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Abstract: Polarimetry is today a widely used and powerful tool for nondestructive analysis of the
structural and morphological properties of a great variety of material samples, including aerosols
and hydrosols, among many others. For each given scattering measurement configuration, absolute
Mueller polarimeters provide the most complete polarimetric information, intricately encoded in the
16 parameters of the corresponding Mueller matrix. Thus, the determination of the mathematical
structure of the polarimetric information contained in a Mueller matrix constitutes a topic of great
interest. In this work, besides a structural decomposition that makes explicit the role played by
the diattenuation-polarizance of a general depolarizing medium, a universal synthesizer of Muller
matrices is developed. This is based on the concept of an enpolarizing ellipsoid, whose symmetry
features are directly linked to the way in which the polarimetric information is organized.

Keywords: polarization optics; light scattering; polarimetry; depolarization; polarization object

1. Introduction

Among the different techniques for determining the polarimetric properties of material
media, absolute (or complete) Mueller polarimetry is particularly prominent because the
measured Mueller matrix for each experimental configuration (transmission, reflection,
scattering, angle of incidence and observation, spectral profile and spot-size of the probing
light, measurement time, etc.) provides up to 16 independent parameters.

Such parameters contain complete information of the second-order properties of the
medium regarding its linear polarimetric interaction with the probing electromagnetic
wave, but they are affected by bilinear and quadratic constraining inequalities derived
from the physical exigency that the eigenvalues of the positive semidefinite Hermitian
coherency matrix C associated with a given Mueller matrix M are nonnegative.

Measured Mueller matrices provide information on the nature, structure, morphology
and other properties of a huge variety of material samples [1], including scattering by
particles, aerosols and hydrosols [2–7] where the symmetries play a key role [8–11]. A way
to understand the physical information provided by M is to design a general algebraic or
geometric synthesizer of Mueller matrices, where the way in which the overall polarimetric
properties are generated arises in a natural manner.

From a geometric point of view, and, unlike what happens with the intensity normal-
ized Stokes parameters of two-dimensional polarized light states, which can readily be
represented geometrically by means of the Poincaré sphere, normalized Mueller matrices
correspond to points located into a 15-dimensional quadric and therefore do not admit a
simple and direct geometric representation akin to that of the Poincaré sphere. Neverthe-
less, it has been demonstrated that, up to a scale factor that regulates the mean intensity
transmittance m00 of the medium, any Mueller matrix can be represented by means of
a pair of characteristic ellipsoids [12]. Since such ellipsoids are not totally independent,
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the formulation of a general synthesizer of Mueller matrices based on them cannot be
performed in a simple and straightforward manner.

Furthermore, a general algebraic synthesizer of Mueller matrices has been devel-
oped [13] by using the normal form of a Mueller matrix [14–20] and tuning the indices of
polarimetric purity (P1, P2, P3) [21] of the central canonical type-I and type-II depolariz-
ers [19,20], which start with their maximal values P1 = P2 = P3 = 1 (nondepolarizing, or
pure, Mueller matrix) and decrease, in a consistent manner (0 ≤ P1 ≤ P2 ≤ P3 ≤ 1), so
that any Mueller matrix can be constructed through this procedure. The problem of the
synthesis of a general depolarizing Mueller matrix has also been studied by Cloude [22],
who developed a parameterization that allows for modeling any depolarizing Mueller
matrix from a pure one by considering all possible ways in which that the system can
depolarize light. Both the above-mentioned methods are essentially algebraic and do not
have a direct geometric representation.

As shown by us in a previous paper [23], the synthesis of Mueller matrices with zero
diattenuation and polarizance (hereafter called nonenpolarizing) can easily be performed as a
convex sum of r Mueller matrices whose associated coherency vectors are independent and
belong to the image subspace of the coherency matrix C associated with M, with r = rankC.
Nevertheless, the general case of Mueller matrices exhibiting nonzero diattenuation or
polarizance is more involved.

In this work, an alternative algebraic and geometric universal synthesizer of Mueller
matrices is presented, which is mainly based on a specific serial-parallel composition
procedure together with the geometric features of the enpolarizing ellipsoid defined from
the diattenuation and polarizance properties of the Mueller matrix to be synthesized. The
inverse problem of the arbitrary decomposition of a Mueller matrix into a convex sum of
pure ones is particularized to the structured decomposition, where the enpolarizing properties
are concentrated in one or two parallel components.

The approach presented allows for interpreting the physical information contained in
any Mueller matrix M in terms of that of up to four simple nondepolarizing components,
namely two diattenuators, whose combined enpolarizing features completely encompass
those of M, and up to two additional retarders (which have a particularly simple math-
ematical representation by means of orthogonal matrices). The enpolarizing properties
are intimately coupled to depolarizing ones and admit their geometric representation by
means of the enpolarizing ellipsoid.

Many experimental samples correspond in practice to the particular case of a two-
component structure, which is encoded in the corresponding enpolarizing ellipsoid without
the necessity of considering additional retarding components.

To perform a general synthesizer of Mueller matrices, the ratios between the correlative
components of the polarizance and diattenuation vectors appear as the starting parameters
that can be tuned with the only restriction to satisfy the symmetry and geometric properties
of the enpolarizing ellipsoid. Then, the remaining parameters necessary to build a generic
Mueller matrix can be chosen in a simple manner.

