
symmetryS S

Article

Explicit Solutions of Initial Value Problems for Fractional
Generalized Proportional Differential Equations with and
without Impulses

Snezhana Hristova 1,* and Mohamed I. Abbas 2

����������
�������

Citation: Hristova, S.; Abbas, M.I.

Explicit Solutions of Initial Value

Problems for Fractional Generalized

Proportional Differential Equations

with and without Impulses. Symmetry

2021, 13, 996. https://doi.org/

10.3390/sym13060996

Academic Editors:

Włodzimierz Fechner and

Jacek Chudziak

Received: 7 May 2021

Accepted: 1 June 2021

Published: 2 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Mathematics and Informatics, Plovdiv University, 4000 Plovdiv, Bulgaria
2 Department of Mathematics and Computer Science, Faculty of Science, Alexandria University,

Alexandria 21511, Egypt; miabbas@alexu.edu.eg
* Correspondence: snehri@uni-plovdiv.bg

Abstract: The object of investigation in this paper is a scalar linear fractional differential equation
with generalized proportional derivative of Riemann–Liouville type (LFDEGD). The main goal is
the obtaining an explicit solution of the initial value problem of the studied equation. Note that
the locally solvability, being the same as the existence of solutions to the initial value problem, is
connected with the symmetry of a transformation of a system of differential equations. At the same
time, several criteria for existence of the initial value problem for nonlinear fractional differential
equations with generalized proportional derivative are connected with the linear ones. It leads
to the necessity of obtaining an explicit solution of LFDEGD. In this paper two cases are studied:
the case of no impulses in the differential equation are presented and the case when instantaneous
impulses at initially given points are involved. All obtained formulas are based on the application
of Mittag–Leffler function with two parameters. In the case of impulses, initially the appropriate
impulsive conditions are set up and later the explicit solutions are obtained.

Keywords: generalized proportional fractional derivatives; Mittag–Leffler function

1. Introduction

Recently, fractional differential equations have appeared strongly in the diffusion
process, the process of dynamics, signal and image processing, etc. It has been mainly due
to the fact that the mathematical modeling of numerous processes and phenomena in the
frame of the fractional operators is capable of tracing the previous effects of the concerned
phenomena. For instance, see [1–6] and references therein.

In 2014, Khalil et al. [7] introduced an interesting derivative, called the conformable
derivative. Later, many researchers argued that this derivative could not be considered as a
fractional derivative because it has no memory property. This new definition seems to be a
natural extension of the classical derivative. Unfortunately, this new definition has a point
of weakness as it does not tend towards the original function when the order approaches
zero. Anderson and Ulness [8,9] proposed a modified conformable derivative by utilizing
proportional derivatives. Later, Jarad et al. [10] introduced a new generalized proportional
derivative which is well-behaved and has several advantages over the classical derivatives
such as meaning that it generalizes formerly known derivatives in the literature. For recent
contributions relevant to fractional differential equations via generalized proportional
derivatives, see [11–16].

One of the main problems in differential equations is the solvability. At the same
time, the local solvability being the same as the existence of solutions to the initial value
problem, it is connected with the symmetry of a transformation of a system of differential
equations. This paper is the first work to give an explicit formula for the solutions of
the initial value problem for scalar linear fractional differential equation with generalized
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proportional fractional derivative in terms of the Mittag–Leffler function, which reflects the
novelty of the work compared to the aforementioned contributions, which mainly depend
on discussing the mild solution of the integral equations corresponding to the differential
equation in question.

The rest of the paper is structured as follows: In Section 2, we recall some useful
preliminaries and auxiliary results. In Section 3, a scalar linear generalized proportional
fractional differential equation with an initial condition expressed by a generalized pro-
portional fractional integral is defined. An explicit formula of the solutions of the studied
initial value problem is obtained. In Section 4, a linear generalized proportional fractional
differential equation with instantaneous impulses is discussed. Finally, in order to confirm
the validity of the theoretical findings, two examples are given in Section 5.

2. Preliminaries and Auxiliary Results

We provide some basic definitions and properties of the fractional proportional deriva-
tive and integral (see for example, [10]).

