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Abstract: This research aims to improve the particle swarm optimization (PSO) algorithm by com-
bining a multidimensional search with a line search to determine the location of the air pollution
point sources and their respective emission rates. Both multidimensional search and line search
do not require the derivative of the cost function. By exploring a symmetric property of search
domain, this innovative search tool incorporating a multidimensional search and line search in the
PSO is referred to as the hybrid PSO (HPSO). Measuring the pollutant concentration emanating
from the pollution point sources through the aid of sensors represents the first stage in the process
of evaluating the efficiency of HPSO. The summation of the square of the differences between the
observed concentration and the concentration that is theoretically expected (inverse Gaussian plume
model or numerical estimations) is used as a cost function. All experiments in this research are
therefore conducted using the HPSO sensing technique. To effectively identify air pollution point
sources as well as calculate emission rates, optimum positioning of sensors must also be determined.
Moreover, the frame of discussion of this research also involves a detailed comparison of the results
obtained by the PSO algorithm, the GA (genetic algorithm) and the HPSO algorithm in terms of
single pollutant location detection, respectively. In the case of multiple sources, only the findings
based on PSO and HPSO algorithms are taken into consideration. This research eventually verifies
and confirms that the HPSO does offer substantially better performance in the measuring of pollutant
locations as well as emission rates of the air pollution point sources than the original PSO.

Keywords: particle swarm optimization; multidimensional search; atmospheric model

1. Introduction

With the rapid growth of industrial and agricultural activities in the developing
countries, the industrial and agricultural economic sectors are becoming the primary
and secondary sectors that play a major role in countries’ GDP. While the process of
product manufacturing triggers the releases of pollutants into the atmosphere within a
reasonable threshold, there are times when some industrial plants or farming activities
illegally release pollutants into the air well beyond this threshold. During the harvest
season, some farmers burn their fields after the harvesting to prepare for the next crops
instead of using alternatives such as burying the stubble or residues back into the ground.
Burning the fields is the fastest way to clean up the fields and it is followed by selling
their products such as local wild vegetables. This contributes to a gradual increase in the
practice of illegal land burning. The toxic fumes that emanate from industrial plants and
this field burning practice have been identified as the main cause of air pollution, which
affects the daily life and the health of people, especially in areas that are surrounded by
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mountains. This issue faced by the local population has led some researchers to try to
monitor the concentration of air pollution more accurately to inform those concerned [1–3].

However, if we want to be effective in our fight against pollution, we must first,
eradicate the roots of the problem instead of just treating the symptoms. This means being
able to identify the atmospheric pollution sources and their corresponding characteristics.
This data can be used by the local authorities for issuing factories or farms with an initial
warning while allowing an in-depth investigation of the real-time causes and sources of the
detected pollution. Hence, there are many researchers who are interested in this topic and
who have started improving some algorithms or models that can efficiently and effectively
specify the exact positions of pollution sources [4–8]. The problem of identification of
the pollution sources is reformulated into a highly nonlinear optimization. Heuristic
optimization methods, such as Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO), have been applied to solve this class of problems. A genetic algorithm is another
empirical search motivated by Charles Darwin’s theory of evolution [9–11]. The algorithm
imitates the procedure of natural selection where the fittest population are selected for
reproduction and produce the offspring which are the next generation. The algorithm
produces offspring which inherit the characteristic of their parents which will be a better
generation. This simple idea can be applied for searching for the best solution. There are five
important phases in GA which are initial population, fitness function, selection, crossover
and mutation. In 2013, Quan-min BU [5] proposed an improved genetic algorithm for
searching for pollution sources. Like GA, particle swarm optimization is another popular
heuristic optimization method. Indeed, PSO is based on the social behavior or large groups,
such as flying flocks of birds or fish schools. The moving direction and velocity of the
particles are calculated based upon their experience together with social interaction with
other particles in the swarm. The social interaction parameter such as cognitive, social and
inertia parameters are also introduced in the model.

There are comparative results between the performance of GA and PSO [12,13]. Both
methods are very popular mainly because of the implementation and the capability to solve
complex problems, e.g., [14–18]. The disadvantage of the GA is that it has high implemen-
tation cost and usually requires a higher number of iterations and high number of elements.
In particular, in this situation, the cost of each iteration is very high. Furthermore, GA
usually converges towards a local optimum rather than the global optimum of the problem,
while PSO tries to find the global optima because of their social interaction parameters.