The contents of this paper are organized as follows: Section 2 contains a summary of
the numerous concepts and notations that are necessary to make the required developments
in further sections, and that constitutes a brief review on the main topics of Mueller algebra;
Section 3 is devoted to describe the structured decomposition applicable to any depolarizing
Mueller matrix; the case of two-component Mueller matrices is dealt with in Section 4,
where the concept of enpolarizing ellipsoid is introduced; the universal procedure for
synthesizing Mueller matrices is described in Section 5, and Sections 6 and 7 are dedicated
to the discussion and conclusions, respectively.

2. Theoretical Background

Linear polarimetric interactions refer to the change of the state of polarization of light
by the action of media and are represented mathematically by the transformation s

′
= Ms

of the Stokes vector s of the incident light beam into the Stokes vector s
′

of the emerging
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beam, where M is the Mueller matrix. When M transforms any totally polarized state s into
a totally polarized s

′
, M is said to be pure (also nondepolarizing or Mueller-Jones matrix) and,

wherever appropriate to distinguish it from the general depolarizing Mueller matrices, it is
denoted as MJ . For many purposes, it is useful to express M (pure or not) in the partitioned
form [24,25]

M = m00
^

M,
^

M ≡
(

1 DT

P m

)
, (1)

where the superscript T indicates transpose, m00 is the mean intensity coefficient (MIC) (viz.
the ratio between the emerging and incident intensities for incident unpolarized light),
while D and P are the diattenuation and polarizance vectors, whose magnitudes D and P
are the diattenuation and polarizance, respectively.

A measure of the closeness of M to a pure Mueller matrix is given by the degree of
polarimetric purity (or depolarization index [26]) defined as

P∆ =

√
tr
(
MTM

)
−m2

00
3m2

00
=

√
1
3
(D2 + P2) + P2

S , (2)

where PS is the degree of spherical purity, defined as [27,28]

PS ≡
1√
3

√√√√ 3

∑
k,l=1

m2
kl . (3)

P∆ varies from P∆ = 0 for a perfect depolarizer represented by M∆0 = diag(m00, 0, 0, 0),
which exhibits maximum polarimetric randomness, up to P∆ = 1, which is genuine of
pure states. Concerning PS, it is limited to 0 ≤ PS ≤ 1, with PS = 0 for depolarizing
media with m = 0, and the maximum PS = 1 is exclusively achieved by pure retarders
(P = D = 0,m = mT). Since diattenuation and polarizance have a common nature [27–29]
it is sometimes useful to consider the degree of polarizance PP defined as

PP ≡
√

P2 + D2

2
. (4)

Media with nonzero degree of polarizance are called enpolarizing, because they have
the ability to increase the degree of polarization of certain incident polarized light beams.
(recall that the concepts of diattenuation and polarizance should be interchanged when the
directions of the incident and emerging light beams are interchanged [30]).

The difference between the magnitudes D and P of vectors D and P play an important
role in the structured decomposition described in Section 3, so that it is useful to define the
main enpolarizing vector Q of M as Q = D when D > P and Q = P when P > D, so that the
magnitude of Q is Q = max(D, P).

In the case of pure Mueller matrices (P∆ = 1), they can always be expressed as [31]

MJ = m00
^

MJ ,
^

MJ =

(
1 DT

mRD mRmD

)
, mD ≡ (sin κ)I3 + (1− sin κ)

^
D⊗

^
D

T

, mR = mT
R, detmR = +1,

sin κ ≡
√

1− D2, I3 ≡ diag(1, 1, 1),
^
D ≡ D/D.

 (5)

Pure Mueller matrices always satisfy D = P [32]. When mR = I3, then MJ is usually
denoted as MD and corresponds to a normal diattenuator [33,34] (or homogeneous diattenua-
tor [35]), while D = 0 (i.e., zero diattenuation-polarizance and m = mR) is characteristic of
retarders, which are denoted as MR [30].

For any M, the Mueller matrix Mr corresponding to the polarimetric interaction
when the incident and emerging electromagnetic waves are interchanged is given by
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Mr = XMTX, with X = diag(1, 1,−1, 1) [36,37]. Note that even though X is not a Mueller
matrix (it does not satisfy the covariance conditions) both MT and Mr are Mueller matrices
insofar as M is a Mueller matrix [38,39].

Leaving aside experimental errors in measured Mueller matrices, the characteristic
conditions for a real 4 × 4 matrix M to be a Mueller matrix are given by the combination of

(a) Covariance conditions [40]: λi ≥ 0, where λi (i, j = 0, 1, 2, 3) are the eigenvalues of the
associated (Hermitian) coherency matrix C(M), whose elements cij (i, j = 0, 1, 2, 3)
are defined as [41]

cij =
1
4 tr
(
G∗i GjM

)
,G0 ≡


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, G1 ≡


0 1 0 0
1 0 0 0
0 0 0 i
0 0 −i 0

, G2 ≡


0 0 1 0
0 0 0 −i
1 0 0 0
0 i 0 0

, G3 ≡


0 0 0 1
0 0 i 0
0 −i 0 0
1 0 0 0


,

(6)

and, conversely,
mij = tr(G∗i GjC), (7)

where * stands for complex conjugate.
(b) Passivity condition: m00(1 + Q) ≤ 1, with Q = |Q| = max(D, P) [39,42].

