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Abstract: Trigonometric functions were used to construct a 2-D symmetrical hyperchaotic map with
infinitely many attractors. The regime of multistability depends on the periodicity of the trigono-
metric function, which is closely related to the initial condition. For this trigonometric nonlinearity
and the introduction of an offset controller, the initial condition triggers a specific multistability
evolvement, in which infinitely countless symmetric and asymmetric attractors are produced. Initial
condition-triggered offset boosting is explored, combined with constant controlled offset regulation.
Furthermore, this symmetric map gives the sequences in various types of asymmetric attractors, in
which the polarity balance is maintained by the initial condition and a negative coefficient due to the
trigonometric function. Finally, as determined through the hardware implementation of STM32, the
corresponding results agree with the numerical simulation.

Keywords: hyperchaos; multistability; offset boosting; symmetry

1. Introduction

Multistability [1–11] exists widely in continuous systems and discrete systems, in
which flexible initial conditions can access different states, resulting in much uncertainty
but convenience for chaos applications. Coexisting attractors have numerous manifes-
tations. For example, in a four-dimensional non-autonomous system, the coexisting at-
tractors evolve according to the sign function or with the equilibrium points [12,13]. In
three-dimensional continuous systems, the absolute value function can result in offset
boosting, inducing the desired distribution of coexisting attractors in phase space [14–16].
In fact, an attractor can obtain full control, including the offset in any dimension [17], al-
though under certain conditions coexisting attractors appear in the regime of homogeneous
multistablity [18]. In this case, the complex chaotic sequence flexibly switches between
unipolar or bipolar, which makes it more applicable in image encryption [19–24]. It is well
known that some asymmetrical systems have symmetric pairs of attractors when they are
of conditional symmetry; meanwhile, some symmetric systems have a pair of coexisting
attractors [25–29] when the symmetry is broken. However, symmetrical hyperchaotic maps
with asymmetrical chaotic and hyperchaotic attractors are rarely reported. Therefore, it is
of great significance to construct a new type of hyperchaotic map for such observations.

In this paper, we propose a new type of 2-D symmetric hyperchaotic map, revealing
its special phenomenon of symmetrical coexistence. We also discuss offset boosting. The
proposed system is discussed as follows. The mathematical model of the 2-D symmetric
hyperchaotic map is presented in Section 2; the basic dynamic behavior of the bifurcation
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is explored in Section 3; the special multistability phenomenon is discussed in Section 4.
Through the reversal of polarity, the abundance of symmetrical coexisting strange attractors
is outlined in Section 5. The discussion of offset boosting further illustrates the dynamic
behavior of the system in Section 6. Our findings were verified by physical experiments,
based on STM32 hardware, and these are presented in Section 7. In the last section,
conclusions and discussions are provided.

2. Symmetric Hyperchaotic Map
2.1. Symmetric Hyperchaotic Map Model

Inspired by continuous systems [30] and differently from other discrete maps, but
rather by introducing single sinusoidal functions, we propose a novel 2-D discrete map
with a simple symmetrical structure. The period is controlled by the parameter a, whereas
the parameter b is used as an extra control; the mathematical model is:{

xm+1 = sin(aym)− b sin(xm) + xm,
ym+1 = sin(axm)− b sin(ym) + ym.

(1)

The constructed hyperchaotic map has complex dynamics, owing to the sinusoidal
function, and shows rich dynamics. Here, m is a natural number (0, 1, 2, 3...), xm and ym
represent the m-th state, and a and b are the system parameters.

2.2. Fixed Point Analysis

The stability of a discrete map is usually characterized by fixed points. The fixed point
(x∗, y∗) satisfies the following equation:{

x∗ = sin(ay∗)− b sin(x∗) + x∗,
y∗ = sin(ax∗)− b sin(y∗) + y∗.

