range. For the scalar two-point function in the large-mass limit this amounts to calculating

A =
∫ λ

0
d|`| T a(M, ∞) +

∫ ∞

λ
d|`| T a({`, M}, ∞) . (38)

The expanded integrand converges well in the full range of the loop momentum as
can be seen in Figure 7. Details on this method and on how to fix the matching scale lambda
that separates the appearing so-called dual regions can be found in [77].

Figure 7. The convergence at integrand level of the expansion given in Equation (38) for the values
M = 10 m, p2 = 3 m2, and µUV = M. More details about this plot can be found in the original
paper [77].
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With the calculations above being performed in the traditional LTD representation
we will finally show an example of using the manifestly causal representation to expand
a multi-loop integral. The MLT structure offers an ideal starting point, being void of
unphysical singularities. For the large-mass limit, we find

A(L)
MLT(p2 � m2

s ) = −2
∞

∑
n=0

(p2)n
∫
~̀ 1,...,~̀ L

(
λ0

L+1
)−1−2n

xL+1
, (39)

where λ0
L+1 = ∑L+1

s=1 q(+)
s,0 and xL+1 = ∏L+1

s=1 2q(+)
s,0 . Notice that due to the lack of depen-

dence on p0 both in xL+1 nor in λ0
L+1 the asymptotic integrals on the right-hand side of

Equation (39) are a function only of the internal masses, ms, to all-loop orders. In this way,
we are optimistic about future applications of the manifestly causal LTD representation from
Refs. [92,95–97] to speed up the calculation of efficient and smooth asymptotic expansions.

5. Manifestly Causal Representation and Numerical Efficiency

As explained in Sections 2 and 3, the application of the nested residue strategy leads
to manifestly causal integrand-level representations of any multi-loop multi-leg Feynman
amplitude. The main advantage of such a representation is the absence of non-physical
singularities, because only terms compatible with causality remain in the final result.

In the following Section, we show the explicit causal formulae for NMLT and N2MLT
families for an arbitrary number of loops, and discuss their interpretation in terms of
entangled causal thresholds. Numerical examples for 4-loop diagrams are presented,
to provide a comparison with available results and test the efficiency of our approach.
It is worth appreciating that these compact formulae were obtained using the package
FINITEFLOW [109], which implements an algorithm for the numerical evaluation over finite
fields [47,110], and allows us to explicitly reconstruct the causal representation.

5.1. Next-to-Maximal Loop Topology (NMLT)

At three loops, the MLT family is not enough to describe the whole set of possible
topologies. Thus, we need to consider the NMLT and N2MLT topologies, whose general
dual representations were explained in Section 2. To simplify the presentation, we start by
considering NMLT configurations with one single propagator in each set and no external
momenta. We need to add an additional internal line, whose momentum is given by

qL+2 = −`1 − `2 . (40)

A pictorial representation of NMLT is provided in Figure 1b. After computing the
nested residues and adding all the contributions together, we obtain

A(L)
NMLT(1, 2, . . . , L + 2) =

∫
~̀ 1,...,~̀ L

2
xL+2

(
1

λ1λ2
+

1
λ2λ3

+
1

λ3λ1

)
, (41)

where the causal propagators are given by

λ1 =
L+1

∑
i=1

q(+)
i,0 λ2 = q(+)

1,0 + q(+)
2,0 + q(+)

L+2,0 , λ3 =
L+2

∑
i=3

q(+)
i,0 . (42)

This expression was reconstructed using numerical evaluations over finite fields,
although partial fractioning leads to the same result within a similar computing time. In
the following, we shall note that simplifications are not straightforward when dealing with
more complicated topologies.

An interesting consequence of the compact form of Equation (41) is that it allows a re-
interpretation in in terms of entangled causal thresholds. Each λi is associated with a causal
threshold singularity, which might take place when the momenta flows are oriented in the
same direction. Thus, the product of causal denominators represents a configuration in
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which two (or more) sets of propagators can simultaneously go on-shell. The factorization
of NMLT (and more complicated topologies) as products of MLT configurations is the
reason behind this behavior [92]. A graphical interpretation of the entangled causal
structure of NMLT vacuum diagrams is provided in Figure 8, with the dashed lines
indicating the propagators that can be set simultaneously on-shell.
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+

1
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12

3
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+

1

2

12

3

L + 1

4

Figure 8. Entangled causal thresholds of the NMLT topology. Products of two causal propagators
are involved.

5.2. Next-to-Next-to-Maximal Topology (N2MLT)

As mentioned before, reaching a full description of NkMLT with k ≤ 2 is enough
to obtain the causal representation of up to three-loop scattering amplitudes. The so-
called N2MLT can be built recursively from the NMLT by adding an additional line
with momentum

qL+3 = −`2 − `3 . (43)

The minimal example of such topology is the Mercedes-Benz diagram (L = 3) shown
in Figure 1c. For the sake of simplicity, we restrict here to the case without external momenta.
Using the LTD representation in Ref. [92], we can add together all the contributions
and obtain

A(L)
N2MLT

(1, 2, . . . , L + 3) =
∫
~̀ 1,...,~̀ L

1
xL+3

N ({q(+)
i,0 })

∏7
i=1 λi

, (44)

with λ1 through λ3 defined in Equation (42),

λ4 = q(+)
2,0 + q(+)

3,0 + q(+)
L+3,0 , λ6 = q(+)

1,0 + q(+)
3,0 + q(+)

L+2,0 + q(+)
L+3,0 ,

λ5 = q(+)
1,0 + q(+)

L+3,0 + ∑L+1
i=4 q(+)

i,0 , λ7 = q(+)
2,0 + ∑L+3

i=4 q(+)
i,0 ,

(45)

and N ({q(+)
i,0 }) a degree-four polynomial in q(+)

i,0 . Compared to the NMLT case, the com-
plexity of the polynomial in the denominator makes it highly non-trivial to unveil a formula
similar to Equation (41). Thus, we rely on the analytic reconstruction over finite fields
to obtain

A(L)
N2MLT

(1, 2, . . . , L + 3) = −
∫
~̀ 1,··· ,~̀ L

2
xL+3

[
1

λ1

(
1

λ2
+ 1

λ3

)(
1

λ4
+ 1

λ5

)
+ 1

λ6

(
1

λ2
+ 1

λ4

)(
1

λ3
+ 1

λ5

)
+ 1

λ7

(
1

λ2
+ 1

λ5

)(
1

λ3
+ 1

λ4

)]
,

(46)

whose graphical representation in terms of entangled thresholds is given in Figure 9.
It is worth appreciating that the package LOTTY was used to efficiently reach these

results [101]. As in the case of NMLT topologies, it is possible to interpret this result using
entangled thresholds. This time, there are products of three causal propagators. Notice
that not all the combinations of causal propagators are allowed. This is because causal
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propagators exhibit some compatibility issues, which can be explained by digging into
graph theory. More details about this issue and the connection with Cutkosky’s rules can
be found in Ref. [102].
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1
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Figure 9. Entangled causal thresholds of the N2MLT topology. Products of three causal propagators
are involved.