When passivity constraints are not considered (as for instance in relative polarimetry,
where M is measured up to a positive scale factor) it is common to represent all the equiva-

lence class of Mueller matrices proportional to M by means of
^

M ≡M/m00. Nevertheless,
^

M only satisfies the passivity condition in the particular case that P = D = 0, and the less

restrictive passive representative of M is the passive form
~

M of M given by [42]

~
M ≡ 1

1 + Q

(
1 DT

P m

)
, [Q ≡ max(D, P)], (8)

whose MIC m̃00 ≡ 1/(1 + Q) is the largest one compatible with passivity condition.
The structure of polarimetric purity-randomness of M is intrinsically related to the

normalized eigenvalues λ̂i ≡ λi/m00 of C (taken so as to satisfy λ̂0 ≥ λ̂1 ≥ λ̂2 ≥ λ̂3),
and a complete quantitative description of the polarimetric purity of the medium requires
considering the three indices of polarimetric purity (IPP), defined as [21]

P1 ≡ λ̂0 − λ̂1, P2 ≡ λ̂0 + λ̂1 − 2λ̂2, P3 ≡ λ̂0 + λ̂1 + λ̂2 − 3λ̂3, (9)

which, together with P and D, provide complete information on the depolarizing properties
of M in terms of invariant quantities under reversible transformations (i.e., dual-retarder
transformation, see below) [28,43]. The IPP satisfy the nested inequalities 0 ≤ P1 ≤ P2 ≤
P3 ≤ 1, so that their values run through different physical situations from those of pure
Mueller matrices P1 = P2 = P3 = 1 (P∆ = 1), down to P1 = P2 = P3 = 0 (P∆ = 0) for
perfect depolarizers [21].

Conversely, the components of purity (CP) [27,28], namely D, P and PS contain full
information on the sources of polarimetric purity (diattenuation, polarizance and spher-
ical purity), which is complementary to that provided by the IPP. Thus, since P∆ can be
calculated either from the IPP or from the CP through the relations [27]

P2
∆ =

1
3

(
2P2

1 +
2
3

P2
2 +

1
3

P2
3

)
=

1
3

(
D2 + P2 + 3P2

S

)
, (10)

PS can be calculated from the set of five parameters (P1, P2, P3, D, P) that constitute a
minimum set of independent scalar descriptors fully characterizing the quantitative and
qualitative depolarizing invariant properties of the medium represented by M.
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The Mueller matrix M representing the serial action of a cascade of polarizing devices
with Mueller matrices M1, M2 . . . Mn is given by their matrix product M = Mn . . . M2M1
(serial composition), while the Mueller matrix of a parallel composition of devices which
exhibit respective relative cross sections pi with respect to the total area covered by the
incident beam on the sample is given by the convex sum M = ΣpiMi, Σpi = 1.

Among the serial decompositions of a Mueller matrix M, the dual-retarder transforma-
tions [43] are defined as MR2MMR1, MR1 and MR2 being the Mueller matrices of respective
retarders (in general elliptical), and can be expressed as

ME = MR2MMR1 =

(
1 0T

0 mR2

)
m00

(
1 DT

P m

)(
1 0T

0 mR1

)
= m00

(
1 DTmR1

mR2P mR2mmR1

)
, (11)

Dual-retarder transformations are called reversible because, unlike what happens
with serial transformations including enpolarizing media, they do not involve either
loss of intensity (which can never be recovered by the action of natural passive media),
or reduction of the degree of polarization (which cannot be recovered by the action of
nonenpolarizing media).

Matrices ME obtained through dual-retarder transformations of M are called invariant-
equivalent to M because the depolarizing and enpolarizing properties of M are invariant
under such transformations.

Consider now the following modified singular value decomposition of the 3× 3 submatrix
m, of M

m = mROmAmRI ,
[mA ≡ diag(a1, a2, εa3), a1 ≥ a2 ≥ a3 ≥ 0, ε ≡ (detm)/|detm|], (12)

where (a1, a2, a3) are the singular values of m, taken in decreasing order, so that the so-
called arrow decomposition of M is defined as [27,29]

M = MROMAMRI ,

MA ≡ m00

(
1 DT

A
PA mA

)
= MT

ROMMT
RI = m00

(
1 DTmT

RI
mT

ROP mT
ROmmT

RI

)
,[

mA ≡ diag(a1, a2, εa3), MRI ≡
(

1 0T

0 mRI

)
, MRO ≡

(
1 0T

0 mRO

)]
,

(13)

where the Mueller matrix MA is the so-called arrow form of M [29]. From its very definition,
MA has six zero elements (namely the off-diagonal elements of mA) and its main virtue
among other dual-retarder transformations, is that it is free of retardance information,
which is fully contained in the entrance and exit retarders represented by MRI and MRO
respectively [28]. Therefore, MA contains all invariant information on diattenuation, polar-
izance and depolarizing properties in a particularly simple and condensed manner, and
the following ten independent physical quantities are invariant under the transformation
from M to MA [43]

m00, P, D, a1, a2, a3, P1, P2, PTmD, detM, (14)

or, equivalently, the set of six independent physical invariants (m00, D, P, P1, P2, P3), to-
gether with the two pairs of orientation angles (ϕDA, χDA) and (ϕPA, χPA) of the diatten-
uation and polarizance vectors, DA and PA, of MA, respectively. The diattenuation and
polarizance vectors of M are recovered from those of MA through the respective rotations
(in the Poincaré sphere representation) D = mT

RIDA and P = mROPA, which are directly
determined from the entrance and exit retarders MRI and MRO of M.