More recently, to achieve effective methods for pollution management and satisfactory
emergency responses, there have been many results concerning improving the estimation
accuracy concerning airborne pollutant emission source information. In [19], Lang, J.
proposed an inversion model which combines the hybrid particle swarm optimization and
the Nelder–Mead simplex search method (PSO-NM) with the Gaussian dispersion model
to identify the source and to examine the impacts of different atmospheric conditions on
the identifications. In the same year [20] Li. H. employed the PSO-NM based on Gaussian
puff dispersion model on a three-dimensional neighborhood topology which improves
the performance of the PSO. More recently, Albani, R.A.S. [21] proposed an algorithm
combining accurate dispersion models, Tikhonov regularization and gradient-descent
optimization techniques estimating pollutant emission sources. Moreover, identifying the
multiple sources of air pollution locations has also been studied [22,23].

In this research, the focus is to identify a location of air pollution point source both
with and without emission rates by using a hybrid PSO (HPSO) on a Gaussian Plume
model and a numerical scheme for PDE. Indeed, this paper attempts to apply HPSO to
optimize an inverse model based on a numerical scheme of PDE. The HPSO algorithm is
a computational technique obtained by improving PSO. We modify the PSO algorithm
in two different ways. For the single-point source, the PSO method was first adjusted by
adding a multidimensional search. This method is known as the cyclic coordinate method.
Besides, a step resembling a mutation from a genetic algorithm (GA) was introduced to
identify the locations in two-point sources. Moreover, sensor placement was also designed
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to increase search efficiency. Finally, we apply the proposed method together with the
numerical method for solving PDE. With the numerical scheme, we will be able to apply
HPSO to a more complicated PDE model. This research is divided and presented as four
main sections. A brief description of the basics of the PSO algorithm, GA, dichotomous
search and cyclic coordinate methods constitute the first frame of discussion. Next, we
demonstrate how to apply the HPSO to find the atmospheric pollution point sources. The
results of this study and the appropriate parameters c1, c2, ω are discussed in the final part
where the single point source without determining the emission rate results are compared
with three algorithms consisting of HPSO, PSO and GA. It must be noted that, in the other
cases, only the results gained from the original PSO and HPSO are explained.

2. Preliminaries
2.1. Introduction to Particle Swarm Optimization (PSO)

In 1995, the robust evolutionary optimization algorithm inspired by the behavior of
organisms such as a flock of birds and fish schools was presented by R. Eberhart and J.
Kennedy [24]. It introduced another approach to solving a nonlinear optimization. For
the PSO system, an individual particle is a feasible solution in a search space looking for a
globally optimal solution. The moving direction and velocity of the particles are calculated
based upon their experience together with social interaction with other particles in the
swarm. The social interaction parameter such as cognitive, social and inertia parameters
are also introduced in the model. PSO is a computational technique using individual
improvement gathering with population competition to evaluate the solutions. The algo-
rithm is based on the simulation of the simple social behavior of some animals. In PSO,
the term particle is used instead of a feasible solution, a cell swarm instead of a subset
of a feasible solution and fitness function instead of an objective function. The particle
adjusts its trajectory toward its own previous best position and the previous best position
attained by any member of its neighborhood. The fitness function is used for deciding
which particle will survive or be eliminated. The locations of all particles are shifted by the
velocity equations as below.

Vn+1
i = ωVn

i + c1rn
1 (Xlbestn

i −Xn
i ) + c2rn

2 (Xgbestn −Xn
i ) (1)

Xn+1
i = Xn

i + Vn+1
i (2)

where

• P is the swarm’s size.
• ω is the inertia weight.
• c1 and c2 are two positive constants, which are called cognitive and social parame-

ter, respectively.
• rn

1 and rn
2 are two random numbers uniformly distributed within range [0, 1].

• Xn
i =

(
xn

i1, xn
i2, . . . , xn

iD
)T is the i-th particle of the D-dimensional in n-th iteration.

• Xlbestn
i = (xlbestn

i1, xlbestn
i2, . . . , xlbestn

iD)
T is the best previous position of i-th particle

in n-th iteration.
• Xgbestn = (xgbestn

1 , xgbestn
2 , . . . , xgbestn

D)
T is the best position of the swarm in n-th

iteration.
• Vn

i =
(
vn

i1, vn
i2, . . . , vn

iD
)T is velocity of i-th particle in n iteration.