5.3. Adding External Momenta and Higher-Powers

For realistic multi-loop scattering amplitudes, we need to take into account external
legs. The analytic reconstruction algorithm used to obtain compact formulae for vacuum
diagrams can be also applied to topologies with external momenta. We want to highlight
that the insertion of external momenta does not affect the causal physical behavior of these
integrals: the difference regarding the vacuum case is that the entangled configurations are
duplicated, according to the direction of the energy flow for external particles. For instance,
a generic N2MLT with external legs inserted in the vertices is given by

A(L)
N2MLT

(
1, 2, . . . , (L + 1)−p13

, (L + 2)p2
, (L + 3)−p3

)
= −

∫
~̀ 1,··· ,~̀ L

1
xL+3

×
[

1
λ+

1

(
1

λ−2
+

1
λ−3

)(
1

λ+
4
+

1
λ+

5

)
+

1
λ+

6

(
1

λ−3
+

1
λ−5

)(
1

λ+
2
+

1
λ+

4

)
(47)

+
1

λ+
7

(
1

λ−3
+

1
λ−4

)(
1

λ+
2
+

1
λ+

5

)
+
(
λ+

i ↔ λ−i
)]

.

More details about the algorithms used to perform these computations can be found
in Refs. [96,101].

Besides that, it was shown in Refs. [82,84,85,111] that the presence of self-energy
insertions or generic scattering amplitudes, as well as some local UV counter-terms, might
require consideration of propagators with higher-powers. As explained in Refs. [96,97],
the causal structure of these amplitudes can be obtained by applying a differential operator.
Explicitly, we can raise the power of the propagators by taking derivatives regarding q(+)

i,0 .
For instance,

(GF(qi))
αi =

1
(αi − 1)!

∂αi−1

∂
(
(q(+)

i,0 )2
)αi−1 GF(qi) , (48)
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which suggests the definition of the operator

∂

∂(q(+)
i,0 )2

• = 1

2q(+)
i,0

∂

∂(q(+)
i,0 )

• . (49)

The iterated application of this operator to the causal representation of scattering
amplitudes with single powers of the denominators leads to causal representation of the
corresponding multi-power amplitude, as carefully explained in Ref. [97].

5.4. Numerical Implementations

Finally, we would like to highlight that the causal representation of multi-loop multi-
leg Feynman integrals and scattering amplitudes leads to a very smooth numerical inte-
gration. In Ref. [96], we studied several examples and compared the performance of the
LTD-inspired approach with other standard frameworks (such as FIESTA 4.2 and SECDEC

3.0). We considered the generic scalar amplitude

A(L)
Nk−1MLT

(
12, 22, . . . , L2 , L + 1, . . . , L + k

)
= ∏L

i=1
∂

∂(q(+)
i,0 )2
A(L)

Nk−1MLT
(1, 2, . . . , L + 1, . . . , L + k) ,

(50)

with k = {0, 1, 2}, at three and four loops, and changing the dimensionality of the
space–time from d = 2 to d = 4. Here, we applied the differential operator detailed
in Section 5.3 to raise the powers of the denominators and achieve integrability in the UV
region. In Figures 10–12, we show a few examples of Equation (50) for d = 4, doing a scan
in m2

4, by fixing m2
5.

m52 = 3

m52 = 6

m52 = 9

0.1 0.2 0.3 0.4 0.5 0.6

-9.×10-8

-8.×10-8

-7.×10-8

-6.×10-8

-5.×10-8

-4.×10-8

-3.×10-8

m4
2

I M
LT

(4
)

Figure 10. Four-dimensional MLT at four loops, as a function of the internal masses m2
4 and m2

5.
Although the solid lines correspond to the results obtained within the LTD formalism, the dots are
the numerical results obtained with FIESTA 4.2.
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m52 = 3

m52 = 6

m52 = 9

0.1 0.2 0.3 0.4 0.5
0

2.×10-9

4.×10-9

6.×10-9

8.×10-9

1.×10-8

1.2×10-8

m4
2

I N
M
LT

(4
)

Figure 11. Four-dimensional NMLT at four loops, as a function of the internal masses m2
4 and m2

5.
Although the solid lines correspond to the results obtained within the LTD formalism, the dots are
the numerical results obtained with FIESTA 4.2.

m52 = 3

m52 = 6

m52 = 9

0.1 0.2 0.3 0.4 0.5 0.6
0

2.×10-9

4.×10-9

6.×10-9

8.×10-9

1.×10-8

1.2×10-8

m4
2

I N
2
M
LT

(4
)

Figure 12. Four-dimensional N2MLT at four loops, as a function of the internal masses m2
4 and m2

5.
Although the solid lines correspond to the results obtained within the LTD formalism, the dots are
the numerical results obtained with FIESTA 4.2.

The inclusion of arbitrary masses does not introduce any additional complication
within the LTD-based framework. Additionally, only (d− 1) integrations for each loop
are needed, while any methodology based on the traditional Feynman parametrization
approaches scales with the number of propagators. Moreover, we explicitly checked that
the absence of noncausal singularities leads to a very efficient integration. The technology
to perform these calculations was included in the WOLFRAM MATHEMATICA package
LOTTY, recently published by one of the authors [101].

6. Universal Opening at Four Loops

The following multi-loop topologies in complexity are those emerging at four loops:
the next-to-next-to-next-to maximal loop topology (N3MLT) and next-to-next-to-next-to-
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next-to maximal loop topology (N4MLT) which are represented by multi-loop diagrams
with L + 4 and L + 5 sets of propagators, respectively. In fact, N4MLT naturally includes
all Nk−1MLT configurations, with k ≤ 4.

The N4MLT family is represented by three topologies. These topologies can be associ-
ated with the fitting of a four-point subamplitude, therefore, the fused is set in what will be
known as universal topology. Each of the individual topologies are construed as the t-, s-
and u-kinematic channels and are shown in Figure 13. Is important to mention that the
selection is validated using QGRAF [112].

1 2 3

4

5

12

23

123

234

L + 1

1 2 3

4

5

12

123

34
234

L + 1

1 2 3

4

5

12

123

234

24

L + 1

Figure 13. Diagrams of the N4MLT family. The diagram on the left-hand side corresponds to
the t channel, the diagram on the center is the s channel and the diagram on the right-hand side
corresponds to the u channel. External particles are not shown.

From the total L + 5 sets of propagators contained in the three topologies, L + 4 are
common sets and one is distinct for each of them. The first L sets of propagators only
depend on a single loop momentum `s, the subsequent common sets are settled as linear
combinations of the loop momenta. The additional sets are the key to distinguish the three
channels in the universal topology where the momenta of their propagators is identified as
different linear combinations of `2, `3 and `4.

