
symmetryS S

Article

Top–Bottom Condensation Model: Symmetries and Spectrum of
the Induced 2HDM

Alexander A. Osipov 1 , Brigitte Hiller 2,*, Alex H. Blin 2 and Marcos Sampaio 3

����������
�������

Citation: Osipov, A.A.; Hiller, B.;

Blin, A.H.; Sampaio, M. Top–Bottom

Condensation Model: Symmetries

and Spectrum of the Induced 2HDM.

Symmetry 2021, 13, 1130. https://

doi.org/10.3390/sym13071130

Academic Editors: Zoltán Trócsányi,

Adam Kardos and Giuseppe

Bevilacqua

Received: 21 May 2021

Accepted: 18 June 2021

Published: 24 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia; aaosipov@jinr.ru
2 CFisUC, Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal; alex@uc.pt
3 CCNH Centro de Ciências Naturais e Humanas, Universidade Federal do ABC,

Santo André 09210-580, SP, Brazil; marcos.sampaio@ufabc.edu.br
* Correspondence: brigitte@fis.uc.pt

Abstract: Here, we use the Schwinger–DeWitt approach to address the four-fermion composite
Higgs effective model proposed by Miransky, Tanabashi and Yamawaki (MTY). The surprising
benefit of such an approach is that it is possible to ascribe to a SM-type Higgs a quark–antiquark
structure of predominantly a b̄b nature with a small t̄t admixture, which in turn yields a Higgs mass
compatible with the observed value of 125 GeV. We discuss this result in a detailed and pedagogical
way, as it goes against the common belief that this model and akin composite descriptions should
predict a Higgs mass-of-order of twice the top quark mass, contrary to empirical evidence. A further
aspect of this approach is that it highlights the link of the SU(2)L ×U(1)R symmetric four-fermion
MTY model interactions of the heavy quark family to a specific two-Higgs-doublet model (2HDM),
and the necessity to go beyond the one Higgs doublet to obtain the empirical Higgs mass within
composite models. By appropriately fixing the symmetry-defining interaction parameters, we show
that the resulting CP-preserving spectrum harbors the following collective states at the electroweak
scale ΛEW = 246 GeV: a light scalar to which the standard Higgs is associated; a heavier neutral state
preconized as the Nambu partner of the standard Higgs within the Nambu sum rule; the expected
triplet of Goldstone bosons associated with the longitudinal polarizations of the electroweak massive
bosons; and a neutral pseudoscalar state that in the limit of a global U(1)A symmetry would be a
Goldstone mode. The anomalous breaking of this axial symmetry is a subleading effect in a large Nc

counting scheme, and we discuss how it modifies the leading-order Nambu sum rule result and its
relevance for the qualitative description of the spectrum.

Keywords: composite higgs model; collective state spectrum; dynamical symmetry breaking; effec-
tive action

1. Introduction

Symmetry principles based on space-time and internal (local) symmetries of the fields
play a central role in particle physics.The Standard Model (SM) is a theory based on the
gauge groups SU(3)c ⊗ SU(2)L ⊗U(1)Y , which is realised in three phases: the Coulomb
phase (photons), the Higgs phase (W, Z) and the confinement phase (gluons). Whereas the
electroweak mediators appear explicitly in the spectrum, the gluons may only appear as
bound states.

Global symmetries are usually approximate, or can be broken (either at Lagrangian
level or via an anomaly).

Anomalously broken gauge symmetries are usually restored by anomaly cancellation
mechanisms in the Standard Model. However, a gauge symmetry can be spontaneously
broken through the Higgs-Brout-Englert mechanism. The SU(2)L ⊗U(1)Y symmetry is
still present, but since the vacuum is not symmetric, it is not apparent. The spontaneous
breaking of the electroweak symmetry generates the masses of the vector bosons W±, Z0 in
a gauge-invariant way, while the photon remains massless and thus still explicitly preserves
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U(1) gauge invariance. The Higgs mechanism assumes the existence of an isospin doublet
of complex scalar fields,

Φ =

(
<Φ+ + i=Φ+

<Φ0 + i=Φ0

)
, (1)

associated with the potential V(Φ) = −µ2Φ†Φ+λ(Φ†Φ)2 invariant under SU(2)L ⊗U(1)Y
and µ2, λ > 0. The Mexican hat-shaped potential has a minimum at 〈Φ〉 ≡ v =

√
−µ2/λ,

which is fixed by experimental parameters at v ≈ 246 GeV. Thus, SU(2)L⊗U(1)Y is hidden,
as the vacuum is not symmetric. For each fermion field of definite right or left chirality,
the interaction with the scalar field Φ generates their masses after spontaneous symmetry-
breaking, excluding the neutrinos which are only left-handed. From the four initial degrees
of freedom of the field Φ, three are used W±, Z0 gauge bosons to acquire their masses and
the other one corresponds to a physical particle, the Higgs boson H. The Higgs boson stands
out from the other particles in some ways. It is a spin 0 matter boson that does not mediate
gauge interactions, and its coupling strength to matter particles defines how massive they
are. Theoretical constraints, as well as direct searches and precision measurements (for
recent reviews, see [1,2]) on the Higgs boson announced by CERN in 2012 are compatible
with the mass value 125.10± 0.14 GeV [3].