Definition 1 ([8] Amended conformable derivative). Let ρ ∈ [0, 1], J ⊂ R and the functions
κ0, κ1 : [0, 1]× [a, b]→ [0, ∞) be continuous such that for all t ∈ [a, b] we have limρ→0+ κ1(ρ, t) =
1, limρ→0+ κ0(ρ, t) = 0, limρ→1− κ1(ρ, t) = 0, limρ→1− κ0(ρ, t) = 1 and κ1(ρ, t) 6= 0,
ρ ∈ [0, 1), κ0(ρ, t) 6= 0, ρ ∈ (0, 1]. Then the amended conformable derivative of order ρ of a
function υ(·) : [a, b]→ R is defined by

(Dρυ)(t) = κ1(ρ, t)υ(t) + κ0(ρ, t)υ′(t), t ∈ [a, b]. (1)

The aforesaid amended conformable derivative (1) is said to be a proportional deriva-
tive. For more details, see [8].

For the located situation when κ1(ρ, t) = 1− ρ and κ0(ρ, t) = ρ the equality (1) takes
the form

(Dρυ)(t) = (1− ρ)υ(t) + ρυ′(t), t ∈ [a, b]. (2)

Definition 2 ([10] The generalized proportional fractional integral). Let ρ ∈ (0, 1] and α > 0.
The left generalized proportional fractional integrals of the function υ ∈ L1([a, b],R) is defined by

(aI
α,ρυ)(t) =

1
ραΓ(α)

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)α−1υ(s) ds, t ∈ [a, b]. (3)

Definition 3 ([10] The generalized proportional fractional derivative). Let ρ, α ∈ (0, 1]. The left
generalized proportional fractional derivative of the function υ ∈ L1([a, b],R) is defined by

(R
a Dα,ρυ)(t) = D1,ρ

aI
1−α,ρυ(t)

=
1

ρ1−αΓ(1− α)
D1,ρ

( ∫ t

a
e

ρ−1
ρ (t−s)

(t− s)−αυ(s) ds
)

, (4)

where (D1,ρυ)(t) = (Dρυ)(t) = (1− ρ)υ(t) + ρυ′(t).

Remark 1. Note in the case ρ ∈ (0, 1] and α = 0 it is defined that (aI 0,ρυ)(t) = υ(t) and
(aD0,ρυ)(t) = υ(t) (see [10]).

We will provide some results which will be used in our further considerations.
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Lemma 1 ([10]). If ρ ∈ (0, 1], β > 0, and α ∈ (0, 1] and υ ∈ L1([a, b],R), we have the following
statements: (

aI
α,ρe

ρ−1
ρ τ

(τ − a)β−1
)
(t) =

Γ(β)

ραΓ(β + α)
e

ρ−1
ρ t

(t− a)α+β−1 (5)

aI
α,ρ
(

aI
β,ρυ

)
(t) = aI

β,ρ(aI
α,ρυ)(t) =

(
aI

α+β,ρυ
)
(t); (6)

aI
α,ρ(R

a Dα,ρυ)(t) = υ(t)− (aI 1−α,ρυ)(a)
ρα−1Γ(α)

e
ρ−1

ρ (t−a)
(t− a)α−1. (7)

We will prove the following preliminary result which is similar to Lemma 3.2 [1] for
the Riemann–Liouville fractional derivative.

Lemma 2. Let ρ, α ∈ (0, 1] and y(t) ∈ L1([a, b],R). Then

(i) If there exists a limit

lim
t→a+

(
e

1−ρ
ρ t

(t− a)1−αy(t)
)
= c ∈ R (8)

then also exists a limit

(aI
1−α,ρy)(a) := lim

t→a+
(aI

1−α,ρy)(t) = c
Γ(α)
ρ1−α

e
ρ−1

ρ a. (9)

(ii) if there exists a limit
(aI

1−α,ρy)(a) = k ∈ R, (10)

then if there exists the limit limt→a+

(
e

1−ρ
ρ t

(t− a)1−αy(t)
)

, then

lim
t→a+

(
e

1−ρ
ρ t

(t− a)1−αy(t)
)
=

kρ1−αe
1−ρ

ρ a

Γ(α)
. (11)

Proof. Let the limit (8) be satisfied and ε > 0 be an arbitrary number. From (8) there exists
a number η > 0 such that

| lim
t→a+

(
e

1−ρ
ρ t

(t− a)1−αy(t)
)
− c| < ε, t ∈ (a, a + η). (12)