(2)

If a 6= ±1, b = 1, we obtain:

sin(ay∗)− b sin(x∗)= sin( ay∗+x∗
2 + ay∗−x∗

2 )− sin( ay∗+x∗
2 − ay∗−x∗

2 ) =

2 cos( ay∗+x∗
2 ) sin( ay∗−x∗

2 ) = 0
(3)

Furthermore, we obtain:

sin(ay∗)− b sin(x∗) =sin( ax∗+y∗
2 + ax∗−y∗

2 )− sin( ax∗+y∗
2 − ax∗−y∗

2 ) =

2 cos( ax∗+y∗
2 ) sin( ax∗−y∗

2 ) = 0
(4)

Combining (3) and (4), we obtain:{
2 cos( ay∗+x∗

2 ) sin( ay∗−x∗
2 ) = 0,

2 cos( ax∗+y∗
2 ) sin( ax∗−y∗

2 ) = 0.
(5)

Equation (5) yields four sets of fixed points; two groups of typical fixed points are
listed: {

ay∗−x∗
2 = kπ,

ax∗−y∗
2 = kπ.

⇒
{

x∗ = 2π(k1+k2a)
a2−1 ,

y∗ = 2π(k2+k1a)
a2−1 .

(6)

{
ay∗+x∗

2 = π
2 + k3π,

ax∗+y∗
2 = π

2 + k4π.
⇒
{

x∗ = π{((2k4+1)a−2k3−1)}
a2−1 ,

y∗ = π{((2k3+1)a−2k4−1)}
a2−1 .

(7)

where a is a constant, and the Jacobian matrix corresponding to Equation (2) is:

J1 =

[
1− cos x∗ a cos ay∗

a cos ax∗ 1− cos y∗

]
(8)
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Substituting Equation (6) into Equation (8), when k1 = k2 = 0, we can obtain:

J1 =

[
0 a
a 0

]
(9)

det(λE− J1) = λ2 − tr(J1)λ + det(J1) = 0 (10)

There are two eigenvalues, given as:

λ1 = a, λ2 = −a (11)

For a < −1 or a > 1, eigenvalues |λ1| > 1 and |λ2| > 1, and the fixed point exhibits
instability in one or two directions. For−1 < a < 1, eigenvalues |λ1| < 1, and |λ2| < 1, and
the fixed point is stable. For the parameter a in the range of (−1, 1), map (1) is dissipative.

Substituting (7) into Equation (8), when k3 = k4 = 0 and x∗ = y∗ = π
a+1 , we can

obtain:

J2 =

[
1− cos

(
π

a+1
)

a cos
( aπ

a+1
)

a cos
( aπ

a+1
)

1− cos
(

π
a+1
) ] (12)

det(λE− J2) = λ2 − tr(J2)λ + det(J2) = 0 (13)

For the two eigenvalues of Equation (13): for the cases of |λ1| > 1 and |λ2| < 1,
|λ1| < 1 and |λ2| > 1, |λ1| > 1 and |λ2| > 1, the above map gets repelled by the unstable
fixed point, leading to an unstable state. However, for the case of |λ1| < 1, |λ2| < 1, the
two eigenvalues are both in the unit circle, indicating a stable state, which means that the
above map is stable for the existence of a stable fixed point. When |J2| < 1, the map (1) is
dissipative.

In a word, both the location of fixed points and the eigenvalues depend on the
coefficient a. A stable or unstable fixed-point affects the dynamics of the map, resulting in
different types of attractors.