The SM is an effective QFT which is perturbative up to the Planck scale where quantum
gravity effects kick in. Thus, we expect a cutoff scale of the SM to be (at most) at the Planck
mass. Because the dimensionful parameter µ2 is unnaturally small (even if it is tuned
small, at tree level, loop contributions are quadratically divergent), we conclude that
the SM is very fine-tuned. In mathematical terms, this is put as follows. The Higgs
mass term is an operator of dimension d = 2, which means that it has a coefficient of
dimension 1/Λd−4

SM , and thus, µ2 = k Λ2
SM Φ†Φ where k is a numerical coefficient. Taking

µ2 = M2
H/2 ≈ (88 GeV)2 and ΛSM = MGUT ≈ 1015 GeV, then k ≈ 10−26 ≪ 1. This is the

hierarchy problem.
There are basically two ways to avoid the hierarchy problem of the SM: weakly and

strongly coupled theories. One avenue assumes an elementary Higgs and new symmetries,
and the other one assumes new interactions and that the Higgs is a composite particle.
Supersymmetry is an example of weakly coupled theories: the quadratic divergence due
to the quadratic quantum correction is cancelled by the contribution from a superpartner
particle. On the other hand, a typical example of strongly coupled models is Composite
Higgs Models (CHMs).

Once we assume a composite Higgs model, we ought to work out the strong dynamics
that are responsible for the production of such a composite state and evaluate its predictions.
For instance, in a theory with strong dynamics, one has a mass spectrum with a dense
tower of resonances built from the more fundamental objects that interact strongly. Two
scenarios are usually contemplated: one in which the Higgs is a light scalar (dilaton-like)
particle of the new strong dynamics, or it arises similar to pions in QCD as a pseudo-
Nambu–Goldstone boson (PNGB) [4,5]. In this case, strong dynamics will generate, among
other bound states, a PNGB with the quantum numbers of the Higgs, which breaks the
electroweak symmetry.

Thus, we use symmetry to explain the mass of the composite Higgs boson because,
being a PNGB, this Higgs particle will be light. Its mass will not get radiative corrections
above the compositeness scale. In the 1980s, Georgi and Kaplan [6–8] pointed out that a
Higgs boson resulting from a bound state due to strong dynamics at some energy scale
f larger than the electroweak (TeV) scale would be less massive as compared to other
resonances. One can think of f in analogy to the weak decay constant of the pion fπ .

The scale of such new strong dynamics is typically much higher than the energies that
can be achieved at current experiments. Thus, one studies the low-energy phenomenology
of these models in a way that does not depend on the specific high-energy physics through
an effective Lagrangian approach. To describe an underlying theory that is only probed
at energy scales E < Λ, a particle of mass m > Λ cannot be produced as a real state. It
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can only contribute through short-distance virtual effects. The generating functional for
Green’s functions leads to an effective theory after “integrating out” the quantum fluctua-
tions due to the heavier particles, after which only the degrees of freedom relevant to the
energy scale are considered. A typical example of models that are strongly interacting and
describes a composite Higgs boson is Technicolor (TC) [9]. TC assumes a new SU(N)TC
gauge symmetry describing the dynamics of new stronginteractions in analogy to the
usual SU(3)C gauge interactions of QCD. Additionally, TC Lagrangian is assumed to have
the electroweak chiral symmetry that is broken spontaneously to the custodial symmetry
group by the techniquark condensate 〈0|q̄TCqTC|0〉 6= 0⇒ SU(2)L⊗ SU(2)R → SU(2)L+R,
resulting in three Goldstones bosons (technipions). Upon gauging the electroweak sub-
group SU(2)L ⊗U(1)Y, such technipions disappear from the spectrum giving place to
longitudinal bosons W±L , ZL which get their mass through the Higgs mechanism without
the appearance of an elementary Higgs. Although TC is appealing, it turns out that, at least
in the simpler setups, they are very constrained by measurements of electroweak precision
observables and the heavy quark masses, in addition to the production of Flavor Changing
Neutral Currents (FCNC).

A large variety of models based on an extended (non-minimal) Higgs sector have
been proposed. The mechanism of electroweak symmetry breaking with one doublet is
not confirmed, and one may consider larger representations motivated by higher-scale
symmetries or phenomenological arguments, such as new sources of CP violation [10].
Two-Higgs-doublet models (2HDM) require the introduction of a second Higgs doublet.
The Minimal Supersymmetric Standard Model (MSSM) requires a second Higgs doublet
to warrant cancellation of gauge anomalies. The Higgs sector of the MSSM is described
by a 2HDM containing two chiral Higgs supermultiplets that differ by the sign of hyper-
charge. As for CP symmetry, it can be violated explicitly in the scalar sector if some of the
coefficients in the 2HDM potential are complex and survive by neutral-flavour conserva-
tion requirements. Moreover, a specific 2HDM called the inert model [11] admits a 2HD
extension of the SM scalar sector that could be a candidate to explain dark matter.