Moreover, since the exponential function is continuous

|e
ρ−1

ρ t − e
ρ−1

ρ a| < ε, t ∈ (a, a + η). (13)

Then according to (7)(
aI

1−α,ρe
ρ−1

ρ t
(t− a)α−1

)

=
e

ρ−1
ρ t

ρ1−αΓ(1− α)

∫ t

a
e

ρ−1
ρ (−s)

(t− s)−α
(

e
ρ−1

ρ s
(s− a)α−1

)
ds

=
Γ(α)
ρ1−α

e
ρ−1

ρ t

(14)
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Then applying (12)–(14) we obtain

|(aI
1−α,ρy)(t)− c

Γ(α)
ρ1−α

e
ρ−1

ρ a|

≤ |(aI
1−α,ρy)(t)− c aI

1−α,ρe
ρ−1

ρ t
(t− a)α−1|+ |c|Γ(α)

ρ1−α
|e

ρ−1
ρ t − e

ρ−1
ρ a|

=
e

ρ−1
ρ t

ρ1−αΓ(1− α)

∫ t

a
e

ρ−1
ρ (−s)

(t− s)−α(s− a)α−1e
ρ−1

ρ s

× |e
1−ρ

ρ s
(s− a)1−αy(s)− c| ds + |c|Γ(α)

ρ1−α
|e

ρ−1
ρ t − e

ρ−1
ρ a|

≤ ε
e

ρ−1
ρ t

ρ1−αΓ(1− α)

∫ t

a
e

ρ−1
ρ (−s)

(t− s)−α(s− a)α−1e
ρ−1

ρ s ds + |c|Γ(α)
ρ1−α

ε

= ε aI
1−α,ρe

ρ−1
ρ t

(t− a)α−1 + |c|Γ(α)
ρ1−α

ε

= ε
Γ(α)
ρ1−α

e
ρ−1

ρ t
+ |c|Γ(α)

ρ1−α
ε ≤ ε

Γ(α)
ρ1−α

(e
ρ−1

ρ a
+ |c|)

which proves the claim (i) of Lemma 2.

Assume the limit limt→a+

(
e

1−ρ
ρ t

(t− a)1−αy(t)
)

exists and is equal to c. Then , accord-
ing to Lemma 2(i) the equality

(aI
1−α,ρy)(a) = c

Γ(α)
ρ1−α

e
ρ−1

ρ a

holds and, hence, in accordance with (10) the validity of (11) follows.

3. Linear Generalized Proportional Fractional Differential Equation

Consider the linear scalar fractional equation with generalized proportional fractional
derivative and initial value conditions (PIVP)

(R
a Dα,ρu)(t) = λu(t) + f (t), t ∈ (a, b],

(aI
1−α,ρu)(a) = η

(15)

where u(·) : [a, b]→ R, ρ ∈ (0, 1], α ∈ (0, 1), λ is a real constant, f ∈ C([a, b]).

Remark 2. According to Lemma 2 the initial value condition in Equation (15) could be replaced by

lim
t→a+

(
e

1−ρ
ρ (t−a)

(t− a)1−αu(t)
)
=

ηρ1−α

Γ(α)
. (16)

Define the set

C1−α,ρ([a, b]) = {x(t) : (a, b]→ R : x ∈ C((a, b],R),

lim
t→a+

e
1−ρ

ρ (t−a)
(t− a)1−αx(t) < ∞}

with the norm
||x||C1−α,ρ = max

t∈[a,b]
|e

1−ρ
ρ (t−a)

(t− a)1−αx(t)|.

Note that C1−α,ρ([a, b]) is a Banach space. If un ∈ C1−α,ρ([a, b]), n = 1, 2, . . . and
||un − u||C1−α,ρ [a,b] → 0 then u ∈ C1−α,ρ([a, b]).
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Theorem 1. The PIVP (15) has a unique solution u ∈ C1−α,ρ[a, b] given by

u(t) = ηe(ρ−1) t−a
ρ Eα,α

(
λ
( t− a

ρ

)α
)( t− a

ρ

)α−1

+
1

ραΓ(α)

∫ t

a
(t− s)α−1e(ρ−1)( t−s

ρ )Eα,α(λ
( t− s

ρ

)α
) f (s) ds,

for t ∈ (a, b].