To assemble the three N4MLT channels into a single topology, a current J is defined as
the union of three sets that characterize each channel,

J ≡ 23∪ 34∪ 24 . (51)

Given the constraint imposed by momentum conservation, the three subsets do not
act trough the same independent Feynman diagram but all of them contribute at amplitude
level. According on the framework presented above, the N4MLT universal topology
Feynman representation is written as

A(L)
N4MLT(1, . . . , L + 1, 12, 123, 234, J) =

∫
`1,...,`L

A(L)
F (1, . . . , L + 1, 12, 123, 234, J) . (52)

The dual opening of this topology fulfills a factorization identity similar to those
presented in Ref. [92] for NMLT and N2MLT

A(L)
N4MLT(1, . . . , L + 1, 12, 123, 234, J)

= A(4)
N4MLT(1, 2, 3, 4, 12, 123, 234, J)⊗A(L−4)

MLT (5, . . . , L + 1)

+A(3)
N2MLT(1∪ 234, 2, 3, 4∪ 123, 12, J)⊗A(L−3)

MLT (5, . . . , L + 1) , (53)

also valid despite the internal configuration. The diagrammatic representation of this
factorization identity is shown in Figure 14 and is called the universal identity given the
fact that it is the only expression needed to open any scattering amplitude of up to four
loops to nondisjoint trees. Furthermore, it allows the causal behavior of the complete
topology to be inferred by looking at the causal structure of its subtopologies.
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Figure 14. Diagrammatic representation for the factorized opening of the multi-loop N4MLT universal
topology. Only the on-shell cut of the last MLT-like subtopology with reversed momentum flow
is shown.

The term A(4)
N4MLT on the right-hand side of Equation (53) considers all possible config-

urations with four on-shell propagators in the sets {1, 2, 3, 4, 12, 123, 234, J}, while A(3)
N2MLT

in the second term assumes three on-shell conditions. The terms A(L−4)
MLT (5, . . . , L + 1) and

A(L−3)
MLT (5, . . . , L + 1) are computed according to Ref. [92,97].

The four-loop subtopology in Equation (53) is opened through a factorization identity
which is written in terms of known subtopologies,

A(4)
N4MLT(1, 2, 3, 4, 12, 123, 234, J) = A(4)

N2MLT(1, 2, 3, 4, 12, 123, 234)⊗A(0)(J)

+ ∑
s∈J
A(4)

D (1, 2, 3, 4, 12, 123, 234, s) . (54)

Exhibiting a similar structure to Equation (54), the three-loop subtopology in
Equation (53) is given by

A(3)
N2MLT(1∪ 234, 2, 3, 4∪ 123, 12, J) = A(3)

NMLT(1∪ 234, 2, 3, 4∪ 123, 12)⊗A(0)(J)

+ ∑
s∈J
A(3)

D (1, 2, 3, 4, 12, 123, 234, s) , (55)

where the bold symbol s is used to indicate that these contributions are those containing
on-shell propagators in the J-sets.

The first term on the right-hand side of Equations (54) and (55) consists of a four-loop
N2MLT and three-loop NMLT subtopology, respectively. These terms are describing dual
trees where all the propagators with momenta in J remain off-shell. The second term on
the right-hand side of Equations (54) and (55) collects contributions that characterize the s,
t or u channel shown in Figure 13. To obtain these contributions a propagator in either set
23, 34 or 24 are set on-shell.

The explicit expressions for the s, t and u channel arising from Equations (54) and (55)
are presented in Ref. [95] where all the outcomes are in accordance with the absence of
disjoint trees. Notice that the number of dual terms in the LTD representation can also be
obtained through a combinatorial exercise of selecting those terms that do not generate
disjoint trees; however, the application of the nested residues is the only way to display the
momentum flows of the on-shell propagators. Moreover, it is relevant to be aware that the
number of elements for any Nk−1MLT topology in Equation (53) scales with the number
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of loops and propagators per loop set, linearly. On the other hand, the sum over residues
over internal propagators, is implicitly taken into account in this expression.

Causal Representations

To confirm the causal conjecture for the N4MLT family, the strategy proposed in
Ref. [96] is applied to the multi-loop N3MLT, t, s and u channels. Each topology considers
a configuration with one internal propagator in each loop set, four external momenta for
N3MLT and six external particles for t, s and u channels.

As a first step, the LTD representation is obtained for each of the selected topologies
through the universal N4MLT expression in Equation (53). After computing the nested
residues and adding them all together a causal expression is found. The integrand of the
causal dual representation reads in terms of on-shell energies, the energy components of
the linear combination and causal denominators. Let us remember and emphasize that
these causal denominators are constructed from sums of on-shell energies exclusively, and
they represent potential singular configuration.

The results given by the straightforward application of LTD leads directly to a man-
ifestly causal expression; however, the resulting numerator is a lengthy polynomial in
the on-shell and external energies [95]. Therefore, a way to obtain a more suitable causal
expression is to reinterpret it in terms of entangled thresholds as defined in Ref. [96].

The analysis was performed only for scalar integrals since they consider all the re-
quired causal combinations. If there is a need to deal with tensor integrals, tensor reduction
can be applied given that it commutes with LTD. Another property to benefit from is
that external momenta added to interaction vertices connecting different loop sets do not
modify the number of internal propagators or the complexity of the causal representation.
Hence, the complete causal expressions considering external moments can be obtained
from the causal representation of the vacuum configuration by aligning the momentum
fluxes of the entangled thresholds.

Starting with the multi-loop N3MLT, there are 13 causal denominators which are de-
picted in Figure 15. The analytically reconstruction was done by matching all combinations
of four thresholds that are causally compatible to each other.

Going forward to the causal representation of the N4MLT family, we must consider
all the entangled configurations with the presence of five causal thresholds. The t channel
depends on the causal denominators already defined for the N3MLT configuration and
additional nine extra causal denominators that depend on q(+)

23,0 where the corresponding
configurations are shown in Figure 16.

The s-channel can be obtained through the structure of the t-channel, specifically, the
causal denominators can be determined given an appropriate clockwise rotation of the t-
channel. The u-channel is managed in a similar way to the s-channel, a proper substitution
of the arguments of the causal denominators are applied in the t-channel: the exchange
3 ↔ 4 or 2 ↔ 234, remaining 123 invariant, and the substitution 23 → 24. However,
given that the u-channel is non-planar three new configurations appear. These additional
configurations are depicted in Figure 17.
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Figure 15. Causal configurations of the N3MLT topology. The set number 5 accounts for all the
propagators in the sets 5 to L + 1.
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Figure 16. Extra causal configurations of the t-channel of the N4MLT topology.
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Figure 17. Extra causal configurations of the u-channel of the N4MLT topology due to non-planarity.

An important aspect to keep in mind is that working with the causal representa-
tion requires description of additional causal thresholds and causal entanglements when
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added internal propagators are included. Nevertheless, we have a major advantage, the
number of terms for a given Nk−1MLT topology does not dependent on the number of
loops considered.

Furthermore, the most significant advantage of the causal representation with respect
to the LTD representation comes from the absence or presence of noncausal singularities,
the main distinction between them.

The nested residue direct application leads to multiple threshold singularities, but
with an ingenious analytical rearrangement we can achieve a causal representation. This
representation is free of noncausal singularities and leads to a more stable and efficient
numerically in the complete integration domain [95].