Finally, the fermion mass spectrum in the SM is related to the Yukawa couplings
between the Higgs field and the fermions. Such couplings are arbitrary, and thus cannot
explain why there are three generations of fermions and their large spectrum of masses.
In a model with one doublet, all quarks receive their masses from the same doublet. In
a 2HDM, the Yukawa coupling is more natural. For instance, it is possible to generate
Yukawa couplings such that the bottom quark (≈ 4 GeV) receives its mass from one doublet,
while the top quark (≈ 170 GeV) gets it from another doublet.

In the present work, we concentrate on the top-condensation description of compos-
iteness, which dates back to the works [12–14] and has been steadily developed by [15–25]
ever since. In this approach, the elementary SM Higgs is replaced by a bound state with an
underlying top–antitop structure. It is assumed that below a large-scale Λ, eventually of the
grand unification (GUT), the effective Lagrangian is described by four quark interactions
subject to critical behavior that lead to condensation and emergence of mass beyond the
SM. However, the SM Higgs mass mχ within such an approach persists systematically in
being larger than the empirical value,

√
2mt < mχ < 2mt, with mt = 173 GeV denoting the

mass of the t quark. The upper boundary is obtained in the large Nc approximation for one
Higgs doublet [19], and also in the 2HDM studies of [20,21]. The lower emerges upon using
renormalization group equations that take gauge and Higgs fields into account at one-loop
order [19,20].

Another avenue to deal with the too-high Higgs mass uses the top-seesaw
mechanism, refs. [26–28].

The relation mχ = 2mt is a well-known result within the Nambu-Jona-Lasinio (NJL)
model [29,30] that predicts the mass of the scalar bound state to be twice the quark
mass when chiral symmetry is spontaneously broken. This relation is generalized to
m2

1 + m2
2 = 4m2

q within the Nambu sum rule [31–33], when two collective states (called
Nambu partners), each of masses m1 and m2, are present in the spectrum. A consequence of
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the sum rule is that at least two Higgs doublets are required to obtain the phenomenological
mass value of the light Higgs. In this scenario, a Nambu partner for the light Higgs is
obtained with mass 325 GeV [33].

Although it is general consensus (see, e.g., refs. [34,35]) that standard 2HDM for top-
condensation [17,20,21] are unable to yield the SM Higgs mass, we show here that in the
model [17], the mass mχ is obtained in the interval 2mb < mχ < mt.

The paper is organized as follows. In Section 2 we present the most important features
of the model [17] and address its symmetry content in different stages that prepare for
the new aspect of our approach, which is the derivation of the low-energy effective action
of the model on the basis of the Schwinger–DeWitt background field method, presented
in Section 3. This includes the introduction of relevant bosonic variables with a definite
quark content, in terms of which two Higgs doublets are characterized. In Section 4,
we derive through the asymptotic proper time expansion the Higgs sector related gap
equations, quark condensates and masses, and discuss the phenomenon of bottom quark
mass catalysis. The induced interaction potential involving cubic and quartic interactions
among the members of the two Higgs doublets is derived in this section and displayed
in the Higgs basis, as well as the Yukawa couplings. The spectrum and role of coupling
constants of the theory are addressed in Section 5, together with the Nambu sum rule. It is
shown that the exact form of this sum rule is obtained in the model at leading order in a
large Nc expansion, but that the U(1)A anomaly breaks the pattern, since it is a subleading
effect in Nc counting, causing a modification. Numerical estimates for the spectrum are
obtained and discussed. After considering the effects induced in the gauge sector, Section 6,
we discuss numerical estimates of our results in Section 7 and conclude in Section 8. In
Appendix A are relevant details of diagonalization.

2. Lagrangian and Symmetries

We discuss in this section the general features of the four-quark interaction model [17]
using for simplicity only the top and bottom quarks. Our guiding line will be to make sure
that the symmetry content is kept intact in all steps that lead to the low energy effective
action obtained by the Schwinger–DeWitt expansion. This first involves the introduction of
a set of auxiliary bosonic variables in the fermionic fuctional integral in an invariant way,
which linearizes the interactions and simplifies the task of integrating out the short distance
components of the fermionic degrees of freedom within the background field method of
Schwinger–DeWitt. We show how these bosonic variables relate to two Higgs doublets
with a definite quark content, on the basis of the symmetry transformation properties.
These results will be used in the following sections to obtain the induced scale-dependent
kinetic terms and quartic interactions for the bosons and to cast the low-energy effective
Lagrangian in the standard form involving two Higgs doublets, from which the analysis of
dynamical symmetry breaking and spectrum will follow.

2.1. Effective Fermion–Gauge–Boson Lagrangian

Although we will focus on the fermionic interactions that give rise to the composite
Higgs sector, we indicate for completeness the full Lagrangian that has been considered
within the present approach, and refer for more details to [36]. We start with the gauged
fermionic system with SU(2)L ×U(1)R local symmetry

L = ψ̄LiγµDµψL +
2

∑
a=1

ψ̄a
RiγµDµψa

R + LYM + L4ψ, (2)

involving only the top and bottom quarks for simplicity

ψ =

(
ψ1
ψ2

)
=

(
t
b

)
. (3)
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Their chiral projections ψL,R = PL,Rψ are defined through the operators PR = 1
2 (1 + γ5),

PL = 1
2 (1− γ5). The covariant derivatives are given by the SM expressions

DµψL =
(

∂µ − igRTi Ai
Rµ − ig′RYLBRµ

)
ψL, (4)

DµψR =
(
∂µ − ig′RQBRµ

)
ψR, (5)

where ARµ = Ai
RµTi and BRµ are respectively the gauge fields associated to the SU(2)L

and U(1)R groups. The electric charges of the quarks are given in units of e > 0 through
the matrix Q = T3 + YL in terms of the hypercharge YL = 1/6 and the third component of
the Lie algebra generators Ti = τi/2, i = 1, 2, 3, with τi the Pauli matrices.