(17)

Proof. Apply the generalized fractional proportional integral aI α,ρ(·) to the first equation
of (15) and use equality (7) in Lemma 1 and obtain the following integral equation

u(t) = (aI
α,ρ f )(t) + λ(aI

α,ρu)(t)

+
(aI 1−α,ρu)(0)

ρα−1Γ(α)
e

ρ−1
ρ (t−a)

(t− a)α−1

=
1

ραΓ(α)

∫ t

a

e
ρ−1

ρ (t−s) f (s)

(t− s)1−α
ds +

λ

ραΓ(α)

∫ t

a

e
ρ−1

ρ (t−s)u(s)

(t− s)1−α
ds

+
η

ρα−1Γ(α)
e

ρ−1
ρ (t−a)

(t− a)α−1, t ∈ (a, b].

(18)

We will apply the method of successive approximations to obtain the solution of the
integral Equation (18).

Consider the sequence of functions {um(t)}∞
m=0 defined by the equalities

u0(t) =
η

Γ(α)
e(ρ−1) t−a

ρ
( t− a

ρ

)α−1, t ∈ (a, b],

lim
t→a+

(
e

1−ρ
ρ (t−a)

(t− a)1−αu0(t)
)
=

ηρ1−α

Γ(α)
,

(19)

and

um(t) = u0(t) +
1

ραΓ(α)

∫ t

a

e
ρ−1

ρ (t−s) f (s)

(t− s)1−α
ds

+
λ

ραΓ(α)

∫ t

a

e
ρ−1

ρ (t−s)um−1(s)

(t− s)1−α
ds

= u0(t) + λ(aI
α,ρum−1)(t) + (aI

α,ρ f )(t), t ∈ (a, b]

lim
t→a+

(
e

1−ρ
ρ (t−a)

(t− a)1−αum(t)
)
=

ηρ1−α

Γ(α)
, m = 1, 2, . . . .

(20)

For any m = 0, 1, 2, . . . the function um ∈ C1−α,ρ[a, b].
For m = 1 from equalities (19), (20) and (5) with β = α we obtain

u1(t) =
η

ρα−1Γ(α)
e

ρ−1
ρ (t−a)

(t− a)α−1 + (aI
α,ρ f )(t)

+
λη

ρα−1Γ(α)
(aI

α,ρe
ρ−1

ρ ttα−1)(t)

= ηe
ρ−1

ρ (t−a)
1

∑
k=0

λk(t− a)(k+1)α−1

ρ(k+1)α−1Γ((k + 1)α)
+ (aI

α,ρ f )(t),

for t ∈ (a, b].

(21)
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Similarly, for m = 2 from equalities (20) and (7), (6) with β = (k + 1)α we obtain

u2(t) = u0(t) + (aI
α,ρ f )(t) + λ(aI

α,ρu1)(t)

=
η

ρα−1Γ(α)
e

ρ−1
ρ (t−a)

(t− a)α−1 + (aI
α,ρ f )(t)

+ η
1

∑
k=0

λk

ρ(k+1)α−1Γ((k + 1)α)
(aI

α,ρe
ρ−1

ρ tt(k+1)α−1)(t)

+ λ(aI
α,ρ(aI

α,ρ f ))(t)

= ηe
ρ−1

ρ (t−a)
2

∑
k=0

λk(t− a)(k+1)α−1

ρ(k+1)α−1Γ((k + 1)α)

+ (aI
α,ρ f )(t) + λ

(
aI

2α,ρ f
)
(t)

= ηe
ρ−1

ρ (t−a)
2

∑
k=0

λk(t− a)(k+1)α−1

ρ(k+1)α−1Γ((k + 1)α)

+
1

ραΓ(α)

∫ t

a

e
ρ−1

ρ (t−s) f (s)

(t− s)1−α
ds + λ

1
ρ2αΓ(2α)

∫ t

a

e
ρ−1

ρ (t−s) f (s)

(t− s)1−2α
ds

= ηe
ρ−1

ρ (t−a)
2

∑
k=0

λk(t− a)(k+1)α−1

ρ(k+1)α−1Γ((k + 1)α)

+
1

ραΓ(α)

∫ t

a

2

∑
k=1

λk−1

ρkαΓ(kα)(t− s)1−kα
e

ρ−1
ρ (t−s) f (s) ds.