7. Novel Developments on Causality

The applications of the LTD-inspired methods have been spreading very fast in recent
years. In particular, it turned out to be an excellent tool to unveil the structure of causal
singularities of multi-loop multi-leg Feynman integrals and scattering amplitudes. There
have been very recent findings regarding general all-loop formulae to describe any NkMLT
amplitude, using clever algebraic relations among them [100]. This computational technol-
ogy has been implemented in the package LOTTY [101], which allows automatic obtaining
of the causal representation of multi-loop Feynman integrals and scattering amplitudes.

On the other hand, investigations inquiring on the geometrical aspects of multi-loop
diagrams were performed. In Ref. [102], we used concepts from graph theory to describe
all the possible causal propagators and the allowed entangled thresholds associated with a
given diagram. Describing diagrams in terms of vertices (i.e., interaction vertices) and edges
(i.e., sets of propagators connecting two fixed vertices) was also proposed in Ref. [100]. This
description leads to the vertex matrix, a geometrical object that allows one to completely
characterize the causal structure of a given diagram. Explicitly, we realized that the causal
propagators are associated with all the possible connected binary partitions of vertices. This
has a very nice connection to a generalized geometrical interpretation of the Cutkosky’s
rules [88]. Additionally, we implemented a computational algorithm that benefits from
graph theory tools to efficiently obtain all the causal propagators. We tested it against
the direct nested residue calculation and subsequent identification of λ’s: the geometric
algorithm was, at least, a factor ten faster.

The information contained in the vertex matrix allow us to exactly reconstruct all the
possible entangled thresholds by imposing geometrical selection criteria. These can be
summarized in the following list:

1. All the lines are cut: Each possible entangled combination of causal denominators must
involve the on-shell energies of all the propagators.

2. Absence of crossings: Causal denominators are associated with connected partitions
of vertices. Only those partitions involving disjoint sets of vertices, or those that are
strictly included, can be successfully entangled. Alternatively, if we associate a line
connecting the cut edges to each λ, then two λ’s can be entangled if their lines do
no cross.

3. Consistent flux orientation: A set of causal propagators is compatible (or can be en-
tangled) if the associated binary partitions can consistently be oriented, i.e., if all the
internal lines contribute to the entangled cuts with the same orientation.

4. Causal propagator orientation: When external particles are present, the relative signs

among aligned on-shell energies (i.e., ∑ q(+)
i,0 ) and the energy component of the ex-

ternal momenta is determined by the orientation matrix, which can be built from the
vertex matrix.

In Figure 18, we show examples of causal propagators which cannot be entangled for
the Mercedes-Benz diagram (i.e., a particular case of N2MLT or a four-vertex topology). On
the left, the criteria 2 is not fulfilled, since the associated partitions of vertices are not disjoint.
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On the right, we consider three causal propagators which cannot be consistently oriented
(criteria 3): the edge connecting the vertices 1 and 3 does not allow a compatible orientation.

Figure 18. Example of two incompatible causal propagators with nondisjoint sets of vertices (left)
and incompatible momenta orientation (right).

Thus, given a diagram, determining its vertex matrix and imposing the selection
criteria 1–4, we can obtain a formula describing its causal structure. In accordance with the
results presented in Ref. [100], we found that

A(L)
N (1, . . . , L + k) = ∑

σ∈Σ

∫
~̀ 1,··· ,~̀ L

Nσ({q(+)
r,0 }, {pj,0})
xL+k

×
k

∏
i=1

1
−λσ(i)

+ (σ↔ σ̄) , (56)

describes the causal structure of any multi-loop multi-leg Feynman diagram or collection of
Feynman diagrams with topological complexity k− 1. The set Σ contains all the subsets of
products of k causal propagators λ±i fulfilling the selection criteria 1–4, and Nσ is given by
the application of an operator depending on the subset of σ. Thus, this result confirms that
multi-loop multi-leg amplitudes can be purely described in terms of vertices and edges,
regardless the number of loops or external lines.

8. Four-Dimensional Unsubtraction (FDU)

The standard computation of accurate predictions at Next-to-Leading Order (NLO) in
QFT needs to deal with non-trivial integrands. These integrands carry multiple singularities
due to the low (IR) and high (UV) energy regimes. The cancellation of those divergent
quantities typically occurs at integral level. By considering the Kinoshita-Lee-Nauenberg
(KLN) theorem [113,114], soft and collinear divergences (IR singularities) are removed, and
by adding suitable ultraviolet counter-terms, UV singularities are renormalized, rendering
the cross-section finite. This algorithm for cancelling singularities can be extended to
Next-to-Next-to-Leading order (NNLO) and beyond; however, since the complexity of
the integrands is higher at higher orders, this procedure is reaching a bottleneck because
cancellation of singularities must be achieved at integral level, i.e., the ε → 0 limit is
taken once the cross-section is known in DREG. Since LTD transform loop integrals in
phase-space integrals, among other properties discussed in this document, the cancellation
of singularities could occur at integrand level. Hence, based on the LTD theorem, the
Four-Dimensional Unsubtraction [82–85,111] (FDU) method presents a new paradigm to
compute observables in four dimensions, since the definition of cross-section is free of IR
and UV singularities. The first application of the LTD at cross-section level was done in a
toy model based on the simplest φ3 theory. In Ref. [82] it was shown for the first time that
LTD is powerful to build physical observables in four dimensions by a proper mapping
between real and virtual kinematical variables.
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8.1. Local Cancellation of Infrared Singularities within FDU

Let us start the discussion of the FDU approach by analyzing the cancellation of soft
and collinear divergences. The simplest scenario is the decay process 1 → n where the
Born level cross-section is given by,

σ(0) =
∫

dPS1→n |M(0)
n |2 S0({pi}) , (57)

with |M(0)
n |2 the LO contribution and S0 is the IR-safe measure function. The virtual

correction to the LO cross-section is computed as

σ
(1)
V =

∫
dPS1→n

∫
`

2Re 〈M(0)
n |M(1)

n 〉 S0({pi}) , (58)

where 〈M(0)
n |M(1)

n 〉 represents the interference between the Born level and one-loop am-
plitudes. It is important to emphasize at this point that FDU requires also to maintain
self-energy contributions because they contain both IR and UV divergences that will
contribute to the full cancellation of singularities. The IR singularities from the virtual
component are cancelled against real-radiation contributions.

For the sake of simplicity, let us consider that the process under study only has
final-state radiation singularities. Hence, the real contribution given by

σ
(1)
R =

∫
dPS1→n+1 |M(0)

n+1|2 S1({p′i}) , (59)

contains all Feynman diagrams with one extra particle in the final state inM(0)
n+1 and S1

is the measure function for n + 1 particles. It is important to recall at this moment that
primed variables are used to describe the momenta of real matrix elements while unprimed
variables are labeling Born and loop level momenta.