The Yang–Mills part LYM is standard

LYM = −1
4

(
B2

Rµν + ~G2
Rµν

)
, (6)

where

BRµν = ∂µBRν − ∂νBRµ, (7)

~GRµν = ∂µ ~ARν − ∂ν ~ARµ + gR ~ARµ × ~ARν. (8)

As will be discussed in Section 6, the gauge fields are still subject to a rescaling
~ARµ = Z−1/2

A
~Aµ, BRµ = Z−1/2

B Bµ, leading to the physical fields ~Aµ, Bµ.
The effective four-fermion interaction L4ψ is assumed to arise at a high energy scale Λ

and will give origin to the composite Higgs system. It has the most general SU(2)L×U(1)R
group structure [17]

L4ψ =g1

(
ψ̄a

Lψb
R

)(
ψ̄b

Rψa
L

)
+g2

(
ψ̄a

Lψb
R

)
(iτ2)

ac(iτ2)
be(ψ̄c

Lψe
R)

+g3

(
ψ̄a

Lψb
R

)
τbc

3 (ψ̄c
Rψa

L) + h.c., (9)

with implicit summation over the color degrees of freedom (not explicitly shown) taken
for each pair of quarks within parentheses. The couplings gi are considered to be real
and positive, with dimension [gi] = M−2, and the symmetry content associated to the
corresponding interactions is

g1 : SU(3)c × SU(2)L × SU(2)R ×U(1)V ×U(1)A.

g2 : SU(3)c × SU(2)L × SU(2)R ×U(1)V . (10)

g3 : SU(3)c × SU(2)L ×U(1)R ×U(1)V ×U(1)A.

This can perhaps be better seen by introducing, in the following, the variables sα, pα

(the Greek index α takes the values α = 0, 1, 2, 3, and τ0 = 1), which will also be an
asset to assert in the next section the functional equivalence of the fermionic Lagrangian
density associated with Equation (9) and a semi-bosonized Lagrangian involving Yukawa-
like interactions,

ψ̄ταψ = τab
α

(
ψ̄a

Lψb
R + ψ̄a

Rψb
L

)
≡ sα, (11)

ψ̄iγ5ταψ = iτab
α

(
ψ̄a

Lψb
R − ψ̄a

Rψb
L

)
≡ pα, (12)

and define the complex 2× 2 matrix
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Σab =
1
2
(sα + ipα)τ

ab
α = 2ψ̄b

Rψa
L, (13)

Σ†
ab =

1
2
(sα − ipα)τ

ab
α = 2ψ̄b

Lψa
R. (14)

Then, one can easily see that the term proportional to g1 in Equation (9) can be
written as

(ψ̄a
Lψb

R)(ψ̄
b
Rψa

L) =
1
4

Σ†
baΣab =

1
4

tr
(

Σ†Σ
)
=

1
8
(s2

α + p2
α)

=
1
8

[
(ψ̄ταψ)2 + (ψ̄iγ5ταψ)2

]
. (15)

The NJL-model with chiral U(2)L×U(2)R symmetry emerges when only the coupling
g1 is kept, leading in the Nambu–Goldstone phase to a set of four massless pseudoscalars
and four mass-degenerate scalars with a mass twice the constituent fermion mass.

The term proportional to g2 of Equation (9) yields, after using

(iτ2)
ab(iτ2)

cd = εabεcd, (16)

the following expression

(ψ̄a
Lψc

R)(iτ2)
ab(iτ2)

cd(ψ̄b
Lψd

R) =
1
4

Σ†
caΣ†

dbεabεcd =
1
2

det Σ†

=
1
8

[
s2

0 − s2
i − p2

0 + p2
i − 2i(s0 p0 − si pi)

]
, (17)

leading to

(ψ̄a
Lψc

R)(iτ2)
ab(iτ2)

cd(ψ̄b
Lψd

R) + h.c. (18)

=
1
2

(
det Σ† + det Σ

)
=

1
4

[
s2

0 − s2
i − p2

0 + p2
i

]
=

1
4

[
(ψ̄τ0ψ)2 − (ψ̄τiψ)

2 − (ψ̄iγ5τ0ψ)2 + (ψ̄iγ5τiψ)
2
]
.