Continuing this process we obtain

um(t)

= ηe
ρ−1

ρ (t−a)
m

∑
k=0

λk(t− a)(k+1)α−1

ρ(k+1)α−1Γ((k + 1)α)

+
1

ραΓ(α)

∫ t

a

m

∑
k=1

λk−1

ρkαΓ(kα)(t− s)1−kα
e

ρ−1
ρ (t−s) f (s) ds

= ηe
ρ−1

ρ (t−a)( t− a
ρ

)α−1
m

∑
k=0

(
λ
( t−a

ρ

)kα
)k

Γ(kα + α)

+
(t− s)α−1

ραΓ(α)

∫ t

a

m

∑
k=0

(
λ
( t−s

ρ

)α
)k

Γ(kα + α)
e

ρ−1
ρ (t−s) f (s) ds.

(22)

Taking the limit as m→ ∞ in (22), denote limm→∞ um(t) = u(t), t ∈ (a, b] and apply-
ing the Mittag–Leffler function with two parameters Eα,β(z) = ∑∞

k=0
zk

Γ(kα+β)
we obtain

u(t) = ηe(ρ−1) t−a
ρ Eα,α(λ

( t− a
ρ

)α
)
( t− a

ρ

)α−1

+
1

ραΓ(α)

∫ t

a
(t− s)α−1e(ρ−1)( t−s

ρ )Eα,α(λ
( t− s

ρ

)α
) f (s) ds.

(23)

Therefore, the function u(t) satisfies the equality (17).
Furthermore, taking a limit as m→ ∞ in (20) for t ∈ (a, b] it follows that the function

u(t) satisfies the integral equality (18) which is equivalent to (15). In addition, from the
limit conditions in (20) and Remark 2 it follows that the function u(t) satisfies the initial
condition in (15).
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Remark 3. Note in the case ρ = 1 the generalized proportional fractional integral and the gen-
eralized proportional fractional derivative are reduced to Riemann–Liouville fractional integral
and derivatives, respectively, and the formula (17) is reduced to formula (4.1.14) [1] for the linear
Riemann–Liouville fractional differential equation.

4. Linear Generalized Proportional Fractional Differential Equation with
Instantaneous Impulses

Assume the impulsive points {ti}m
i=1 are given, such that ti < ti+1, i = 1, 2, . . . , m− 1,

and T : a < b ≤ ∞. We denote a = t0, b = tm+1 (in the case b = ∞ we have m = ∞).
The impulse at a point τ means that there is a jump of the solution at this point and

after the jump for t > τ the solution is determined by the same differential equation but
with a new initial value. Therefore, we need an initial condition at the impulsive point
τ. Following the idea of Section 3 we will define two equivalent types of the impulsive
conditions at the point τ (see Remark 2):

- integral form of the impulsive condition

(t̃I
1−α,ρu)(τ) = P(u(τ − 0))

- weighted form of the impulsive condition

lim
t→τ+

(
e

1−ρ
ρ t

(t− τ)1−αu(t)
)
= G(u(τ − 0))

where P, G : R→ R are given functions.

Note that according to Lemma 2 the equality G(u(τ − 0)) = P(u(τ−0))ρ1−αe
1−ρ

ρ a

Γ(α) holds.
Since the generalized proportional fractional derivative significant depends on its

lower limit, we will consider the case of the generalized proportional fractional derivative
with changed lower limit at each impulsive time. It is reasonable because each impulsive
time is considered as an initial time of the fractional differential equation.

Remark 4. Note for α→ 1 and ρ ∈ (0, 1] the limit limt→t̃+

(
e

1−ρ
ρ t

(t− t̃)1−αu(t)
)

is reduced to

limt→t̃+

(
e

1−ρ
ρ tu(t)

)
and the impulsive condition limt→t̃+

(
e

1−ρ
ρ t

(t− t̃)1−αu(t)
)
= G(u(t̃− 0))

is reduced to the well known impulsive condition u(t̃ + 0) = Gt̃(u(t̃− 0)) at the impulsive time t̃

for differential equations with ordinary derivatives where Gt̃(u) = G(u)e
ρ−1

ρ t̃.

Define the set

PC1−α,ρ([a, b]) =
{

u : [a, b]→ R : u ∈ C(∪m
i=0(tk, tk+1],R),

lim
t→tk+

e
1−ρ

ρ (t−tk)(t− tk)
1−αu(t) < ∞, for k = 0, 1, 2, . . . , m

}
with the norm

||u||PC1−α,ρ = max
k=0,1,2,...,m

max
t∈[tk ,tk+1]

|e
1−ρ

ρ (t−tk)(t− tk)
1−αu(t)|.