Obviously, other important invariant parameters like PP, PS and P∆ can be derived
from the above-mentioned sets. In particular, the degree of spherical purity is just deter-

mined by the singular values of m, PS(M) = PS(MA) =
√
(a2

1 + a2
2 + a2

3)/3.
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In the special case where P = D = 0, the arrow form of M corresponds to an intrinsic
depolarizer (or diagonal depolarizer) MA = m00diag(1, a1, a2, εa3), which is free from both
enpolarizing (dichroism) and retarding (birefringence) anisotropies [43].

Regarding parallel decompositions of M into pure components, the most general
formulation is given by the so-called arbitrary decomposition [1,44]

M =
r
∑

i=1
kiMJi =

r
∑

i=1
kim00i

^
MJi,r = rankC(M), ki =

1

m00i

(
^
w

†

i C−
^
wi

) ,
r
∑

i=1
ki = 1

,
(15)

where
^
wi (i = 1, . . . , r) is an arbitrary set of 4-dimensional independent complex unit

vectors belonging to the image subspace of C(M) and C− is the pseudoinverse of C
defined as C− = UD−U†, D− being the diagonal matrix whose r first diagonal elements
are 1/λ1, 1/λ2, . . . , 1/λr (i.e., the inverses of the nonzero eigenvalues of C) and the last
4− r elements are zero.

Note that the rank r of C(M) is just the number of pure components of the arbitrary

decomposition of M. When r = 1 (i.e., P∆ = 1) a single coherency vector
^
w determines

the corresponding pure Mueller matrix MJ as well as its associated pure coherency matrix

CJ = m00(
^
w⊗ ^

w
†
) (where ⊗ indicates the Kronecker product and the dagger stands for

conjugate transpose). The expressions for the elements mij of MJ in terms of the associated

coherency vector w =
√

m00
^
w are given by [41]

mij = m00
^
w

†
(G∗i Gj)

^
w. (16)

Conversely, the elements wk (k = 0, 1, 2, 3) can be expressed as follows in terms of the
associated pure Mueller matrix MJ [41]

wk = eiφ
√

trMJ

2
tr
(
G∗k GkMJ

)
tr
(
GkMJ

) , (17)

where ϕ is an arbitrary phase without physical significance.
The coherency vectors associated with retarders will be used in further analyses and

have the general form [41]

^
wR = eiγ


i cos ∆/2

cos 2α sin ∆/2
sin 2α sin ∆/2 cos δ
sin 2α sin ∆/2 sin δ

, (18)

where γ is an arbitrary phase without physical significance.

3. Structured Decomposition of a Mueller Matrix

It has been demonstrated [23,42] that, among the infinite possible arbitrary decom-
positions of any given Mueller matrix M, it is always possible to perform the structured
decomposition described below, which has two alternative forms depending on whether the
diattenuation equals the polarizance or not, and can be written as follows in terms of the

passive form
~

M of M.

(a) P = D
~

M = k1
~

MJ1 +
r

∑
i=2

kiMRi. (19)
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(b) P 6= D
~

M = k1
~

MJ1 + k2
~

MJ2 +
r

∑
i=3

kiMRi. (20)

where
~

MJ1 and
~

MJ2 represent passive forms of respective pure Mueller matrices with
nonzero diattenuation, while MRi represent retarders (hence, pure media with zero
diattenuation-polarizance).

In case (a), all enpolarizing properties are located in
~

MJ1, whose diattenuation and

polarizance vectors are proportional to those of
~

M, respectively, and the remaining r− 1

pure components MRi are retarders. In case (b), the components
~

MJ1 and
~

MJ2 have nonzero

diattenuation, with Q(
~

MJ1) ↑↑ Q(
~

MJ2) , (the double vertical bar means that vectors on
both sides are parallel, with the same direction); while the remaining r− 2 pure components
MRi are retarders.

To describe the procedure to apply the structured decomposition, let us first consider
depolarizing Mueller matrices satisfying D = P, for which the structured decomposition of
M takes the form shown in Equation (19) and can be performed through the following steps:

(1) Take vectors D and P of M as well as any proper orthogonal matrix mR satisfying

P = mRD; then
~

MJ1 is built as (see Equation (5))

~
MJ1 =

1
1 + D

(
1 DT

mRD mRmD

)
,

[
mD ≡

√
1− D2I3 +

(
1−

√
1− D2

) ^
D⊗

^
D

T
]

, (21)

(2) By means of Equation (17), calculate the coherency vector
~
wJ1 associated with

~
MJ1

(3) Calculate r = rankC(M) and take r− 1 arbitrary independent unit coherency vectors
of the form

^
wRi =


i cos ∆i/2

cos 2αi sin ∆i/2
sin 2αi sin ∆i/2 cos δi
sin 2αi sin ∆i/2 sin δi

, (i = 2 . . . r− 1), (22)

(4) By means of Equation (16) (whit m00 = 1), calculate the Mueller matrices MRi of the

retarders associated with
^
wRi.