The FDU starts with the analysis of the virtual cross-section which can be decomposed
as a sum of dual contributions as,

σ
(1)
V =

∫
dPS1→n ∑N

i=1
∫
~̀ Ii(qi) S0({pi})

≡
∫

dPS1→n ∑N
i=1 σ

(1)
D,i ,

(60)

with Ii(qi) the N dual integrals that arise from the direct application of the LTD theorem.
We notice that each Ii(qi) has set one internal particle on-shell and it is characterized by
qi. Then, the loop integral has been transformed to phase-space integrals, therefore each
dual integral behaves as the contribution of one real particle emitted. To achieve the
complete cancellation of IR singularities, each σ

(1)
D,i must be paired, at integrand level with

a corresponding real-radiation twin component. The real radiation is sliced as,

σ
(1)
R,i =

∫
dPS1→n+1 dσ

(1)
R Ri , (61)

whereRi represents a partition of the full integral, such that ∑i σ
(1)
R,i = σ

(1)
R and considering

that only one IR divergent configuration is allowed in each Ri. Finally, to merge both
integrals, a mapping between the kinematical variables is implemented. On the one hand,
each partition in σ

(1)
D,i contains n external momenta plus one extra integration variable

corresponding to qi, therefore, each σ
(1)
D,i is mapped into its real sliced contribution as,

Ti({p1, . . . , pn, qi})→ {p′1, . . . , p′n+1} , (62)

where Ti is a bijective transformation among real and virtual variables. The momentum
mapping between variables is analogous to the one used by the dipole method [57,58], since
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the singularities are associated with soft emissions or the double collinear limit [115,116].
These singular IR configurations are associated with specific contributions in the virtual
part, by selecting two massless partons per partition. On one hand the spectator and on the
other hand the emitter. Hence, the four momenta of the emitter and spectator in addition
with the loop-three momentum are used to reconstruct the kinematical phase-space of the
real-emission cross-section where there is a similar configuration, i.e., an emitter decaying
into two partons in a soft or collinear regime. Explicitly, if pi is the momentum of the final-
state emitter, qi the internal on-shell momentum prior the emitter and pj is the momentum
of the final-state spectator, we apply the momentum mapping

p′µr = qµ
i ,

p′µi = pµ
i − qµ

i + αi pµ
j ,

p′µj = (1− αi) pµ
j ,

p′µk = pµ
k , k 6= i, j ,

(63)

with p′r the momentum of the extra radiation of the process and, in the massless scenario,
αi = (qi − pi)

2/(2pj · (qi − pi)). Furthermore, this mapping preserves momentum conser-
vation since pi + pj + ∑k 6=i,j pk = p′i + p′j + p′r + ∑k 6=i,j p′k is fulfilled. A similar mapping is
used when considering massive particles and it was shown in Ref [85]. The extension of this
formalism to higher orders (i.e., NNLO and beyond) will require additional kinematical
transformations which take care of the singular behavior of scattering amplitudes in the
multiple-collinear limit [117–123].

8.2. Self-Energy Insertions and Renormalization

Before moving forward with IR cancellation, let us review the local renormalization
of UV singularities. The standard cancellation of UV singularities requires the renor-
malization of field wave-functions and couplings. In the FDU formalism, this feature is
obtained through the construction of local UV counter-terms. At one loop, the scenario
where massless and massive particles are propagating in the loop has been studied [84,85].
Remarkably, it was shown that a smooth transition between massless and massive renor-
malization constants takes place and UV singularities are well understood. Let us highlight
a crucial difference between the standard renormalization constant in DREG and LTD.
Wave-function renormalization constants are obtained from self-energy diagrams. In par-
ticular, massless bubble diagrams in DREG are neglected in the renormalization procedure
since IR and UV divergences are considered to be equal and they cancel out. However, the
same divergent poles in the FDU formalism contribute separately. Specifically, it means
that IR singularities of loop diagrams vanish with only the IR poles of the real radiation
and there are no mixed cancellation between UV and IR poles. Therefore, the remain-
ing UV divergences must be removed when renormalization is implemented in the FDU
scheme. Hence, we stress that integrands in the FDU are separated into the IR and UV
domains, and this identification is crucial to render cross-sections free of singularities in
the FDU formalism.

We analyze the construction of the renormalization constants in the FDU framework.
Using standard Feynman rules, the unintegrated massive wave-function renormalization
constant, in the Feynman gauge, at one loop is given by,

∆Z2(p1; M) = −g2
S CF

∫
`

GF(q1) GF(q3)

[
(d− 2)

q1 · p2

p1 · p2
+ 4 M2

(
1− q1 · p2

p1 · p2

)
GF(q3)

]
. (64)

Equation (64) is the most general wave-function renormalization constant since it
includes the massless and massive case and, as previously mentioned, the transition to the
massless case, ∆Z2(p, 0), is straightforward. The function ∆Z2(p1; M) contains singularities
associated with the UV domain, therefore we must find the UV component of Equation (64),
∆ZUV

2 , and subtract it in order to find a UV-free wave-function renormalization constant,
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∆ZIR
2 . The UV part is extracted by performing an expansion of the integrand around the

UV propagator GF(qUV) = (q2
UV − µ2

UV + ı0)−1. In particular, for Equation (64), it is found

∆ZUV
2 (p1) = (2− d) g2

S CF

∫
`

[
GF(qUV)

]2 (1 +
qUV · p2

p1 · p2

)[
1−GF(qUV)(2 qUV · p1 + µ2

UV)
]

. (65)

Hence, we define ∆ZIR
2 as

∆ZIR
2 = ∆Z2 − ∆ZUV

2 , (66)

which is free of UV singularities and the IR singularities poles are those needed to remove
the remaining singularities from the virtual and real mapping of the cross-section.

To remove UV singularities, it is important to build proper UV counter-terms that
can be extracted by the direct study of the UV properties of physical amplitudes. After
the combination of real and virtual matrix elements and renormalization, the remaining
amplitude has only UV singularities, in the following, we consider generic amplitudes
with only UV singularities. At two loops, a generic two-loop amplitude can be written as,

A(2) =
∫
`1

∫
`2

I(`1, `2) , (67)

where the integrand is a function of the loop variables `1 and `2. UV divergences shall
appear when the three-momenta |~̀ 1| and |~̀ 2| tend to infinity. In the two-loop scenario,
there are three possible UV limits: (i) |~̀ 1| → ∞ and |~̀ 2| remains fixed, (ii) |~̀ 2| → ∞ and
|~̀ 1| is fixed and, (iii) |~̀ 1,2| → ∞. To extract the UV behavior of the integrand, we impose
the replacement,

Sj,UV : {`2
j |`j · ki} → {λ2q2

j,UV + (1− λ2)µ2
UV|λ qj,UV · ki} , (68)

for a given loop momentum `j and then, we expand the expression up to logarithmic order
around the UV propagator. This action is represented by the Lλ operator. Notice, however,
that the result shall generate a finite part after integration that has to be fixed to find the
right value of the integral. Therefore, the first counter-terms is computed by

A(2)
j,UV = Lλ

(
A(2)

∣∣∣
Sj,UV

)
− dj,UV µ2

UV

∫
`j

(GF(qj,UV))
3 , (69)

with dj,UV the fixing parameter which makes the finite part of integral to be zero in the
MS scheme.