Consider the linear scalar impulsive fractional equation with generalized proportional
fractional derivative and initial value conditions (IPIVP)

(R
tk
Dα,ρu)(t) = λu(t) + f (t), t ∈ (tk, tk+1], k = 0, 1, . . . , m− 1

(tkI
1−α,ρu)(tk) = Pk(u(tk − 0)), k = 1, 2, . . . , m− 1,

(aI
1−α,ρu)(a) = η

(24)
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where u(·) : [a, b] → R, ρ ∈ (0, 1], α ∈ (0, 1), λ is a real constant, f ∈ C([a, b]), Pk : R →
R, k = 1, 2, . . . , m− 1.

Remark 5. According to Lemma 2 the initial value condition in Equation (15) could be replaced by
equality (16) and the impulsive conditions could be replaced by

lim
t→tk+

(
e

1−ρ
ρ (t−tk)(t− tk)

1−αu(t)
)
= Gk(u(tk − 0)), k = 1, 2 . . . , m− 1,

where Gk(u) =
Pk(u)ρ1−α

Γ(α) .

Theorem 2. The IPIVP (24) has a unique solution u ∈ PC1−α,ρ[a, b] given by

u(t) = Pk(u(tk − 0))e(ρ−1)
t−tk

ρ Eα,α

(
λ
( t− tk

ρ

)α
)( t− tk

ρ

)α−1

+
1

ραΓ(α)

∫ t

tk

(t− s)α−1e(ρ−1)( t−s
ρ )Eα,α(λ

( t− s
ρ

)α
) f (s) ds,

for t ∈ (tk, tk+1], k = 0, 1, 2, . . . , m− 1,

(25)

where the notation P0(u(t0 − 0)) ≡ η is used.
In the partial case Pk(u) = Cku, Ck = const, k = 1, 2, . . . , , m− 1, the solution of IPIVP (24)

is given by

u(t) = ηe(ρ−1)
t−tp

ρ Eα,α
(
λ
( t− tp

ρ

)α)( t− tp

ρ

)α−1

×
p

∏
k=1

[
Cke(ρ−1)

tk−tk−1
ρ Eα,α

(
λ
( tk − tk−1

ρ

)α)( tk − tk−1
ρ

)α−1
]

+
1

ραΓ(α)

[ p

∑
k=1

(
p

∏
j=k

Cj)
∫ tk

tk−1

(tk − s)α−1e(ρ−1)(
tk−s

ρ )Eα,α(λ
( tk − s

ρ

)α
) f (s) ds

]
× e(ρ−1)

t−tp
ρ Eα,α

(
λ
( t− tp

ρ

)α)( t− tp

ρ

)α−1

+
1

ραΓ(α)

∫ t

tp
(t− s)α−1e(ρ−1)( t−s

ρ )Eα,α(λ
( t− s

ρ

)α
) f (s) ds,

for t ∈ (tp, tp+1], p = 0, 1, 2, . . . , m− 1.

(26)

Proof. We use an induction w.r.t. as the intervals to prove the claim.
For any k = 0, 1, 2, . . . , m− 1, the IPIVP (24) is reduced to an initial value problem of

the type (15) with η = Pk(u(tk − 0)), a = tk, b = tk+1 and P0(u) ≡ η. According to Lemma
1 and Equation (17) it has a solution uk ∈ C1−α,ρ[tk, tk+1] given by

uk(t) = Pk(uk−1(tk − 0))e(ρ−1)
t−tk

ρ Eα,α

(
λ
( t− tk

ρ

)α
)( t− tk

ρ

)α−1

+
1

ραΓ(α)

∫ t

tk

(t− s)α−1e(ρ−1)( t−s
ρ )Eα,α(λ

( t− s
ρ

)α
) f (s) ds,

for t ∈ (tk, tk+1].