(5) Through Equation (15), calculate the coefficients ki corresponding to
~

MJ1 and MRi in

the structured decomposition of
~

M in Equation (19).

(6) Finally, since any passive Mueller matrix M can be expressed as M = p
~

M with p ≤ 1,
the structured decomposition of M is obtained as

M = p
~

M = k1

(
p

~
MJ1

)
+

r

∑
i=2

ki(pMRi). (23)

The application of the structured decomposition of M to the more general case where
D 6= P requires a more involved analysis whose steps are the following:

(1) Take D and P of M and determine the main enpolarizing vector Q(M) and its magni-
tude Q = max(D, P), so that Q = D if D > P, and Q = P if P > D.

(2) Calculate the passive form
~

M of M as
~

M = m̃00
^

M, with m̃00 = 1/(1 + Q), so that

M = p
~

M with p = m00(1 + Q) ≤ 1.

(3a) If r = 4, take an arbitrary pair of mutually independent coherency vectors,
^
wR3 and

^
wR4, of the form (18) and calculate their associated Mueller matrices of the retarders
MR3 and MR4; calculate their weights, k3 and k4, in the structured decomposition
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(20) of
~

M by means of Equation (15), and perform the polarimetric subtraction [45]

(
~

M− k3MR3 − k4MR4)/(1−k3 − k4) ≡
~

M2; go to step 4.

(3b) If r = 3, take an arbitrary coherency vector
^
wR3 of the form (18) belonging to the image

subspace of C(M) and calculate its associated Mueller matrix MR3 (retarder); calculate the

weight k3 of MR3 in the structured decomposition (20) of
~

M by means of Equation (15),

and then perform the polarimetric subtraction (
~

M− k3MR3)/(1−k3) ≡
~

M2; go to step
4.

(3c) If r = 2, set
~

M ≡
~

M2 and go to step 4.

(4) Calculate the enpolarizing components
~

MJ1 and
~

MJ2 of
~

M2 as well as their respec-
tive weights, k′1 and k′2 through the procedure described in ([42], Section 9). Such
procedure consists of the following steps:

(4.1) Apply a dual-retarder transformation MR2
~

M2MR1 ≡
~

MT2 that converts
~

M2 to a

tridiagonal one
~

MT2.

(4.2) Raise the equations obtained from C(
~

MT2)w
′
J2 = v ≡ (v1, v2, v3, v4)

T, where the co-
herency vector w

′
J2 is set with the form w

′
J2 = (ca1 + ia2, a1 + ica2, a3 + ica4, a3 − ica3),

c and ai being real parameters whose values are taken in accordance with the four
corresponding parametric equations 0 = Rev1 − cRev2, 0 = cRev3 + Imv4, 0 =
cRev4 − Imv3, and 0 = cImv1 − Imv2, which can be solved as indicated in [42]; this
ensures that w

′
J2 belongs to the image subspace of C(

~
MT2) and therefore it can be

considered as the coherency vector of a physically realizable parallel component

of
~

MT2.
(4.3) Through Equation (16), calculate the pure Mueller matrix M

′
J2 associated with the

obtained coherency vector w
′
J2 and take its passive form

~

M
′
J2.

(4.4) Through Equation (15), calculate the weight k′2 of
~

M
′
J2 as a parallel component

of
~

MT2.

(4.5) Perform the polarimetric subtraction (
~

MT2 − k′2
~

M
′

J2)/(1−k′2) ≡
~

M
′

J1, so that by set-

ting k′1 = 1− k′2, the parallel decomposition
~

MT2 = k′1
~

M
′

J1 + k′2
~

M
′

J2 is completed.

(4.6) Retrieve
~

M2 by means of the dual-retarder transformation
~

M2 = MT
R2

~
MT2MT

R1, so

that,
~

M2 = k′1
~

MJ1 + k′2
~

MJ2, where
~

MJ1 = MT
R2

~
M
′

J1MT
R1 and

~
MJ2 = MT

R2

~
M
′

J1MT
R1.

(5) Set ki ≡ (1− k3 − k4)k′ i (i = 1, 2)

(6) Obtain the structured decomposition of
~

M as

~
M = k1

~
MJ1 + k2

~
MJ2 +

r

∑
i=3

kiMRi, (24)

or, by considering any MIC m00 of M compatible with passivity, the maximal MIC
m̃00 = 1/(1 + Q) used above may be replaced by m00 < m̃00 and the parallel decom-
position of M can be performed as

M = k1

(
p

~
MJ1

)
+ k2

(
p

~
MJ2

)
+

r

∑
i=3

ki(pMRi),[p ≡ m00/m̃00]. (25)

Besides the enpolarizing properties are concentrated in one or two components, a
peculiarity of the structured decomposition is that when D > P (D < P) the diattenuation
(polarizance) vectors of M, M

′
J1 and M

′
J2 are parallel with the same direction [42]. It

should be noted that the structured decomposition is not unique, but corresponds to a
family of solutions.
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4. General Structure of a Two-Component Mueller Matrix. The Enpolarizing Ellipsoid

The interest of studying two-component Mueller matrices is twofold; firstly, many
experimental samples correspond in practice to this category [46], and, conversely, a
two-component enpolarizing equivalent constituent appears as the core of the structured
decomposition and allows for establishing the general synthesis procedure in Section 5.