3. Analysis of Bifurcation Behavior

According to the changing of parameter a under the parameter b = 1, we can explore
the evolution of the dynamic behavior of the hyperchaotic map as follows. Setting the initial
conditions (x0, y0) = (1,−2), let a change in the range of [0, 5]; the bifurcation diagram of
state variables x, y and corresponding Lyapunov exponents are shown in Figure 1. In the
bifurcation diagram shown in Figure 1a, we can see that the map exhibits broken symmetry.
When a is located in [3.01, 3.213] ∪ [3.217, 3.479], the map enters into chaos and hyperchaos.
There is a narrow period window where a is in the gap of [3.213, 3.217], which blocks
chaos and hyperchaos, even though the system finally enters hyperchaos. In Figure 2, an
asymmetric attractor gradually evolves into hyperchaos with a symmetrical structure under
the change of parameter a. In addition, when exploring the dynamics under the parameter
b = 0.5 while a varies in the range of [0, 5], map (1) shows its abundant dynamics, with
period doubling bifurcation at a deep-breath-like pace. One period doubling process leads
to chaos, whereas the other leads to hyperchaos. Symmetry breaking happens again. As
shown in Figure 3, it seems that map (1) repeats its dynamics when a changes in the regions
of [3.38, 4.05] and [4.29, 5]. Figure 4 shows four types of typical attractors. Table 1 gives
the detailed information on these oscillations through Wolf algorithm and Kaplan-Yorke
algorithm observations.
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Figure 1. Dynamic behavior of hyperchaotic map (1) under the initial conditions (x0, y0) = (1,−2)
and parameter b = 1 when a changing in the region of [0, 5]: (a) bifurcation diagram, (b) Lyapunov ex-
ponents.

Figure 2. Typical attractors of hyperchaotic map (1) with b = 1 and initial conditions (x0, y0) = (1,−2):
(a) a = 2.71, (LE1 = 0.2202, LE2 = 0.0663); (b) a = 2.728, (LE1 = 0.2676, LE2 = 0.0717); (c) a = 2.74,
(LE1 = 0.2992, LE2 = 0.0895); (d) a = 2.77, (LE1 = 0.3096, LE2 = 0.068).

Figure 3. When a is in the range of [0, 5], dynamic behavior of hyperchaotic map (1) with b = 0.5 and initial conditions
(x0, y0) = (1,−2): (a) bifurcation diagram, (b) Lyapunov exponents.
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Figure 4. Two typical attractors of map (1) with b = 0.5 and initial conditions (x0, y0) = (1,−2): (a) a = 0.76, (LE1 = 0,
LE2 = −0.3653); (b) a = 1.3, (LE1 = 0.0847, LE2 = −0.6667); (c) a = 1.852, (LE1 = −0.0257, LE2 = −0.4089); (d) a = 3.11,
(LE1 = 0.2121, LE2 = 0.0985).

Table 1. Lyapunov exponents, Kaplan-Yorke dimension of typical attractors in map (1) with b = 0.5.

a1 LE1, LE2 DKY Attractor Type

0.76 0, −0.3653 0 Quasi-period
1.300 0.0847, −0.6667 1.127 Chaos
1.852 −0.0257, −0.4089 0 Periodic points
3.110 0.2121, 0.0985 2 Hyperchaos

4. Multistability Analysis

The above hyperchaotic map (1) shows abundant multistability due to the periodic
sinusoidal functions. Figure 5 shows the bifurcation dynamics and the corresponding
Lyapunov exponents of hyperchaotic map (1) according to the initial state. When the
initial value y0 varies in [−25, 25], map (1) switches its oscillation from period to chaos.
Specifically, when b = 0.5, even under the same parameters as those of a, system (1) produces
different states according to the initial condition of y0.
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Figure 5. Dynamic evolution of map (1) with b = 0.5 under various initial conditions (1, y0): (a) a = 1.3, (b) a = 1.48,
(c) a = 1.705, (d) a = 2.1.

Case 1: When a = 1.041, and the initial conditions (ICs) equal (1, 0), (1, 5), (1, 11), and
(1, 17) separately, and system (1) gives two types of coexisting attractors, which are chaos
(magenta), quasi-period (red), quasi-period (blue), and quasi-period (green) attractors,
accordingly, as shown in Figure 6a.

Case 2: When a = 1.3, the initial conditions (ICs) are respectively (1, 0), (1, 6), (1, 9),
and (1, 15), and the system (1) has three types of coexisting attractors, including chaos
(magenta), quasi-period (red), quasi-period (blue), and periodic points (green), as shown
in Figure 6b.

Case 3: When a = 1.705, the initial conditions (ICs) are followed by (1, 0), (1, 3), (1, 9),
and (1, 15), the system (1) has two types of coexisting attractors, namely, periodic points
(magenta) and chaos (red), chaos (blue), and chaos (blue) attractors, as shown in Figure 6c.