In Equation (1), ωVn
i is the previous particle’s velocity weighted by the inertia weight

ω. Xlbestn
i − Xn

i is the direction vector from the i-th particle to the best of the known i-th
particle. The direction vector (Xgbestn

i − Xn
i ) is from the i-th particle to the best know

particle. The parameters c1 and c2 are the size controller of vectors in the second and the
third term, respectively. For more development on PSO and HPSO, see examples in [24–28].
The particle movement and a flowchart of the PSO algorithm are presented Figures 1 and 2.
Different versions of modified PSOs have also been proposed to solve different types of
non-linear optimization problems. See [29–32] for examples and more details.
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Figure 1. Schematic movement of a particle.

Figure 2. Flowchart of PSO algorithm.

2.2. Dichotomous Search Method

The dichotomous search also known as line search is the searching tool in one dimen-
sion for solving a non-linear programming problem. Consider the function f : R→ R to
be minimized over the interval [a, b]. First, we pick a small number ε > 0. Then, according
to the flowchart Figure 3, the Dichotomous search involves two steps as follows.

Initialization step: Choose the small constant 2ε > 0 and the final length of δ > 0.
Let [a1, b1] be the uncertain initial interval. Give k = 1 and then go to main step.

Main step :

1. Consider λk and µk given below.

λk =
ak + bk

2
− ε µk =

ak + bk
2

+ ε
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2. If f (λk) < f (µk) then ak+1 = ak and bk+1 = µk. Otherwise, let ak+1 = λk and
bk+1 = bk.

3. If bk − ak < δ, stop. Give k = k + 1 and do step 1.

Figure 3. Flowchart of dichotomous search method.

2.3. Cyclic Coordinate Method

The cyclic coordinate method is the multidimensional search without the assistant of
the derivative. The objective function f : Rn → R is the minimized form feasible solution x
along the suitable direction d by the Dichotomous search technique. More specifically, we
define the feasible solution

x = [x1, x2, ..., xn]
T

to be an n dimensional vector and let the d = [d1, d2, ..., dn]T be a zero vector in n dimensions
except for a 1 at the position that we are investigating. Therefore, the variable xi is updated
by xi + di, while the other variables are kept fixed. The summary below of this method
for minimizing the objective function f of multi-variables and a flowchart (Figure 4)
are illustrated.

Initialization step: Select a scalar ε > 0 to be used for terminating the method. Let
d = [d1, d2, ..., dn] be the searching small direction and choose the initial point x1. Before
going to the main step we have to substitute x1 for y1 and let k = j = 1.

Main step:

1. Begin with finding the optimal solution λ from minimizing the problem

f (yj + λdj)

subject to λ ∈ R

and then let yj+1 = yj + λ
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2. If j < n, replace j by j + 1 and repeat step 1. Otherwise, if j = n, go to step 3.
3. Let xk+1 = yn+1. If xk+1 − xk < ε, then stop. Otherwise, give y1 = xk+1 and j = 1,

surrogate k by k + 1 and go to step 1.

Figure 4. Flowchart of cyclic coordinate method.

3. Methodology
3.1. Hybrid Particle Swarm Optimization Method (HPSO)

Our hybrid PSO is inspired by a Genetic algorithm (GA) by which each particle can be
randomly mutated or evaluated to get to a new region of search domains. For that reason,
we incorporate the dichotomous search and the cyclic coordinate search into our PSO.
Furthermore, in order to avoid being stuck in some local optimal, we introduce additional
procedure to look for another possible local optimal; the procedure is explained as follows.

3.1.1. Optimization Problem Formulation

We begin with providing definitions of the variables in a particle. A particle repre-
sents a location of all n contamination point sources (m) and their emission rates (kg/s).
Therefore, the i-th particle

Xi = (xi, yi, Hi, Qi)

where

xi = [x1
i , x2

i , ..., xn
i ]

yi = [y1
i , y2

i , ..., yn
i ]

Hi = [h1
i , h2

i , ..., hn
i ]

Qi = [q1
i , q2

i , ..., qn
i ]
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when qj
i is the emission rate corresponding the pollution source jth, which is located at

(xj
i , yj

i , hj
i) of the ith particle. For all i = 1, 2, 3, ..., p, p is a number of particles (swarm) and

n is a number of sources. The fitness function is defined to be a summation of difference
between measured and approximated concentration square. In this experiment, we used
the Gaussian Plume model for simplicity. Therefore, the approximated concentration CT is
the summation of concentration from n different pollution sources. Note that we could use
other techniques of approximation in the experiment. CT(xi, yi; Hi, Qi) is in kg/m3 from
the Gaussian Plume model, which is defined by