Consider the arrow form MA of a depolarizing Mueller matrix M satisfying r = 2
[with r = rankC(M) = rankC(MA)] and P 6= D. In accordance with de definition of MA
in Equation (26), the following notations and conventions will be used

MA = m00

(
1 DT

A
PA mA

)
,
[
mA = diag(a1, a2, εa3), 0 ≤ a3 ≤ a2 ≤ a1, ε = detm

|detm| = ±1
]
,

DA ≡

 DA1
DA2
DA3

 ≡ DA

 cos 2χDA cos 2ϕDA
cos 2χDA sin 2ϕDA

sin 2χDA

, PA ≡

 PA1
PA2
PA3

 ≡ PA

 cos 2χPA cos 2ϕPA
cos 2χPA sin 2ϕPPA

sin 2χPA

,

[−π/4 ≤ χDA, χPA ≤ π/4, 0 ≤ ϕDA, ϕPA < π].

(26)

For the sake of conciseness, DA > PA is considered to be the case (otherwise, when
DA < PA, the transpose matrix MT

A instead MA should be used in the subsequent develop-
ments).

Condition r = 2 (i.e., 0 ≤ P1 < 1 and P2 = P3 = 1) is equivalent to state that the four
third-order principal minors are zero valued [in addition to detC(MA) = 0]. Furthermore,
at least one second-order principal minor is necessarily nonzero. All of these conditions
result in the exigency that the end point of the diattenuation vector DA should be located
in the following enpolarizing ellipsoid whose semiaxes qi are defined in terms of the ratios
ti = PAi/DAi (i = 1, 2, 3)

1 =
D2

A1
q2

1
+

D2
A2

q2
2

+
D2

A3
q2

3
,


q1 ≡

√(
1− t2

2
)(

1− t2
3
)
/(1 + t1t2t3),

q2 ≡
√(

1− t2
1
)(

1− t2
3
)
/(1 + t1t2t3),

q3 ≡
√(

1− t2
1
)(

1− t2
2
)
/(1 + t1t2t3),

 (27)

Where, necessarily |ti| < 1, while, in addition, the ordering a3 ≤ a2 ≤ a1 established for
the diagonal elements of MA implies that |t3| ≤ |t2| ≤ |t1|, which in turn implies that
q3 ≤ q2 ≤ q1. Also, if PAi = DAi for some component ‘i’, then necessarily PAi = DAi = 0.
Therefore, the arrow form MA of a Mueller matrix M with rankC(M) = 2 exhibits a
peculiar and very strict hierarchy of the involved physical parameters.

The diagonal elements of MA are linked to the ratios ti as

a1 =
t1 + t2t3

1 + t1t2t3
, a2 =

t2 + t1t3

1 + t1t2t3
, a3 =

t3 + t1t2

1 + t1t2t3
. (28)

Moreover, in addition to condition (27), for a given value of D ≡ |DA| = |D| the end
point of the diattenuation vector DA is located on the sphere defined by D2 = D2

A1 + D2
A2 +

D2
A3 so that all physically realizable configurations for DAi are given by the points belonging

to the intersection of the indicated sphere and the enpolarizing ellipsoid (Figure 1).
Thus, for any particular set of ratios ti, the semiaxes qi are determined through

Equation (27) and therefore the feasible values of D are limited by q3 ≤ D ≤ q1, while the
azimuth and ellipticity angles ϕDA (with 0 ≤ ϕDA < π) and χDA (with |χDA| ≤ π/4) of
DA are mutually linked through

cos2 2ϕDA =
q2

1q2
2

q2
3
(
q2

2 − q2
1
)[ q2

3 − D2

D2 cos2 2χDA
−

q2
3

q2
2
+ 1

]
, (29)

Once a set of parameters ti has been chosen, the intersection between the enpolarizing
ellipsoid and the sphere of radius D varies depending on the value taken for D (with
q3 ≤ D ≤ q1). The smaller feasible value for D is D = q3, for which the intersection is
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given by two single points when q3 < q2, by an entire circle when q3 = q2, or by the entire
sphere when q3 = q2 = q1. A sequence of five representative configurations is shown in
Figure 1, where, in order to make a simple and clear description, the three semiaxes are
taken with different values, q3 < q2 < q1 (the remaining cases of ellipsoids of revolution
can be analyzed straightforwardly). The symmetry axes of the enpolarizing ellipsoid
determine the directions XYZ along which lie the semiaxes q1, q2 and q3, respectively. The
feasible curves start with the said pair of points corresponding to D = q3 (such points are
antipodal and located on axis Z, Figure 1a), and as D increases in the interval q3 < D < q2,
the intersection become pairs of closed curves on the surface of the enpolarizing ellipsoid,
which are symmetrically located with respect to the plane XY (Figure 1b). When D = q2,
the curves become a pair of circles that intersect at points located symmetrically on both
sides of axis Y (Figure 1c). As D exceeds q2 and increases, the intersection is given by
two closed curves symmetrically located with respect to the plane YZ (Figure 1d). In the
limiting case D = q1, the intersection is given by two antipodal points located in axis X
(Figure 1e).
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Figure 1. The feasible configurations of the arrow form MA of a two-component of a Mueller matrix are determined by the
intersection between the sphere D2 = D2

A1 + D2
A2 + D2

A3 and the enpolarizing ellipsoid, whose semiaxes q1, q2 and q3 (with
q3 < q2 < q1 ) lie in the directions XYZ, respectively: (a) D = q3, the feasible region is given by a pair of antipodal contact
points located in axis Z; (b) q3 < D < q2, the feasible region is given by a pair of intersection curves symmetrically located
with respect to the plane XY; (c) D = q2, the feasible region is given by a pair of crossed circles; (d) q2 < D < q1, the feasible
region is given by a pair of intersection curves symmetrically located with respect to the plane YZ; (e) D = q1, the feasible
region is given by a pair of antipodal contact points located in axis X.