One recognizes that the global U(1)A symmetry is absent. Two distinct combinations
of fermionic bilinears emerge, each fulfilling SU(2)L× SU(2)R chiral symmetry, one involv-
ing a scalar isospin singlet and pseudo scalar isospin triplet, the other with opposite isotopic
assignments and signs. Only this determinantal interaction lifts the U(1)A symmetry in
the Lagrangian density Equation (2), without breaking chiral symmetry, as known from the
seminal works of ’t Hooft [37]. Its presence is required as a massless Nambu–Goldstone
mode that would occur after spontaneous breaking of the U(1)A symmetry has not been
observed experimentally. Finally, for the term proportional to g3 in Equation (9), one has

(ψ̄a
Lψb

R)τ
bc
3 (ψ̄c

Rψa
L) =

1
4

Σ†
baτbc

3 Σac =
1
4

tr
(

Σ†Στ3

)
=

1
4
(s0s3 − s1 p2 + s2 p1 + p0 p3)

=
1
4
[(ψ̄τ0ψ)(ψ̄τ3ψ)− (ψ̄τ1ψ)(ψ̄iγ5τ2ψ)

+ (ψ̄τ2ψ)(ψ̄iγ5τ1ψ) + (ψ̄iγ5τ0ψ)(ψ̄iγ5τ3ψ)]. (19)

This interaction violates isospin and spatial parity, as expected from a SU(2)L ×U(1)R
symmetry content. Here, the charge-neutral fermionic bilinears combine only in pairs
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involving the same parity, as opposed to the charged bilinears. Combining Equations (15),
(18) and (19) in (9) one obtains

L4ψ =
1
4

[
(g1 + g2)(p2

0 + s2
i ) + (g1 − g2)(s2

0 + p2
i )

+2g3(p0 p3 + s0s3 − s1 p2 + s2 p1)], (20)

in terms of the quark bilinears Equation (11).

2.2. Functional Integral and Bosonic Variables

We proceed to show that the pure fermionic Lagrangian density Equation (2) is
dynamically equivalent to a semibosonized Lagrangian containing eight auxiliary boson
fields σ = σατα, π = πατα with the following functional integral representation

Z =
∫

dσαdπαdψdψ̄ exp
(

i
∫

d4xL′
)

, (21)

L′ = L f + Lπ,σ + LYM, (22)

where L f involves the fermionic fields

L f = ψ̄
(
iγµDµ + σ + iγ5π

)
ψ (23)

and Lπ,σ is a quadratic form involving the spin 0 bosonic fields

Lπ,σ =− 1
ḡ2

[
(g1 + g2)(π

2
0 + σ2

i ) + (g1 − g2)(σ
2
0 + π2

i )

−2g3(π0π3 + σ0σ3 − σ1π2 + σ2π1)], (24)

with

ḡ2 ≡ g2
1 − g2

2 − g2
3 6= 0, (25)

and the covariant derivative for the gauge fields is given by

Dµψ =
[
∂µ − igTi Ai

µPL + ig′Bµ(T3PL −Q)
]
ψ. (26)

The Lagrangian Equation (24) corresponds to a minimal bosonization, [38], see also
the discussion in [36], meaning that the number of parameters is kept the same as in
Equation (2). The equivalence of the functional integrals involving the Lagrangian densities
Equations (2) and (22) is proven, integrating over the auxiliary fields, which can precisely
be done since the auxiliary fields are a quadratic form. The dynamical equivalence of both
Lagrange densities is guaranteed if Equations (2) and (22) are the same for the solutions
given by the Euler–Lagrange equations for the static auxiliary fields σα, πα

∂L′
∂σα

= 0,
∂L′
∂πα

= 0. (27)

These are readily obtained and establish the following links between the auxiliary
coordinates and the bilinears ψ̄ταψ and ψ̄iγ5ταψ
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2σ0 = (g1 + g2)ψ̄τ0ψ + g3ψ̄τ3ψ,

2σ1 = (g1 − g2)ψ̄τ1ψ− g3ψ̄iγ5τ2ψ,

2σ2 = (g1 − g2)ψ̄τ2ψ + g3ψ̄iγ5τ1ψ,

2σ3 = (g1 − g2)ψ̄τ3ψ + g3ψ̄τ0ψ,

2π0 = (g1 − g2)ψ̄iγ5τ0ψ + g3ψ̄iγ5τ3ψ,

2π1 = (g1 + g2)ψ̄iγ5τ1ψ + g3ψ̄τ2ψ,

2π2 = (g1 + g2)ψ̄iγ5τ2ψ− g3ψ̄τ1ψ,

2π3 = (g1 + g2)ψ̄iγ5τ3ψ + g3ψ̄iγ5τ0ψ. (28)

These expressions show that the quark–antiquark states σ0, σ3 are described by linear
combinations of scalar bilinears, and the π0, π3 by a superposition of two pseudoscalars.
The other four states involve admixtures of different parities. With these solutions substi-
tuted in Equation (22), one gets

ψ̄(σ + iγ5π)ψ + Lπ,σ =
1
2

ψ̄(σ + iγ5π)ψ

=
g1

4

[
(ψ̄ταψ)2 + (ψ̄iγ5ταψ)2

]
+

g2

4

[
(ψ̄τ0ψ)2 − (ψ̄τiψ)

2 − (ψ̄iγ5τ0ψ)2 + (ψ̄iγ5τiψ)
2
]

+
g3

2
[(ψ̄τ0ψ)(ψ̄τ3ψ)− (ψ̄τ1ψ)(ψ̄iγ5τ2ψ)

+(ψ̄τ2ψ)(ψ̄iγ5τ1ψ) + (ψ̄iγ5τ0ψ)(ψ̄iγ5τ3ψ)]. (29)

The Yukawa form involving the fields σ, π, ψ is seen to be identical to Equation (20)
and proves the equivalence of the Lagrangian density Equations (2) and (22).