Case 4: When a = 2.1, the order of initial conditions (IC) is (1, 3), (1, 9), (1, 16), and
(1, 21), and the system (1) has multiple chaotic coexisting attractors, such as chaos (ma-
genta), chaos (red), chaos (blue), and chaos (green) attractors, as shown in Figure 6d.

In order to distinguish attractors more clearly, magenta, red, blue and green were
selected to represent attractors under different initial conditions.
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Figure 6. Typical attractors of map (1) with b = 0.5 under various initial conditions (1, y0): (a) a = 1.3, (b) a = 1.48, (c) a = 1.705,
(d) a = 2.1.

5. Polarity Control of Symmetrical Attractors

In the symmetrical hyperchaotic map (1), symmetrical attractors can be extracted
by means of three approaches. Case 1: system structure-induced symmetrical attractor:
map (1) shares a unique symmetrical structure, which can give birth to a symmetrical
attractor. Case 2: parameter-induced symmetrical attractor: when a→ −a , and x → −x ,
the polarity in map (1) is maintained and map (1) gives a pair of symmetrical attractors.
Case 3: a coexisting symmetrical pair of attractors: map (1) also has a solution with
an asymmetric structure, but the property of symmetry can also bring a new coexisting
attractor as the symmetrical pair. In this case, two coexisting attractors can be visited by
two sets of initial conditions. Flexible polarity control adds much more convenience to
physical engineering applications, where there exist all kinds of challenges and demanding
sequences.

Case 1: The map presents a symmetrical attractor (chaos and hyperchaos) according
to its own symmetrical structure. As shown in Figure 7, setting the initial condition
(x0, y0) = (1,−2), and b = 0.5, with a different parameter a, drives the system to chaos and
hyperchaos with a symmetrical structure. As shown in Figure 8, the specific parameter a
leads to a symmetrical squid-like attractor of different shapes.

Case 2: Owing to the odd sinusoidal function in the map, the reverse of parameter
a can access a new polarity balance through the inverse of variable x, which leads to a
reflection symmetry. As shown in Figure 9, when the initial condition (x0, y0) = (1,−2)
and b = 0.5, two groups of attractors with opposite polarity are produced, as shown in
Figure 9a,b, respectively. Those hyperchaotic attractors get doubled according to the plane
of x = 0.

Case 3: The initial condition can also lead to a symmetrical pair of coexisting attractors
for the multistability hidden in the symmetrical map. By reversing the polarity of the initial
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condition, coexisting attractors with inversion symmetry come out as a pair of chaotic
or hyperchaotic attractors. As shown in Figure 10, when b = 0.5, two sets of chaotic and
hyperchaotic oscillations are captured by revising the polarity of the initial condition. A
basin of attraction for coexisting attractors is identified in Figure 11, in agreement with the
symmetrical structure of the system.

Figure 7. Symmetrical chaotic solutions of map (1) with initial conditions (x0, y0) = (1,−2) and b = 0.5: (a) a = 1.34,
(b) a = 1.56, (c) a = 1.80, (d) a = 2.10.

Figure 8. Symmetrical hyperchaotic solutions of map (1) with initial conditions (x0, y0) = (1,−2) and b = 0.5: (a) a = 3.11,
(b) a = 3.142.
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Figure 9. Coexisting symmetrical hyperchaotic solutions of map (1) with initial conditions (x0, y0) = (1,−2) and b = 0.5:
(a) a = ±3.1, (b) a = ±3.11.

Figure 10. Coexisting symmetrical chaotic solutions of map (1) with b = 0.5 and initial conditions (x0, y0) = (±1,∓2):
(a) a = 1.3, (b) a = 3.1.