F(xi, yi; Hi, Qi) =
s

∑
i=1

[µi − CT(xi, yi; Hi, Qi)]
2, where s is the number of sensor. (3)

where

CT(x, y; H, Q) =
n

∑
j=1

C(x̄, ȳ, z; H, Q),

with

C(x̄, ȳ, z; H, Q),=
Q

4ßu√ryrz
e
(
−y
4ry

)e

(
− (z−H)2

4rz

)
+ e

(
− (z+H)2

4rz

)
x̄ = xs− x, ȳ = ys− y are the shifted coordinates, so the position of source corresponds

to (0, 0, Hi) and

ry(x) =
1
u

∫ x

0
Ky(ξ)dξ

rz(x) =
1
u

∫ x

0
Kz(ξ)dξ

where u is wind velocity (m/s), Ky and Kz are diffusion coefficients of y and z directions,
respectively [22]. This close form can be used under the ensuing assumptions.

• The foul gas is discharged at a constant rate Q (kg/s) form the source −→x = (0, 0, H),
which is placed at height H above the ground surface.

• The wind velocity is constant and aligns in the x-axis direction, which is written as
−→u = (u, 0, 0) when u ∈ [0, 5] has a unit of m/s.

• The solution is in steady state, which makes the wind velocity and other functions
independent of time.

The HPSO for Identifying the Single Air Pollution Location and Its Emission Rate

We start with ranking the fitness value of all particles. The first two particles X1 and
X2 are selected in order to create a new particle by finding the midpoint of the two particles.
The middle point is taken as a starting point in the search along the direction d, where d is

X1 − X2

‖X1 − X2‖
. Then go to a selection step; we evaluate the fitness cost of the new particle and

select the particles equal to the number of a swarm by ranking the fitness value. Which
particle has the most fitness value will be eliminated.

The HPSO for Identifying the Two Air Pollution Locations and Their Emission Rates

For the case of two pollutant sources, we specify just the locations of the source. We
adapt the original PSO with the step as follows. In the first step, we rank the fitness cost of
each particle and choose the first two particles to create the new particle by the steps below.
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Let the first two particles be X1 = [x1
1, x2

1, y1
1, y2

1]
T and X2 = [x1

2, x2
2, y1

2, y2
2]

T . The new
particle Xnew is with the new random parameter α ∈ [0, 100] where

(x1
new, y1

new) = α
(x1

1 + x1
2, y1

1 + y1
2)

2

(x2
new, y2

new) = α
(x2

1 + x2
2, y2

1 + y2
2)

2
Xnew = [x1

new, x2
new, y1

new, y2
new]

T

After obtaining the new particles, the particle that provides the worst fitness value
is removed. The improved structure of the PSO algorithm is indicated as the following
Algorithm 1.

Algorithm 1 HPSO algorithm.

1: Initailize Xi, Vi and Xlbesti for each particle i
2: while (not termination condition)
3: for each particle i
4: Evaluate objective function;
5: Update Xlbesti and Xgbest
6: end for.
7: for each i
8: calculate Vi;
9: update Xi = Xi + Vi;

10: Evaluate objective function;
11: Choose the first two best particles to create two new particles
12: Creating a new particle
13: Evaluate objective function of two new particle and choose the
14: next generation of the particles
15: end for
16: end while

4. Numerical Results

The experiments are designed to investigate the ability of the HPSO algorithm; they are
separated into two main parts compose of two-dimensional and three-dimensional domain
problems. The results of the identification of the air pollution point source location and its
corresponding emission rate are also presented and discussed in two and three-dimension
problems. Furthermore, we not only identify the single air pollution point source location
but also determine the locations of two-point sources in the two-dimensional domain.
For two-point sources, the experiments are designed into two cases. One is to identify
the locations of two sources when positioning the source locations beside each other and
the other is to identify the locations of two sources when placing source locations in
overlapping positions. In the original PSO the parameters c1, c2 and ω play an important
role in searching for the optimal solution. This means the relevant c1 and c2 help the
particles keep a balance among the Xlbest, Xgbest and V directions to find the optimal
solution. Besides, the appropriate ω increases a chance to find the optimal solution (reduce
the change to stick at the local optimal). Therefore, the value ω and c (c = c1 = c2) are
determined for each experiment. For some problems, there are many values of ω and c
that are able to provide the optimal solution. However, the values ω and c produce the
best results that are picked; these parameters are searched for in the set {0.1, 0.2, 0.3, ..., 1}
and the most appropriate parameters of all experiments are shown in Table 1.
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Table 1. Appropriate parameters of all experiments.