An animated representation of the intersection of the sphere of radius D and the
enpolarizing ellipsoid is shown in Supplementary Materials.
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5. General Procedure for the Synthesis of Mueller Matrices

From the results presented in Section 4, a systematic procedure to synthesize general
Mueller matrices is the following, where the first stage is a.1, a.2, a.3 or a.4 depending on the
relative values of the diattenuation and polarizance of the Mueller matrix to be synthesized:

(a.1) Construction of an enpolarizing two-component Mueller matrix with D > P.

(1) Take an arbitrary set of real parameters t1, t2, t3 satisfying |t3| ≤ |t2| ≤ |t1| < 1.
(2) Calculate the semiaxes qi of the associated enpolarizing ellipsoid by means Equation (27).
(3) Fix a value for D satisfying q3 ≤ D ≤ q1.
(4) Fix a value for χDA (|χDA| ≤ π/4).
(5) Determine the corresponding value for ϕDA through Equation (29), so that vector DA

is fully determined by Equation (26).
(6) Calculate the components of vector PA as PAi = tiDAi.
(7) Calculate a1, a2, a3 through Equation (28).
(8) Calculate m̃00 = 1/(1 + D).

(9) Build
~

MA2 by means of Equation (26).
(10) Take two arbitrary Mueller matrices MRI and MRO of the entrance and exit retarders

and build the two-component Mueller matrix
~

M2 = MRO
~

MA2MRI .
(11) Take an arbitrary real and positive coefficient k satisfying k ≤ 1.
(12) If k = 1, the synthesis has been completed, resulting in the passive form of a generic

two-component Mueller matrix
~

M2 with D > P. If k < 1 go to (b).

(a.2) Construction of an enpolarizing two-component Mueller matrix with P > D.

(1) Follow the same steps from (1) to (9) as in (a.1) and then take
~

M
T

A2 instead of
~

MA2.

Then, rename it as
~

MA2, (now
~

MA2 satisfies P > D).
(2) Take two arbitrary Mueller matrices MRI and MRO of respective retarders and build

the two-component Mueller matrix
~

M2 = MRO
~

MA2MRI .
(3) Take an arbitrary real and positive coefficient k satisfying k ≤ 1.
(4) If k = 1, the synthesis has been completed, resulting in the passive form of a generic

two-component Mueller matrix
~

M2 with P > D. If k < 1 go to (b).

(a.3) Construction of an enpolarizing two-component Mueller matrix with P = D > 0.

(1) Build an arbitrary pure Mueller matrix
~

MJ1 by means of Equation (5), (the diattenu-
ation and polarizance vectors, D and P, will coincide with those of the synthesized
Mueller matrix. Take m̃00 = 1/(1 + D).

(2) Take an arbitrary Mueller matrix of a retarder MR2 (due to their different structures,

the independence of the coherency vectors associated with
~

MJ1 and MR2 is directly
satisfied).

(3) Take two arbitrary real and positive coefficients k1 and k2 satisfying k1 + k2 ≤ 1.

(4) Build
~

M2 = k1
~

MJ1 + k2MR2
(5) If k1 + k2 = 1, the synthesis has been completed, resulting in the passive form of a

generic two-component Mueller matrix
~

M2 with P = D. If k1 + k2 < 1, then denote
k1 + k2 ≡ k and go to (b).

(a.4) Construction of a non-enpolarizing two-component Mueller matrix (P = D = 0).

(1) Take two arbitrary different retarders MR1 and MR2 (note that their associated co-
herency vectors are independent inasmuch as MR1 6= MR2).

(2) Take two arbitrary real and positive coefficients k1 and k2 satisfying k1 + k2 ≤ 1.
(3) Build M2 = k1MR1 + k2MR2
(4) If k1 + k2 = 1, the synthesis has been completed, resulting in a generic two-component

nonenpolarizing Mueller matrix. If k1 + k2 < 1, then denote k1 + k2 ≡ k and go to (b).

(b) Addition of retarders to complete the desired number of independent components.



Symmetry 2021, 13, 983 12 of 15

(1) Fix a value for r = 3,4, which determines the number of pure arbitrary components of
the Mueller matrix M to be synthesized.

(2) Take a number of r − 2 coherency vectors
~
wRi (i = 3 if r = 3, or i = 3,4, if r = 4) that

are mutually independent and also independent of the eigenvectors of the coherency

matrix C(
~

M2) and build the corresponding Mueller matrices of the retarders MRi (a
single matrix MR3 if r = 3, or a pair, MR3 and MR4, if r = 4).