2.3. Symmetry Properties of Composite Fields

We are now ready to discuss how the eight σ, π fields relate to two Higgs doublets
(see Equations (37), (38) and (44) below)

Φ1 =

(
π2 + iπ1

σ0 − iπ3

)
, Φ2 =

(
σ1 − iσ2

−σ3 + iπ0

)
(30)

with U(1) assignment of hypercharge YL = 1/2, allowing us to connect to standard
descriptions of 2HDM and the corresponding classification of symmetries [39–41]. For that,
we start from the symmetry transformations of the quark fields underlying the collective
σ, π states in Equations (21) and (22). The infinitesimal U(2)V ×U(2)A transformation for
the quark fields is

δψ = i(α + γ5β)ψ, δψ̄ = iψ̄(−α + γ5β), (31)

where α = 1
2 αaτa, β = 1

2 βaτa, and αa, βa are the eight (a = 0, 1, 2, 3) infinitesimal parameters
of the global transformations of the vector U(2)V and axial-vector U(2)A groups. The
Yukawa term ψ̄(σ + iγ5π)ψ remains invariant under transformations of Equation (31)
leading to bosonic fields transforming chirally as

δσ = i[α, σ] + {β, π}, δπ = i[α, π]− {β, σ}. (32)

The spin 0 fields are real-valued; thus, their transformations are independent of α0.
Therefore, we have the SU(2)V ×U(2)A group and use for that

[τi, τj] = 2ieijkτk, {τa, τb} = 2habcτc, (33)
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with i, j, k = 1, 2, 3 and totally symmetric coefficients habc with the non-vanishing compo-
nents h000 = 1, h0ij = δij. This yields

δσa =
1
2

tr(τaδσ) = habcβbπc − δakekijαiσj

δπa =
1
2

tr(τaδπ) = −habcβbσc − δakekijαiπj (34)

or, in components

δσ0 = βaπa, δσi = −eijkαjσk + β0πi + βiπ0,

δπ0 = −βaσa, δπi = −eijkαjπk − β0σi − βiσ0, (35)

one obtains then the action of SU(2)V ×U(2)A on the complex fields that enter in the
classification Equation (30)

δ(σ0 − iπ3) = i[α1π2 − α2π1 + β0σ3 + β3σ0 − iβaπa],

δ(π2 + iπ1) = i[−(α1 − iα2)iπ3 − (β1 − iβ2)σ0

+α3(π2 + iπ1)− β0(σ1 − iσ2)],

δ(iπ0 − σ3) = α1σ2 − α2σ1 − β0π3 − β3π0 − iβaσa,

δ(σ1 − iσ2) = i[α3(σ1 − iσ2)− (α1 − iα2)σ3

−β0(π2 + iπ1)− π0(β2 + iβ1)]. (36)

These expressions can now be used to finally obtain the transformation rules for the
chiral SU(2)L × U(1)A group, extracting the correct set of infinitesimal parameters as
follows. Taking αL = α− β, αR = α + β that relate U(2)V ×U(2)A to U(2)L ×U(2)R, one
obtains (with α0 = 0, β0 6= 0 and αi + βi = 0) four parameters, αi = −βi ≡ ωi/2 and β0,
to describe the infinitesimal transformations of SU(2)L ×U(1)A. Rewriting Equation (36)
with these parameters, one has

δ(σ0 − iπ3) =
i
2
[(ω1 + iω2)(π2 + iπ1)−ω3(σ0 − iπ3)]

− iβ0(iπ0 − σ3),

δ(π2 + iπ1) =
i
2
[(ω1 − iω2)(σ0 − iπ3) + ω3(π2 + iπ1)]

− iβ0(σ1 − iσ2),

δ(iπ0 − σ3) =
i
2
[(ω1 + iω2)(σ1 − iσ2)−ω3(iπ0 − σ3)]

− iβ0(σ0 − iπ3),

δ(σ1 − iσ2) =
i
2
[(ω1 − iω2)(iπ0 − σ3) + ω3(σ1 − iσ2)]

− iβ0(π2 + iπ1). (37)

These formulas show that Φ1 and Φ2 in Equation (30) behave like fundamental
SU(2)L-doublets

δΦ1,2 = iωi
τi
2

Φ1,2 − iβ0Φ2,1. (38)

Furthermore, the non-vanishing of the β0 parameter related to the U(1)A transformation
leads to a mixing between the two Φi doublets. It is possible to change the basis to

Φ1 =
1√
2
(Φ′1 + Φ′2), Φ2 =

1√
2
(Φ′2 −Φ′1), (39)
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where the axial transformation does not mix the doublets, but leaves its signature in the
sign of β0

δΦ′1,2 = iωi
τi
2

Φ′1,2 ± iβ0Φ′1,2. (40)

This U(1) symmetry (suitably extended to the quark sector) was first introduced by
Peccei and Quinn [42,43] in connection with the strong-CP problem.