The Experiment in 2D

Problem case ω c ω c
(PSO) (PSO) (HPSO) (HPSO)

Specifying single-source locations 0.7 0.5 0.4 0.7
Specifying two-source locations 0.8 0.5 0.6 0.3

Specifying single-source locations and 0.8 0.6 0.8 0.4its corresponding emission rate

The Experiment in 3D

Specifying single-source locations 0.7 0.3 0.5 0.7
Specifying single-source locations and 0.7 0.5 0.6 0.2its corresponding emission rate

This problem has to do with the identification of the position of atmospheric pollution
on the domain size 50,000 m × 35,000 m with light wind (5 m/s). The concentration
is emitted with a rate of 35 kg/s by a single pollution point source, which is located at
(0, 0) coordinate. For identification of the two-point sources of air pollution, we already
mentioned that there are two experiments; the first experiment sources are located at (300,
−5000) and (4000, 5000) with emission rates 35 kg/s and 40 kg/s, respectively. In the
second experiment, the source locations are moved to (200, 0) and (3000, 0) with the same
emission rates.

Firstly, we verify that the number of iterations and the number of particles can reduce
the distance error of HPSO by fixing the number of iterations (100 iterations) while the
number of particles is increased by 10 from 10 to 250 and by fixing the number of particles
(100 particles) while the number of iteration is increased by 10 from 10 to 250. The results
are shown in Tables 2 and 3, respectively. Both sets of results illustrate that, as the number
of iterations and particles exceeds 150, the distance error remains homogeneous. In all
experiments, mean square error is used to measure the effectiveness of the algorithms.

Table 2. Comparing results of HPSO when the number of iterations is fixed.

The Number of
Particles

HPSO PSO

Average Distance Computational Average Distance Computational
Error (m) Time (s) Error (m) Time (s)

10 3218.63 0.71610 7689.64 0.268653
20 2628.88 0.86134 2631.55 0.479630
30 1175.62 1.69867 1942.41 0.716689
40 699.23 2.06156 682.51 0.907543
50 238.14 2.47007 517.01 1.136285
60 50.04 2.87347 764.96 1.342402
70 3.74 3.27136 461.86 1.562531
80 1.41 3.66756 407.51 1.767342
90 0.37 4.08449 351.72 2.004292
100 0.17 4.45915 170.14 2.189354
110 0.04 4.86884 120.02 2.394523
120 0.0042 5.28437 90.31 2.642548
130 1.12× 10−4 5.71370 76.18 2.856800
140 5.29× 10−5 6.09393 70.85 3.057815
150 2.10× 10−5 6.51467 40.93 3.264904
160 1.91× 10−5 6.60431 40.01 3.510096
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Table 2. Cont.

The Number of
Particles

HPSO PSO

Average Distance Computational Average Distance Computational
Error (m) Time (s) Error (m) Time (s)

170 9.41× 10−6 6.95562 20.18 3.730219
180 6.20× 10−6 7.36398 21.12 3.900210
190 5.39× 10−6 7.69186 10.22 4.140191
200 3.03× 10−6 8.13077 10.36 4.390146
210 1.00× 10−6 8.69686 11.47 4.579430
220 8.71× 10−6 8.91746 15.31 4.776681
230 3.10× 10−7 9.17680 12.47 4.964160
240 7.09× 10−5 9.47666 20.21 5.152613
250 2.64× 10−5 9.70849 8.98 5.570200

Table 3. Comparing results of HPSO when the number of particles is fixed.

The Number of
Iterations

HPSO PSO

Average Distance Computational Average Distance Computational
Error (m) Time (s) Error (m) Time (s)

10 4195.36 0.437180 14,840.15 0.2475500
20 1640.33 0.854225 12,164.85 0.4676400
30 236.27 1.284434 11,535.78 0.6864380
40 34.92 1.643332 5759.85 0.9030310
50 11.34 2.027071 3168.66 1.1229110
60 11.18 2.422206 1125.05 1.3300200
70 3.37 2.851604 913.43 1.5588340
80 0.94 3.259195 673.01 1.7654640
90 0.35 3.625978 418.90 1.9691390
100 0.20 4.022224 125.63 2.2105750
110 0.0059 4.462938 110.10 2.4005550
120 1.20× 10−4 4.866495 109.20 2.6671640
130 2.00× 10−5 5.320598 90.04 2.8114300
140 9.71× 10−6 5.640714 75.00 3.0862320
150 1.80× 10−6 6.042532 65.51 3.2879560
160 1.20× 10−6 6.435387 30.60 3.5156750
170 1.00× 10−6 6.872544 30.10 3.7261230
180 9.26× 10−7 7.270416 20.46 3.9712130
190 4.16× 10−6 7.745574 20.39 4.1502190
200 1.19× 10−6 8.177410 11.66 4.3569590
210 4.07× 10−6 8.480385 17.41 4.5510942
220 7.54× 10−6 8.929684 14.55 4.8100910
230 4.10× 10−6 9.183009 21.95 5.0166410
240 3.02× 10−6 9.468920 4.12 5.2980970
250 4.27× 10−6 9.711908 31.09 5.4158020