The remaining divergences shall occur when both |~̀ 1| and |~̀ 2| approach to infinity
simultaneously. Then, to build a counter-term that mimics this behavior, the following
replacement is implemented,

SUV2 :{`2
j |`j · `k|`j · ki} →
{λ2q2

j,UV + (1− λ2)µ2
UV|λ2qj,UV · qk,UV + (1− λ2) µ2

UV/2|λ qj,UV · ki} (70)

on the subtracted integrand. As with the previous UV counter-term, the application of
the Lλ operation shall produce a finite piece that has to be fixed to build properly the
counter-term, A(2)

UV2 . Explicitly,

A(2)
UV2 = Lλ

(A(2) − ∑
j=1,2
A(2)

j,UV

)∣∣∣∣∣
SUV2

− dUV2 µ4
UV

∫
`1

∫
`2

(GF(q1,UV))
3(GF(q12,UV))

3 , (71)
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with dUV2 the fixing parameter of the double UV limit. With all UV divergences under con-

trol, the renormalized amplitude at two loops, A(2)
R , can be constructed by the subtraction

of all UV counter-terms, such that

A(2)
R = A(2) −A(2)

1,UV −A
(2)
2,UV −A

(2)
UV2 , (72)

is free of IR and UV singularities.
In the multi-loop scenario, multiple ultraviolet poles will appear, since all loops could

tend to infinity at different speed.

8.3. A∗ → qq̄ at NLO in QCD

The FDU method has been studied in different processes, for the sake of simplicity,
we recall the application of the algorithm in A∗ → qq̄ a NLO in QCD, with A = H, γ, Z.

At NLO, virtual correction A∗(p) → q(p1) + q̄(p2) must be mapped into the real-
radiation process A∗(p) → q(p′1) + q̄(p′2) + g(p′r). As explained in previous subsections,
we must also keep all virtual contributions since self-energy contributions are crucial
to cancel out all IR singularities. In Figure 19, we present the complete set of Feynman
diagrams of the real and virtual processes.

Figure 19. Momentum configuration of NLO QCD corrections to the process A∗ → qq̄(q), assuming
that the decaying particle does not couple to gluons.

It is important to recall that in this example we consider massive quarks, i.e.,
p2

1 = p2
2 = M2 and p′21 = p′22 = M2 and p′2r = 0. It is convenient to write the momenta p1

and p2 in terms of massless four vectors, p̂1 and p̂2, such as

pµ
1 = β+ p̂µ

1 + β− p̂µ
2 , pµ

2 = β− p̂µ
1 + β+ p̂µ

2 , (73)

with β± = (1± β)/2, β =
√

1−m2 and m = 2M/
√

s12. Therefore, since the momentum
of the gluon is labeled in the virtual contribution as q1 and LTD shall set it on-shell, q2

1 = 0,
the momentum mapping proposed for the merging of virtual and real cross-sections is

p′µr = qµ
1 ,

p′µ1 = (1− α1) p̂µ
1 + (1− γ1) p̂µ

2 − qµ
1 ,

p′µ2 = α1 p̂µ
1 + γ1 p̂µ

2 , (74)

where α1 and γ1 are parameters determined by imposing on-shellness. Notice that
Equation (74) fulfills momentum conservation. This mapping will be used to remove
some IR singularities of the integral related to δ̃(q1), the remaining IR singularities shall
cancel through renormalization. Now, since there are other singular IR behaviors in the
real that can be recognized in the virtual, when q2

2 = M2, the second momentum mapping
is proposed to be,

p′µr = (1− γ2) p̂µ
1 + (1− α2) p̂µ

2 − qµ
2 ,

p′µ1 = γ2 p̂µ
1 + α2 p̂µ

2 ,

p′µ2 = qµ
2 , (75)
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with α2 and γ2 parameters which are also determined by the on-shell conditions. In virtue
of soft and collinear divergences in the real cross-section being only in these two LTD cuts,
we proceed to slice the full real element with the general function,

Ri = {y′ir < min(y′jk)} , ∑Ri = 1 , (76)

which in this particular case are explicitly

θ(y′2r < y′1r) + θ(y′1r < y′2r) = 1 , (77)

with y′ir = 2p′i · p′r/s12. The integration domain is well determined, and it is shown in
Figure 20.

�� �
 < �� �



�� �
 < �� �



���������

����

ξ�

ξ ⊥

Figure 20. The dual integration regions in the loop-three momentum space, with ξ⊥ =
√

ξ2
x + ξ2

y.

We remark that this arrangement of the real element phase-space is general, and it
can be applied to any 1 → 3 real cross-section that is mapped into the 1 → 2 virtual
cross-section.

Let us now compute the virtual decay rate of A∗ → qq̄. The LTD representation is
given by,

Γ(1,R)
V,A =

1
2
√

s12

3

∑
i=1

∫
dPS1→2 2Re 〈M(0)

A |M
(1,R)
A (δ̃(qi))〉 (78)

with the renormalized one-loop amplitude computed as,

|M(1,R)
A 〉 = |M(1)

A 〉 − |M
(1,UV)
A 〉+ 1

2
(∆ZIR

2 (p1) + ∆ZIR
2 (p2))|M(0)

A 〉 , (79)

and |M(1,UV)
A 〉 is the unintegrated UV counter-term of the one-loop vertex correction. The

real element, after the splitting of the phase-space in two domains, is written as,

Γ̃(1)
R,A,i =

1
2
√

s12

∫
dPS1→3 |M(0)

A∗→qq̄g|2Ri(y′ir < y′jr) , i, j = {1, 2} . (80)

The sum of the virtual and real contributions in Equations (78) and (80) is a single
integral in the loop-three momentum. It is UV and IR finite locally and can be calculated
numerically with ε = 0. The results, normalized to the LO decay rate Γ(0)

A , are presented in
Figures 21 and 22. The agreement with the analytical predictions is excellent in all cases.
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Furthermore, we notice that the massless quark scenario is recovered smoothly in the FDU
however, in DREG this is not the case since individual contributions are not smoothly
defined in that limit.

μUV=2 s12

μUV= s12 /2

μUV= s12

H→ q q

Analytical (DREG)

4D unsubtracted (LTD)

0.0 0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

m

Γ
(1
) /
Γ
(0
)

Figure 21. NLO total decay rate for H∗ → qq̄ normalized to its corresponding LO decay rate. The
solid lines correspond to DREG analytic result while dots were computed numerically in the FDU
formalism for the standard Higgs boson.

Analytical (DREG)

4D unsubtracted (LTD)

γ→q q

Z→u u

Z→d d

0.0 0.2 0.4 0.6 0.8

-1.4

-1.2

-1.0

-0.8

-0.6

m

Lo
g
10

(Γ
(1
) /
Γ
(0
) )

Figure 22. NLO total decay rate for V∗ → qq̄ normalized to its corresponding LO decay rate. The
solid lines correspond to DREG analytic result while dots were computed numerically in the FDU
formalism for off-shell vector bosons.