2.4. Quark Content of Higgs Doublets

From Equation (28), one can also obtain the explicit quark flavor content of the
doublet members

σ0 − iπ3 = (g1 + g2 + g3)t̄LtR + (g1 + g2 − g3)b̄RbL,

π2 + iπ1 = (g1 + g2 − g3)b̄RtL − (g1 + g2 + g3)b̄LtR,

iπ0 − σ3 = (g1 − g2 − g3)b̄RbL − (g1 − g2 + g3)t̄LtR,

σ1 − iσ2 = (g1 − g2 − g3)b̄RtL + (g1 − g2 + g3)b̄LtR. (41)

The distinguishing feature of these doublet members written in terms of the quark
content of collective states σ, π is that they involve the couplings gi. If g3 = 0, one can
isolate two doublets, which we denote by Φ0

1, Φ0
2

Φ0
1 =

(
b̄RtL − b̄LtR
b̄RbL + t̄LtR

)
, (42)

Φ0
2 =

(
b̄RtL + b̄LtR
b̄RbL − t̄LtR

)
. (43)

Both doublets possess U(1) hypercharge YL = Q− T3 = 1/2; their upper components
have positive charge Q = 1 and isopin projection T3 = 1/2, whereas the lower components
carry Q = 0, T3 = −1/2. In terms of these, one obtains(

Φ1

Φ2

)
=

(
(g1 + g2) −g3
−g3 (g1 − g2)

)(
Φ0

1
Φ0

2

)
. (44)

In this form, the doublets Φ1, Φ2 represent an admixture of the quark doublets Φ0
1, Φ0

2,
which carry different weights (g1± g2) and are coupled via the g3 interaction.

3. Schwinger–DeWitt Approach

Having shown that the path integral representation Equation (21) with the auxiliary
bosonic variables σ, π conduces to two Higgs doublets with the required symmetry and
definite quark content, we proceed to integrate out the short-distance components of the
quark fields ψ→ ψ + ψsd. For that, Wilson’s method [44] is used, taking into consideration
the analyses of [19], from which one deduces that upon integration, the auxiliary scalar
fields σ and π acquire gauge-invariant kinetic terms and quartic interactions in the effective
action at scales µ below the cutoff Λ. Here we derive the induced kinetic and quartic
interactions for Lagrangian Equation (22) using the Schwinger–DeWitt technique [45–48].
Although the Lagrangian density Equation (24) requires a diagonalization of the quadratic
form, we postpone it to after having obtained the induced effective contribution to the
Lagrangian, which is also non-diagonal. We start by considering the functional integral
associated to the four fermion vertices that develop at the scale Λ, Equation (23), with the
fermionic degrees of freedom divided into short-distance components ψsd and remaining
components ψr which, for notational simplicity, we relabel as ψ

Z f ,Λ =
∫

dψdψ̄ exp
(

i
∫

d4xL f

)
Zsd,µ (45)
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Zsd,µ =
∫

dψsddψ̄sd exp
(

i
∫

d4xL f ,sd

)
. (46)

The integration over the high-frequency components is performed using Zsd,µ in the
one-loop fermion approximation, from the large-scale Λ down to the scale µ, making sure
that at µ = Λ one recovers the functional in terms of the initial four-fermion configuration.
We need the real part of the action which is obtained from the inverse of the fermionic
propagator containing the background fields σ, π and gauge fields, and is formally given
by its functional determinant. Since the Euclidean propagator is well-defined as the kernel
of the inverse of an elliptic operator ∆ for x 6= y

G(x, y) = 〈x|∆−1|y〉 =
∫ ∞

0
dt〈x|e−t∆|y〉

=
∫ ∞

0
dt G(x, y, t), (47)

the Schwinger or proper time representation for the propagator G(x, y) is given in four
space-time dimensions as

G(x, y) =
∫ ∞

0

dt
(4πt)2 e−

|x−y|2
4t F(x, y, t), (48)

where F parametrizes deviations from free propagation ∆0 = −∂2. In this form, the
infrared content of G is controlled by the behaviour of F(x, y, t) at large values of t, while
the short-distance behavior of F(x, y, t) is given at small values of the proper time t by the
asymptotic expansion

F ∼
∞

∑
n=0

an(x, y)tn, (49)

where an(x, y) are the Seeley–DeWitt coefficients. Comparing Equations (47) and (48) yields
in the coincidence limit the t→ 0 behavior for

G(x, x, t) ∼ 1
(4πt)2

∞

∑
n=0

antn, (50)

where an ≡ an(x, x). In the present case, the ellyptic operator is given by ∆ = D†
EDE,

and the Euclidean effective action is obtained as the short-distance contribution to the
functional trace at each proper time considered, involving the scales

Re SE =
1
2

ln|det D†
EDE| = −

1
2

∫ ∞

0

dt
t

ρΛ
µ (t) Tr (e−tD†

EDE)sd, (51)

and one identifies Tr (e−tD†
EDE)sd =

∫
d4xG(x, x, t). The quantities in Equation (51) are

given as

D†
EDE = −d2

α + Y, (52)

where DE is the fermionic inverse propagator in the presence of background fields as
obtained in Equation (23),