(3) Fix the relative weights k3 (if r = 3), or k3 and k4 (if r = 4) so that convexity condition
k + k3 = 1 (if r = 3), or k + k3 + k4 = 1 (if r = 4) is satisfied.

(4) The r-component passive form of the synthesized Mueller matrix is then obtained as
~

M = k
~

M2 + k3MR3 (if r = 3) or
~

M = k
~

M2 + k3MR3 + k4MR4 (if r = 4).

The above procedure allows for generating the entire space of Mueller matrices in their

passive forms. Obviously, the multiplication of
~

M by an arbitrary real positive coefficient

p < 1 produces a Mueller matrix M = p
~

M, so that any Mueller matrix can be synthesized.

6. Discussion

The procedure developed allows for synthesizing any Mueller matrix in a systematic
manner. The case where the synthesized M lacks diattenuation and polarizance (nonenpo-
larizing Mueller matrix) is particularly simple and does not require the use of the concept
of enpolarizing ellipsoid. In general, this kind of matrices is equivalent to parallel combina-
tions of retarders, and can also be achieved by parallel combinations of pure media whose
resulting vectors D and P are zero, and therefore PS = P∆, so that all the polarimetric purity
comes from the closeness of M to a diagonal pure Mueller matrix.

Depolarizing Mueller matrices with P = D > 0 are synthesized through the parallel
composition of a pure medium whose Mueller matrix has the form in Equation (5) that
encompasses all enpolarizing properties, and a number of up to three retarders whose
coherency vectors are mutually independent. Any system with P = D > 0 is polarimetri-
cally indistinguishable of a system where all enpolarizing power is exhibited by a single
pure component.

Depolarizing Mueller matrices with P 6= D are synthesized through two consecu-
tive stages.

The first stage consists of generating a two-component enpolarizing Mueller matrix
with the desired arbitrary properties. The arrow form of a Mueller matrix has very peculiar
properties regarding the hierarchy and structure of the enpolarizing information encoded
in the components of the diattenuation and polarizance vectors, and allows for defining
the associated enpolarizing ellipsoid. These features are exploited in such a manner that
the mathematical conditions to obtain a matrix that satisfies the covariance and passivity
criteria to be a Mueller matrix are achieved in a direct and natural manner through the
use of the enpolarizing ellipsoid, whose curves of intersection with the sphere of radius
Q = max(P, D) determine the feasible region of solutions compatible with the prescribed
enpolarizing parameters. A general two-component Mueller matrix is then obtained
through a reversible dual-retarder transformation of the previously synthesized arrow
form, so that the overall diattenuating and polarizing properties of the medium as well as
other invariant properties like the indices of polarimetric purity, the degree of polarimetric
purity and the degree of spherical purity are preserved.

It is remarkable that two-component Mueller matrices appear in many physical situa-
tions of interest, including scattering by particles, as, for instance, in aerosols or hydrosols.
Therefore, the general synthesis of two-component Mueller matrices constitutes, is by itself,
one of the main results of this work.

The second stage consists of adding the required number of one or two independent
retarders until the prescribed number r of components of the synthesized Mueller matrix
is completed.
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7. Conclusions

The problem of designing a universal synthesizer, or generator, of depolarizing
Mueller matrices has been addressed by taking advantage of a number of concepts in-
volved in polarization theory, such as the covariance and passivity conditions characterizing
Mueller matrices, the serial and parallel compositions of different kinds of pure media, the
coherency matrix associated with a Mueller matrix, the arrow form of a Mueller matrix,
etc., together with some original approaches presented in this work such as the structured
composition–decomposition of a Mueller matrix and the enpolarizing ellipsoid. In fact,
the nature of the developments required involves most of the notions related to Mueller
matrices algebra.

Mueller matrices represent the light–matter linear interaction regarding polarization
and can be classified into pure (nondepolarizing, P∆ = 1) and depolarizing (P∆ < 1).
Furthermore, both pure and depolarizing media may exhibit enpolarizing properties
(PP > 0) and the general synthesis of Mueller matrices can be performed in a specific
manner through a series of different physical prescriptions that complete the entire space
of Mueller matrices, namely:

Pure. As it is well-known, pure media are characterized by matrices of the form in
Equation (5).

Two-component, with P = D = 0. They are generated by the parallel composition (convex
sum) of pairs of arbitrary Mueller matrices of retarders, MR1 and MR2 (with MR1 6= MR2).

Two-component, with P = D 6= 0. They are generated by the parallel composition of the
Mueller matrices of an enpolarizing pure medium (MJ1) and a retarder (MR2).

Two-component, with P 6= D. They are generated by the parallel composition of two
Mueller matrices (MJ1 and MJ2) of enpolarizing pure media, respectively.

Three or four-component. They are generated by the parallel composition of a two-
component Mueller matrix and one or two retarders. As described in Section 5, the added
retarders should be independent in the sense that coherency vectors of all components
should constitute a basis (in general, nonorthogonal) in the image subspace of the coherency
matrix associated with the generated Mueller matrix.

The presented synthesis procedure is directly related to that of the structured decom-
position of a Mueller matrix, which is dealt with in Section 4, and provides more insight into
the theory and methods for the treatment and physical interpretation of Mueller matrices.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/sym13060983/s1, Video S1: Enpolarizing ellipsoid intersected by the sphere of radius D.
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