9. Local Dual Counter-Terms for Cross-Sections

In the following, we will focus on the NLO QCD corrections to cross-sections involving
massless colored particles and any number of other colorless SM particles. The extension of
the following ideas to the massive case has been worked out following the same reasoning,
which is presented in Ref. [86]. The reduction of any one-loop amplitude to a combination
of scalar integrals is an easy task compared to the two-loop case. Of course, such a reduction
does not alter the structure of the divergences of the amplitude but to properly reproduce
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all the IR singularities, in addition to the wave-function renormalization, one must keep
also the massless bubble integrals that are formally discarded usually (as already explained
in Section 8). Once all the box functions are expressed in terms of their corresponding
6−dimensional version, it turns out that the IR divergences of a renormalized one-loop
amplitude interfered with the leading order are given by the triangle scalar functions
with two external partons connected by a massless propagator times the corresponding
color connected tree level amplitude multiplied sij = 2 pi · pj, the massless bubbles times
(1/2) the Born for every external (gluon) quark external particle multiplied times the
corresponding Casimir, and the external wave-function renormalization constant time the
Born. The above set of IR singularities is universal and, in fact, it reproduces the known
formula for the poles of any one-loop amplitude in QCD. Inspired by the LTD theorem,
we considered the cuts of these loop integrals that capture their infrared and collinear
divergences. As a result of this procedure one obtains a novel subtraction scheme. For the
sake of simplicity we will restrict the discussion to the case of a colorless initial state and
so we will consider colored radiation exchanged only among the final-state partons. Our
general formula for the dual counter-term in the case of a quark emitting a gluon is the
following:

σDS
qg,b ≡ 8παSNin

∫
dΦm m〈1, . . . , m|TacTb|1, . . . , m〉m

[
Vqagc ,b(pi, pj) + Gqagc ,b(pi, pj)

]
, (81)

where Nin represents all the non-QCD factors, including the symmetry factor for identical
partons in the final state, |1, . . . , m〉m is the m-parton Born amplitude and TacTb is a color-
charge operator acting on the color indices of the partons ac and b, respectively. The
functions Vqg,b and Gqg,b in Equation (81) are defined by

Vqg,b ≡
∫

q1
δ̃(q1)R1

[
− 2sij

(−2q1·pi)(2q1·pj)
+ 2

(−2q1·pi)

]
,

Gqg,b ≡ − (1−ε)
sij

∫
q1

δ̃(q1)R1
2q1·pj

(−2q1·pi)
,

(82)

where Vqg,b groups together the dual contributions from the reduction of the virtual am-
plitude and Gqg,b is the contribution of the quark wave-function renormalization. In the
above formulae pi and pj represent the momentum of the emitter (with color index ac) and
spectator (color index b) in the Born kinematic respectively, while q1 is the loop momentum
that is associated with the gluon in the real-radiation kinematic. In the case a gluon is
radiated collinear to another gluon the corresponding dual counter-term σDS

gg,b is given by

σDS
gg,b ≡ 8παSNin

∫
dΦm m〈1, . . . , m|TacTb

[
Vµν

gg,b(pi, pj) + Gµν
gg,b(pi, pj)

]
|1, . . . , m〉m , (83)

where the symmetrization p′a ↔ p′c must be performed on the right-hand side. Once again,
in Equation (83) we have extracted only the dual contributions with q1 on-shell, obtaining

Vµν
gg,b≡−

∫
q1

δ̃(q1)R1

[
− 2sij

(−2q1 · pi)(2q1 · pj)
+

1
(−2q1 · pi)

]
gµν , (84)

Gµν
gg,b≡−

∫
q1

δ̃(q1)R1

(−2q1 · pi)

[
gµν+

d− 2
(−2q1 · pi)

(
q1 · pj

pi · pj
− 1

)(
qµ

1 −
q1 · pi
pi · pj

pµ
j

)(
qν

1 −
q1 · pi
pi · pj

pν
j

)]
. (85)

Finally, the case of a gluon splitting into a collinear quark-antiquark pair receive
contributions only from the wave-function contribution so that the corresponding dual
counter-term σDS

qq̄,b is given by

σDS
qq̄,b ≡ 8παSNin

∫
dΦm m〈1, . . . , m|TacTb Gµν

qq̄,b(pi, pj)|1, . . . , m〉m , (86)

with



Symmetry 2021, 13, 1029 31 of 37

Gµν
qq̄,b≡

∫
q1

δ̃(q1)R1TRN f

CA(−2q1 · pi)

[
gµν+

4
(−2q1 · pi)

(
q1 · pj

pi · pj
− 1

)(
qµ

1 −
q1 · pi
pi · pj

pµ
j

)(
qν

1 −
q1 · pi
pi · pj

pν
j

)]
. (87)

Once a proper momentum mapping is considered, these counter-terms can be analyti-
cally integrated over the region in which pa · pc < pb · pc in the real phase-space and added
back to the virtual contribution. This last operation corresponds to extract all the infrared
and collinear divergences out of the virtual matrix element. We have used the mapping
adopted in the seminal work by Catani and Seymour [58].

γ∗ → 3 Jets at NLO

As an example of application, we consider the NLO correction to the three-jet pro-
duction in e+e− annihilation γ∗ → q(p1) q̄(p2) g(p3). For simplicity we will restrict to
the case of gluon radiation, namely γ∗ → q(p′1) q̄(p′2) g(p′3) g(p′4). The case of four quark
production can be treated along the same lines. By inspecting the virtual sector, we find six
emitter-spectator pairs for the process γ∗ → q(p1) q̄(p2) g(p3) that are {qq̄, qg, q̄g} and the
three pairs where the emitter and the spectator switch. Once a real kinematic configuration
(p′1, p′2, p′3, p′4) is generated, the six kinematic invariants sij are analyzed and as a conse-
quence six dual counter-terms are activated. To each emitter-spectator pair, we associate
the following dual counter-terms:

qq̄ −→
{

g(p′3) as radiation: σDS
13,2 if s13 < s23, σDS

23,1 if s13 > s23

g(p′4) as radiation: σDS
14,2 if s14 < s24, σDS

24,1 if s14 > s24

qg −→
{

g(p′3) as radiation: σDS
13,4 if s13 < s34, σDS

43,1 if s13 > s34

g(p′4) as radiation: σDS
14,3 if s14 < s34, σDS

34,1 if s14 > s34
(88)

q̄g −→
{

g(p′3) as radiation: σDS
23,4 if s23 < s34, σDS

43,2 if s24 > s34

g(p′4) as radiation: σDS
24,3 if s24 < s34, σDS

34,2 if s24 > s34

Since the process involves only three colored partons, the color algebra factorizes and
one has T1T2 = CA/2− CF and T1T3 = T2T3 = −CA/2. In the virtual sector, we use the
integrated version of the dual counter-terms that are given by

σDS
q,q̄ ∼ αS

2π
(4π)ε

Γ(1−ε)

(
CA
2 − CF

) ∫
dΦ2

(
µ2

s12

)ε
|A(0)

qq̄g|2
[

1
ε2 +

3
2ε + 3 + 4 log(2)− π2

2

]
σDS

q̄,q ∼ αS
2π

(4π)ε

Γ(1−ε)