Next, we point out that, by increasing the number of sensors, the distance error is also
reduced. In these experiments, we increase the number of sensors by 2 and observe the
results, which are manifested as Table 4.

From Table 4, when the number of sensors is more than two, the distance errors are
insignificantly different. So there is good reason to believe that the number of sensors need
not be so high. Thus, for all experiments, except two-point sources, in this research we use
100 particles, 200 iterations with four sensors.



Symmetry 2021, 13, 985 11 of 21

Table 4. The HPSO results with various numbers of sensors.

The Number of Sensors
Average Distance Error (m)

PSO HPSO

2 5912.48 1109.41

4 15.42 1.12× 10−5

6 12.41 4.38× 10−6

8 15.89 2.48× 10−6

10 10.24 1.87× 10−7

4.1. Complexity

In this sub-section, the comparative study of the complexity between the original PSO
and our proposed HPSO is discussed. On each iteration of the HPSO, the dichotomous
search or the cyclic coordinate method is executed. Let p be the number of particles used in
PSO and HPSO. Let also M be the maximum number of iterations for both PSO and HPSO.
Then in the original PSO, the number of evaluations of the objective/fitness function is
p×M. As for the HPSO, each of the inner iterations for the dichotomous search or the
cyclic coordinate method concerning the fitness function has to be evaluated twice. If
we assume that the maximum number of the inner iterations is m, then the number of
evaluations of the objective/fitness function on our HPSO is 2p×m×M. It is clear that,
on each iteration, the implementation cost of HPSO is higher than PSO. Hence, if the
maximum number of iterations is fixed, HPSO takes more computational time. However,
the new proposed HPSO is much more effective. To illustrate this point, consider Table 2,
where HPSO and PSO are compared for a fixed number of iterations. According to this
table, for PSO with 210 particles, the error is about 11.47 m and the computational time
is about 4.58 seconds. As for HPSO, there is about the same computational time but with
fewer particles—100 particles; the error is only 0.17 m. Hence, even each iteration for HPSO
has a higher computation cost above the original PSO; overall, HPSO is considered superior
to PSO, especially for situations for which a minimal number of iterations is required.

4.2. The Results in Two-Dimensional Domains

The identification of the location of single and multiple air pollution point sources is
tested. For comparing the results, the initial data such as the initial particles/chromosomes,
the number of particles/chromosomes, the number of sensors and the sensor’s positioning
are set to be the same. The results of the three algorithms explicate that the HPSO has the
lowest average distance error followed by the original PSO and the original GA. Observe
that the HPSO method does not stick at some local optima; consequently, HPSO produces
less average distance error than PSO and GA.

4.2.1. Identification the Air Pollution Locations without Finding Emission Rate in
Two Dimensions

The results of determining the location of a single air pollution point source are
displayed in Figures 5 and 6. The comparative results between GA, PSO and HPSO are
illustrated in Figures 5 and 6. Five experiments on each technique were randomly selected
and plotted as a line graph on the left and the bar graph on the right displays the average for
each technique. As we expect, HPSO outperforms the other techniques. In this experiment,
GA has the lowest ability to locate the pollution point source among all three techniques.
As for determining the locations of two air pollution point sources, results are displayed as
Figures 7–10. In these experiments, 300 particles and 500 iterations with four sensors are
used for running the program. In both cases of the experiment, the HPSO method processes
lower average distance errors than the PSO method. In the first case, the best predicted
locations that provide the best average error of the distance errors are (332.16,−5001.74)
and (3784.24, 4986.78). In the second case, the best predicted locations are (320.07, 208.84)
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and (2907.65, 159.45). Notice that the average distance errors of the HPSO in the case of
putting the source location in an overlap of each other is higher than the other case. Note
that, for the case of multiple point source, the problem is much more complex than a single
point source. The number of point source and emission rates of each point source need to
be prescribed. Each point source can have different emission rates.

Figure 5. The result of determining only the location of a single air pollution point source.