(27)

Define the function u(t) = uk(t) for t ∈ (tk, tk+1], k = 0, 1, 2, . . . , m − 1. Then the
function u ∈ PC1−α,ρ[tk, tk+1] and satisfies the IPIVP (24).
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Let Pk(u) = Cku, Ck = const, k = 1, 2, . . . , , m− 1,. Then from (27), we obtain induc-
tively for t ∈ (a, t1]

u0(t) = ηe(ρ−1) t−a
ρ Eα,α

(
λ
( t− a

ρ

)α
)( t− a

ρ

)α−1

+
1

ραΓ(α)

∫ t

a
(t− s)α−1e(ρ−1)( t−s

ρ )Eα,α(λ
( t− s

ρ

)α
) f (s) ds,

(28)

and for t ∈ (t1, t2]

u1(t) = C1

(
ηe(ρ−1) t1−t0

ρ Eα,α

(
λ
( t1 − t0

ρ

)α
)( t1 − t0

ρ

)α−1

+
1

ραΓ(α)

∫ t1

t0

(t1 − s)α−1e(ρ−1)( t1−s
ρ )Eα,α(λ

( t1 − s
ρ

)α
) f (s) ds

)
× e(ρ−1) t−t1

ρ Eα,α

(
λ
( t− t1

ρ

)α
)( t− t1

ρ

)α−1

+
1

ραΓ(α)

∫ t

t1

(t− s)α−1e(ρ−1)( t−s
ρ )Eα,α(λ

( t− s
ρ

)α
) f (s) ds

= C1ηe(ρ−1) t1−t0
ρ Eα,α

(
λ
( t1 − t0

ρ

)α
)( t1 − t0

ρ

)α−1e(ρ−1) t−t1
ρ

× Eα,α

(
λ
( t− t1

ρ

)α
)( t− t1

ρ

)α−1

+ C1e(ρ−1) t−t1
ρ Eα,α

(
λ
( t− t1

ρ

)α
)( t− t1

ρ

)α−1 1
ραΓ(α)

×
∫ t1

t0

(t1 − s)α−1e(ρ−1)( t1−s
ρ )Eα,α(λ

( t1 − s
ρ

)α
) f (s) ds

+
1

ραΓ(α)

∫ t

t1

(t− s)α−1e(ρ−1)( t−s
ρ )Eα,α(λ

( t− s
ρ

)α
) f (s) ds,

(29)

and for t ∈ (t2, t3]

u2(t) = C2

(
C1ηe(ρ−1) t1−t0

ρ Eα,α

(
λ
( t1 − t0

ρ

)α
)( t1 − t0

ρ

)α−1

× e(ρ−1) t2−t1
ρ Eα,α

(
λ
( t2 − t1

ρ

)α
)( t2 − t1

ρ

)α−1

+ C1e(ρ−1) t2−t1
ρ Eα,α

(
λ
( t2 − t1

ρ

)α
)( t2 − t1

ρ

)α−1 1
ραΓ(α)

×
∫ t1

t0

(t1 − s)α−1e(ρ−1)( t1−s
ρ )Eα,α(λ

( t1 − s
ρ

)α
) f (s) ds

+
1

ραΓ(α)

∫ t2

t1

(t2 − s)α−1e(ρ−1)( t2−s
ρ )Eα,α(λ

( t2 − s
ρ

)α
) f (s) ds

)
× e(ρ−1) t−t2

ρ Eα,α

(
λ
( t− t2

ρ

)α
)( t− t2

ρ

)α−1

+
1

ραΓ(α)

∫ t

t2

(t− s)α−1e(ρ−1)( t−s
ρ )Eα,α(λ

( t− s
ρ

)α
) f (s) ds

= ηe(ρ−1) t−t2
ρ Eα,α

(
λ
( t− t2

ρ

)α)( t− t2
ρ

)α−1

×
2

∏
k=1

[
Cke(ρ−1)

tk−tk−1
ρ Eα,α

(
λ
( tk − tk−1

ρ

)α)( tk − tk−1
ρ

)α−1
]

+
1

ραΓ(α)

[ 2

∑
k=1

(
2

∏
j=k

Cj)
∫ tk

tk−1

(tk − s)α−1e(ρ−1)( tk−s
ρ )

× Eα,α(λ
( tk − s

ρ

)α
) f (s) ds

]
e(ρ−1) t−t2

ρ Eα,α
(
λ
( t− t2

ρ

)α)( t− t2
ρ

)α−1

+
1

ραΓ(α)

∫ t

t2

(t− s)α−1e(ρ−1)( t−s
ρ )Eα,α(λ

( t− s
ρ

)α
) f (s) ds.