(
CA
2 − CF

) ∫
dΦ2

(
µ2

s12

)ε
|A(0)

qq̄g|2
[

1
ε2 +

3
2ε + 3 + 4 log(2)− π2

2

]
σDS

q,g ∼ − αS
2π

(4π)ε

Γ(1−ε)
CA
2

∫
dΦ2

(
µ2

s13

)ε
|A(0)

qq̄g|2
[

1
ε2 +

3
2ε + 3 + 4 log(2)− π2

2

]
σDS

g,q ∼ − αS
2π

(4π)ε

Γ(1−ε)
CA
2

∫
dΦ2

(
µ2

s13

)ε
|A(0)

qq̄g|2
[

1
ε2 +

11
6ε +

55
18 + 14

3 log(2)− π2

2

]
σDS

q̄,g ∼ − αS
2π

(4π)ε

Γ(1−ε)
CA
2

∫
dΦ2

(
µ2

s23

)ε
|A(0)

qq̄g|2
[

1
ε2 +

3
2ε + 3 + 4 log(2)− π2

2

]
σDS

g,q̄ ∼ − αS
2π

(4π)ε

Γ(1−ε)
CA
2

∫
dΦ2

(
µ2

s23

)ε
|A(0)

qq̄g|2
[

1
ε2 +

11
6ε +

55
18 + 14

3 log(2)− π2

2

]
(89)

where |A(0)
qq̄g|2 is the Born amplitude for the process γ∗ → qq̄g and we have neglected terms

of order O(ε).
In Figure 23 we show the differential rapidity distribution of the most energetic jet in

e+ e− annihilation at
√

s = 125 GeV. Jets are clustered using the Durham jet algorithm with
resolution parameter set at ycut = 0.05. A perfect agreement with the same computation
performed using Catani−Seymour dipoles is observed. The same level of agreement is
observed for any other differential distribution.
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Figure 23. Rapidity distribution of the most energetic jet in e+e− → γ∗ → 3 jets at
√

s = 125 GeV.
Jets are clustered using the Durham algorithm with ycut = 0.05. Only the NLO corrections are plotted.
Results obtained using Dual Subtraction (DS) results are shown in red, while the ones obtained using
Catani−Seymour (CS) dipoles are shown in blue. The error bars correspond to the statistical error
given by the Monte Carlo integration.

In this way, we have shown that a fully local implementation of an LTD-inspired
method for computing cross-sections is reliable. These studies complement the ones
presented in Section 8, indicating that the FDU framework constitutes a powerful strategy
for reaching higher-order corrections with fully numerical methods. An extension of this
technology to calculate N2LO corrections for IR-safe observables is being actively studied.

10. Outlook and Further Developments

In this manuscript, we reported on the recent developments in the numerical evalua-
tion of multi-loop scattering amplitudes through the application of the Loop-Tree Duality
(LTD) formalism. Based on the original approach, at one and two loops [68,70], we pre-
sented a novel formulation of LTD [92], which allowed to bootstrap the treatment of
Feynman integrals, regardless of the loop order, and shed light to a complete automation.
In effect, the decomposition of two- and three-loop scattering amplitudes in terms of dual
integrands was obtained by introducing the concepts of maximal (MLT), next-to-maximal
(NMLT) and next-to-next-to-maximal (N2MLT) loop topologies. These families of diagrams
share general properties that allow allows for the generalization of the dual representation
at any loop order.

Since LTD heavily relies on the application of the Cauchy residue theorem, we studied
in detail the treatment of multivariate rational functions in Ref. [97], giving, in this way,
a mathematical support to the novel formulation of Ref. [92]. Likewise, we proved all
conjectures that were provided in the latter, thus, rendering in a well-organized formalism
ready to focus on physical applications. Hence, in view of the LTD decompositions of up
to three-loop scattering amplitudes, the natural extension, along the lines of Ref. [92], was
considering the four-loop case [95]. In effect, the complexity in the treatment of four-loop
topologies increased because, differently from the two- and three-loop cases, this loop order
was not described by only one-loop topology, as in the lower cases. Hence, we introduced
new configurations that appears at four loops: the N3MLT and N4MLT families. In this
way, our formalism allowed a complete understanding and decomposition of the dual
representation of any up to four-loop scattering amplitude.
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In the spirit of profiting from the dual representation of integrands through LTD,
we observed that the complete sum of the latter, for a given Feynman integral, led to a
representation of an integrand that only manifests physical information. In other words, un-
physical singularities or pseudo-thresholds cancel out when all dual integrands are summed
up. This is a remarkable feature of LTD that was originally observed in Refs. [79,87,92] and
extensively studied in Ref. [96] for MLT, NMLT and N2MLT configurations. In fact, the
work performed in Ref. [96] made a comparison between the numerical stability of dual
and causal integrands. Although in the former numerical instabilities, originated from
pseudo-thresholds, were present, the latter displayed a smooth behavior: the numerical
evaluation was much more stable, and this allowed a straightforward computation of the
Feynman integrals. In particular, we considered the numerical integration of ultraviolet
finite integrals at three and four loops with presence of several kinematic variables.

The causal representation of scattering amplitudes has recently been a very active
topic due to the simple structure of these integrands in terms of causal (physical) thresholds.
In fact, an understanding of the structure of the latter started to appear in the literature by
means of geometric properties [102] and is yet under consideration. On top of the former
approach, it was recently conjectured a breathtaking formulation of the all-loop causal
representation of multi-loop scalar integrands, obtained from the features that characterized
a topology, vertices and edges [100]. This formulation provides, regardless of the loop order,
the most symmetric causal representation of Feynman integrands, in a complementary
and independent way to the nested residue calculation used by the LTD formalism. Thus,
to give a support to these conjectures, we provide the MATHEMATICA package LOTTY to
automate both dual and causal representation of scattering amplitudes [101].

From the above-mentioned discussion, we claim that a treatment of Feynman inte-
grands at an arbitrary number of loops is under control. Moreover, this is not the end of the
story when comparing theoretical predictions with data derived by collider experiments. In
effect, one yet must deal with ultraviolet (UV) and infrared (IR) singularities. Although the
framework at next-to-leading order (NLO) is completely understood by means of the Four-
Dimensional Unsubtraction scheme [82,84,85] and the dual subtractions [86], a clear path
towards calculations at higher orders (NNLO and beyond) needs to be devised. Prelimi-
nary studies of IR-safe scattering amplitudes has been recently considered in Refs. [79,81].
Moreover, the extension to the calculation of cross-sections at NNLO is under study, in
particular, focusing on a careful local treatment of IR singularities.

We expect that the ideas presented in this manuscript will allow detailed elucidation
of the state of the art of the LTD formalism and the causal representation of scattering
amplitudes by means of the latter. Likewise, the ideas that we have developed will certainly
supply the scientific community with a powerful strategy to tackle the calculation of multi-
loop Feynman integrals, in which phenomenological and formal applications can efficiently
be carried out.
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