Figure 6. Optimal location of predicted single-point air pollution location (HPSO).

Figure 7. The result of specifying only the locations of two air pollution point sources in the case of
positioning the source locations beside each other.
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Figure 8. Optimal locations of predicted double-point air pollution locations.

Figure 9. The result of specifying only the locations of two air pollution point sources in the case of
placing sensors in overlapping positions.

Figure 10. Optimal locations of predicted air pollution location of placing sensors in overlap-
ping positions.
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4.2.2. Identification the Air Pollution Locations and Emission Rate in Two Dimensions

Specifying the location together with its corresponding emission rate of the air pol-
lution point source is the last experiment in the two-dimension domain problem. We use
100 particles and 200 iterations to run the program and the results of the PSO method and
HPSO method are exhibited as Figures 11 and 12. The HPSO takes an average distance
error 16 times less than the PSO and provides an average emission rate error about 24 times
lower than the PSO. Hence, we can conclude that our HPSO outperforms PSO. So, we can
conclude that our HPSO outperforms the original PSO.

Figure 11. The result of specifying the location and its corresponding emission rate of single air
pollution point source.

Figure 12. Optimal locations of air pollution point sources with emission rate Q.
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4.3. The Result in Three Dimensional Domains

For the problem in three-dimensional domains, we set the exact source location at (0, 0,
20) on domain size 35,000 m× 50,0000 m× 50 m with the emission rate 35 kg/s. The frame
of this problem is divided into two parts which are to identify only the pollution source
location and to identify both the location and the emission rate of the pollution source. For
the three-dimensional domain experiments, we use 100 particles with 200 iterations.

4.3.1. Identification the Air Pollution Locations and Emission Rate in Three Dimensions

Figures 13 and 14 present the result for determining the location of a single-point
of the pollutant source and its emission rate. The minimum average error of both items
belongs to the HPSO method. Our HPSO outperforms the original PSO.

Figure 13. The result of specifying the location and its corresponding emission rate of single air
pollution point source in 3D.

Figure 14. Optimal locations of air pollution point sources in 3D when its emission rate is also predicted.
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4.3.2. Identification the Air Pollution Locations without Finding Emission Rate in
Three Dimensions

According to Figures 15 and 16, the HPSO algorithm produces an average distance
error 29 times less than the PSO algorithm. The HPSO’s computational time is a little bit
higher than the PSO’s. In addition, Figure 16 displays the best predicted location of air
pollution point source using the HPSO, which is located at (0.01, 0.02, 20.05).

Figure 15. The result of specifying only the location of single air pollution point source in 3D.

Figure 16. Optimal locations of air pollution point sources in 3D.

According to all of the experiments using the Gaussian Plume model, HPSO outper-
forms PSO. Overall, it is more effective. In order to achieve effective results for pollution
management and satisfactory emergency responses, the Gaussian Plume model is not
enough. We need to approximate the numerical solution of the set of some governing PDE
system. Solving for an estimated solution is very important.

4.4. The Result with a Numerical Method in PDE

In this numerical experiment, we focus on the couple models for pollutant transport,
that is, the momentum equations [7,22]:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= ν

[
∂2u
∂x2 +

∂2u
∂y2

]
, (4)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= ν

[
∂2v
∂x2 +

∂2v
∂y2

]
, (5)

and the convection–diffusion equation:
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∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= k
[

∂2C
∂x2 +

∂2C
∂y2

]
+ S, (6)

with the following initial-boundary conditions

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y), C(x, y, 0) = C0(x, y)

u(x, y, t) = f (x, y, t), v(x, y, t) = g(x, y, t), C(x, y, t) = h(x, y, t), ∀(x, y) ∈ ∂Ω,

where u(x, y, t), v(x, y, t) are horizontal wind velocity (m/s), C(x, y, t) is the concentration
of the pollutant (kg/m3), S(x, , y) is the source term (kg/m3s), ν is kinetic viscosity (m2/s)
and k(x, y) is conductivity (m2/s). In this work, we are interested in point-source behaviour.
For the n point-source, the source term is given by

S(x, y) =
n

∑
i=1

Qiδ(xi ,yi)
(x, y),

where Qi is theemission rate of the ith source and the delta function is defined by

δ(xi ,yi)
(x, y) =

{
1, if x = xi and y = yi

0, else.

The conductivity function k(x, y) represents the ability according to which the pol-
lutant goes through the median. Thus, the conductivity function depends on the space
variables, i.e., the area on the domain. In this study, we assume that the pollutant is emitted
in a homogeneous area; that is, the conductivity is constant: k(x, y) = k0. This assumption
can be applied when the source is located in the high area and releases the pollutant to the
lower region.