(30)
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Following this process we inductively prove the explicit form of the solution (26).

Remark 6. The IPIVP (24) could not be considered as a partial case of PIVP (15) because of the
presence of the generalized proportional fractional derivative and its deep dependence on the lower
limit. Therefore, formula (17) could not be considered as a partial case of (26). Note that it is totally
different to the case of ordinary derivatives.

5. Applications

Example 1. Consider the PIVP (15) in the partial case λ = 1, f (t) = e(ρ−1)( t
ρ ), a = 0, b = ∞.

Then applying

∫ t

0
(t− s)α−1Eα,α

(
(

t− s
ρ

)α
)

ds =
∞

∑
k=1

∫ t
0 (t− s)αk−1ds

ρα(k−1)Γ(kα)

= ρα
∞

∑
k=1

( t
ρ )

αk

Γ(kα + 1)
= ρα(Eα((

t
ρ
)α)− 1)

and formula (17), the solution is given by

u(t) = e(ρ−1) t
ρ

(
ηEα,α

(( t
ρ

)α
)( t

ρ

)α−1
+

1
Γ(α)

(Eα((
t
ρ
)α)− 1)

)
, t > 0.

Example 2. Consider the IPIVP (24) in the partial case λ = 1, f (t) = e(ρ−1)( t
ρ ), a = 0, b = ∞,

tk = k and Pk(u) = Cu, C = const, k = 1, 2, . . . .
Then applying (see (31))∫ t

k
(t− s)α−1Eα,α

(
(

t− s
ρ

)α
)

ds = ρα(Eα((
t− k

ρ
)α)− 1)

and Formula (26), the solution is given by

u(t) = ηe(ρ−1) t−p
ρ Eα,α

(( t− p
ρ

)α)( t− p
ρ

)α−1

×
p

∏
k=1

[
Ce

ρ−1
ρ Eα,α

((1
ρ

)α)(1
ρ

)α−1
]

+
1

ραΓ(α)

[ p

∑
k=1

(
p

∏
j=k

C)e
k(ρ−1)

ρ

∫ k

k−1
(k− s)α−1Eα,α(

( k− s
ρ

)α
) ds

]
× e(ρ−1) t−p

ρ Eα,α
(( t− p

ρ

)α)( t− p
ρ

)α−1

+
e(ρ−1)( t

ρ )

ραΓ(α)

∫ t

p
(t− s)α−1Eα,α(

( t− s
ρ

)α
) ds

= ηe
(ρ−1)t

ρ Eα,α
(( t− p

ρ

)α)( t− p
ρ

)α−1Cp
[

Eα,α
((1

ρ

)α)(1
ρ

)α−1
]p

+ Cp+1
e
(ρ−1)(t−p)

ρ Eα,α
(( t−p

ρ

)α)( t−p
ρ

)α−1

Γ(α)
(Eα((

1
ρ
)α)− 1)

×
[ p

∑
k=1

( e
ρ−1

ρ

C
)k
]
+

e
(ρ−1)t

ρ

Γ(α)
(Eα((

t− p
ρ

)α)− 1),

for t ∈ (p, p + 1], p = 0, 1, 2, . . . .
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6. Conclusions

In this paper a scalar linear fractional differential equation with a generalized pro-
portional fractional derivative of Riemann–Liouville type (LFDEGD) on a finite interval is
studied. Two different cases are investigated. The object of investigation in the first case is
the initial value problem of LFDEGD with an initial condition expressed by a generalized
proportional fractional integral. An explicit formula of the solution of the studied initial
value problem is obtained. In the second case the case when instantaneous impulses occur
at fixed initially given points is considered. We study the case of a changeable lower limit
of the generalized proportional fractional derivative at each impulsive time. It is reasonable
because each impulsive time is considered as an initial time of the fractional differential
equation. An appropriate impulsive conditions by generalized proportional fractional
integrals are set up. An explicit solution is given.

Note that in the case of ordinary derivatives, the impulsive case is a generalization of
the case without impulses. However, it is not the situation of the generalized proportional
fractional derivative of Riemann–Liouville type. It is mainly because the solution has a
singularity at each impulsive point. It requires the study of both cases, impulsive and
non-impulsive, neither of which is a partial case of the other one.
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