Figure 11. Basin of attraction for two coexisting symmetrical attractors of map (1), with a = 1.3,
b = 0.5.
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6. Offset Boosting

Offset boosting is also an important issue for discrete maps in the control of the
polarity of the sequences. However, there are substantial differences between discrete
systems and continuous systems in terms of the introduction of offset booster. For discrete
systems, an offset booster is usually necessary for both sides, whereas for continuous
systems the offset constant is only necessary for the variable on the right-hand side. Here,
in particular, let x → x + c , and hyperchaotic map (1) turns to be:{

xm+1 = sin(aym)− b sin(xm + c) + xm,
ym+1 = sin(a(xm + c))− b sin(ym) + ym.

(14)

Although the derived hyperchaotic map (14) has two different periods, namely, 2π
and 2π/a, the parameter c gives a simple control measure for offset boosting. As shown in
Figure 12, setting the initial condition (x0, y0) = (1− c,−2), different values of c scatter
the controlled phase orbits in the x-dimension. Corresponding discrete sequences with
associated offsets are shown on the right side of Figure 12a,b. Adding a constant in the y-
dimension can also easily result in offset boosting, which is ignored for the same operation.

Figure 12. Controlled discrete dynamics with various offsets in map (15) with initial conditions (1− c,−2): (a) a = 0.75, b =
0.5 (red: c = 6, green: c = 0, blue: c = −6), (b) a = 3.11, b = 1.55 (magenta: c = 1, cyan: c = 0, orange: c = −1).

7. Hardware Circuit Implementation

In this section, we describe an experiment based on STM32. The corresponding
hardware is shown in Figure 13. The numerical calculation was realized using the core
board of the single-chip microcomputer STM32F103VE-EK, and the ARM Cortex-M3 is
used as the main control chip of the system. The main frequency was set to 72 MHz.
The Cortex-M3 kernel supports single cycle multiplication instructions, which satisfies
the requirements of floating-point multiplication. The calculation speed was sufficient to
implement the chaotic map iterative equation. In addition, we set step 1 for each iteration.
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Figure 13. Experimental setup based on STM32 for map (1), with a = 3.11, b = 0.5.

The output was produced by DAC, mainly controlled by the control chip. Two
12-bit digital-to-analog converter modules were used as two independent output signal
sources. First, a variable calculation was completed by defining two arrays. Secondly, after
initializing the first element of the array, the array elements defined by the discrete equation
were updated through each iterative calculation. Each value of the array was amplified so
as to be represented as a 12-bit number. Finally, the collected variables were transferred
to the control registers of DAC to output the corresponding analog values. As shown
in Figure 14, through digital-to-analog conversion, the typical phase trajectories under
various parameters were obtained. Figure 15 shows the symmetrical pairs of attractors
under the polarity reversal of a. For coexisting attractors, the revision of the polarity of the
initial conditions extracts each petal of the attractor, as shown in Figure 16. The results
displayed on the oscilloscope, shown in Figures 14–16, correspond to those attractors
shown in Figures 4, 9 and 10, respectively.

Figure 14. Typical solutions of map (1) with initial conditions (x0, y0) = (1,−2) and b = 0.5: (a) a = 0.76, quasi-period;
(b) a = 1.300, chaos; (c) a = 1.853, periodic points; (d) a = 3.110, hyperchaos.
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Figure 15. Symmetrical hyperchaotic solutions of map (1) with b = 0.5 controlled by a: (a) a = ±3.1, (b) a = ±3.11.

Figure 16. Coexisting symmetrical solutions of map (1) with b = 0.5 controlled by initial conditions: (a) a = 1.3, (b) a = 3.1.

8. Discussion and Conclusions

In this paper, a 2-D hyperchaotic map with a symmetrical structure was constructed
by applying trigonometric functions, which exhibited various regimes of multistability.
According to the polarity balance induced by the parameters, it can trigger various sym-
metry evolutions. In some cases, the symmetry is controlled by the initial conditions.
Through circuit implementation using STM32, we verified the results of the numerical
simulation and the theoretical analysis. In addition, in phase space, the offset boosting
has been discussed in detail through linear transformation. In the future, the proposed
map could be applied in image encryption, chaotic secure communication, and in other
information security applications, in which controlled chaotic and hyperchaotic sequences
can be applied as random-like numbers.
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