4.4.1. Numerical Method

For the rectangular domain Ω = [xL, xR] × [yL, yR], we define the discrete space
{(xi, yj)|xi = xL + ihx, yj = yL + jhy}, where hx = (xR − xL)/Nx and hy = (yR −
yL)/hy. The temporal domain [0, T] is discretized as {tn = nτ}, where τ = T/N. Let
f n
ij = f (xi, yj, tn), the discrete differential operators are given below:

( f n
ij )t̂ =

f n+1
ij − f n−1

ij

2τ
, ( f n

ij )x =
f n
i+1,j − f n

ij

hx
, ( f n

ij )x̄ =
f n
ij − f n

i−1,j

hx

( f n
ij )y =

f n
i,j+1 − f n

ij

hy
, ( f n

ij )ȳ =
f n
ij − f n

i,j−1

hy
, ( f̄ n

ij ) =
f n+1
ij + f n−1

ij

2

The numerical scheme for models (4)–(6) is:

(un
ij)t̂ + un

ij(ū
n
ij)x̂ + vn

ij(ū
n
ij)ŷ = ν

[
(ūn

ij)xx̄ + ūn
ij)yȳ

]
(7)

(vn
ij)t̂ + un

ij(v̄
n
ij)x̂ + vn

ij(v̄
n
ij)ŷ = ν

[
(v̄n

ij)xx̄ + v̄n
ij)yȳ

]
(8)

(Cn
ij)t̂ + un

ij(C̄
n
ij)x̂ + vn

ij(C̄
n
ij)ŷ = k

[
(C̄n

ij)xx̄ + C̄n
ij)yȳ

]
+ Sn

ij. (9)

The scheme is second order in both time and space.



Symmetry 2021, 13, 985 18 of 21

4.4.2. Results of Identifying Single Pollution Point Source

In this experiment, giving an initial guess of the pollution source, we use the above
numerical scheme to solve a system of partial differential equations for atmospheric model
for concentration on the domain space (x, y). As a result, for each particle on each iteration,
solving for the system of PDE is required for evaluating a fitness function. Hence, a fast
and accurate numerical method is needed.

• Domain size: 10 × 2
• The number of particles is 10
• The number of iterations is 30
• Exact location is (0.5, 1)

We considered three cases for different numbers of time steps. In each case, the
program was run five times and then the average error was calculated. The best predicted
location is presented in Table 5. According to the results of the experiment, the HPSO
is also capable of identifying the location of the point source based on an approximated
solution of a system of PDE. The Figures 17–19 illustrate how the algorithm identifies the
location of the pollution source.

Table 5. Result of Single Pollution Point Source.

Time Steps The Best Predicted Location Average Error

20 (0.548, 1.785) 0.0787

40 (0.499, 0.899) 0.0154

60 (0.500, 1.015) 0.0109

Figure 17. Optimal locations of air pollution point source in 2D with 20 time steps.
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Figure 18. Optimal locations of air pollution point source in 2D with 40 time steps.

Figure 19. Optimal locations of air pollution point source in 2D with 60 time steps.

5. Conclusions

This research paper is another comparative study of GA and PSO. Due to the nature of
the problems, PSO actually outperforms GA. PSO is able to locate the pollution source more
accurately. The results on the Gaussian Plume model are very fascinating. However, in
order to apply the optimization techniques to the differential models for pollutant transport,
a more effective technique must be used. To evaluate a fitness function for each particle,
estimating a solution of a system of PDE is required. In this work, we estimate a solution
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of a system of partial differential equations for the atmospheric model for concentration
on the domain space. It turns out that all of the experiment results explicate that HPSO
produces better results than GA and PSO. Besides, HPSO is able to identify the location and
its emission rate more accurately when we increase the number of particles and iterations
with appropriate parameters ω and c. While the HPSO performs with very high efficiency
for specifying the location and its emission rate of single air pollution, in the case of two
sources the HPSO gives quite high distance errors. The HPSO is also applicable to a more
complicated system. We developed a second order in both space and time numerical
schemes for solving pollutant transport equations, system of PDEs. As in the experiment
with the numerical method in PDEs, the HPSO method is also able to accurately locate the
pollution source. This illustrates that HPSO can be used to optimize the inverse model
based on the numerical scheme for PDE. As for future work, a fast numerical scheme for
solving PDE could be developed.
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