DE = (iγαdα + σ + iγ5π) (53)

and dα = ∂α + iΓα is the covariant derivative (Γα is defined in Equation (59) in the
Minkowski space); the symbol E denotes Euclidean space. The resulting dependence
in the collective fields is given in Y in Equation (57). The kernel ρΛ

µ (t) restricts the proper-
time integration to the interval involving the pertinent scales, ρΛ

µ (t) = θ(1− tµ2)θ(tΛ2− 1).
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One finally obtains that the induced terms due to the integration over the high-frequency
modes of the quark components contribute to the real part of the effective action in the
form of the asymptotic series in proper time

Re SE = −1
2

∫ dt
t3

∫
d4xE

1
(4π)2

∞

∑
n=0

ρΛ
µ (t)t

ntr(aE
n ), (54)

where the Seeley–DeWitt coefficients aE
n depend on fields and encode the high-energy

behavior of the theory. We only need to consider the coefficients aE
1 = −Y, aE

2 = Y2/2−
F2

µν/12, since they pertains to integrals that diverge in proper time, providing for dominant
contributions. We also note that aE

0 does not have fields, and is irrelevant in the present
case. The integrals considered are denoted as C1 and C2 and involve two scale parameters,
Λ and µ

C1 =
∫ 1/µ2

1/Λ2

dt
t2 = Λ2 − µ2, (55)

C2 =
∫ 1/µ2

1/Λ2

dt
t
= ln

Λ2

µ2 . (56)

Here, Λ determines the high energy scale at which effective four-quark interactions
of Equation (9) set in. The low-energy scale parameter µ relates to the induced one-loop
proper-time contributions. For µ = Λ, all contributions vanish, as required by [19]. The
functions Y are determined to be

Y = σ2 + π2 + iγ5[σ, π]− i∇µ(γ
µσ + iγµγ5π)

− i
4
[γµ, γν]Fµν, (57)

Fµν = ∂µΓν − ∂νΓµ − i[Γµ, Γν], (58)

Γµ = gTi Ai
µPL − g′Bµ(PLT3 −Q), (59)

where the conversion to Minkowski space has already been effected [49]. The covariant
derivatives depend on γ5 and are given by

∇µ(γ
µσ) = ∂µ(γ

µσ)− i[Γµ, γµσ], (60)

∇µ(iγµγ5π) = ∂µ(iγµγ5π)− i[Γµ, iγµγ5π]. (61)

The result of the proper-time integration can be cast as

∆Lsd = − 1
32π2

[
C1tr(−Y) + C2tr

(
Y2

2
−

F2
µν

12

)]
, (62)

representing the anticipated additional induced gauge invariant SU(2)L ×U(1)R contribu-
tion to the Lagrangian at low energy scales µ� Λ

L̃ = L′ + ∆Lsd. (63)

The traces are to be taken in isospin, Dirac, and color spaces.
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4. Higgs Sector

The quadratic and quartic powers in the bosonic fields in Equation (63) lead to
the Higgs potential

VH = −Lπ,σ − C̄1

(
σ2

α + π2
α

)
+ 2C̄2

[
1
4

(
σ2

α + π2
α

)2

+
(

σ2
0 + π2

i

)(
σ2

i + π2
0

)
− (σ0π0 − σiπi)

2
]
, (64)

where C̄1,2 ≡ NcC1,2/(4π2). In terms of the two Higgs electroweak doublets (30), one gets

VH = −C̄1(Φ†
1Φ1 + Φ†

2Φ2) + 2C̄2 (65)[
1
4
(Φ†

1Φ1 + Φ†
2Φ2)

2 + (Φ†
1Φ1)(Φ†

2Φ2)− (Im(Φ†
1Φ2))

2
]

+
1
ḡ2

[
(g1−g2)Φ†

1Φ1 + (g1+g2)Φ†
2Φ2 + 2g3Re(Φ†

1Φ2)
]
.

At this stage, one can compare with [39] and identify in their notation three mass
terms and four real-valued and independent quartic couplings

m2
11 =

g1 − g2

ḡ2 − C̄1, m2
22 =

g1 + g2

ḡ2 − C̄1, m2
12 = − g3

ḡ2 ,

λ1 = λ2 =
1
3

λ3 = −λ4 = λ5 = C̄2, (66)

instead of eight possible in the general case.

4.1. Dynamical Symmetry Breaking and Bottom Quark Mass Catalysis

The model considered displays of critical behavior, giving origin to the quark masses.
This occurs when the neutral scalar fields acquire non-vanishing vacuum expectation
values 〈σ0〉 = −m0, 〈σ3〉 = −m3. These scalar fields must be redefined such that the
minimum configuration of the potential in the new variables correspond to vanishing of
their vacuum expectation values. This is achieved by shifting

σ0 → σ0 −m0, σ3 → σ3 −m3. (67)

The gap equations then result in the removal from the potential VH of linear terms in
these new fields

m0(g1−g2)−m3g3 = ḡ2m0[C̄1 − (m2
0 + 3m2

3)C̄2], (68)

m3(g1+g2)−m0g3 = ḡ2m3[C̄1 − (m2
3 + 3m2

0)C̄2]. (69)

One can use Equation (28) to analyse the possible solutions of the gap equations in
terms of the quark condensates 〈b̄b〉, 〈t̄t〉

2〈σ0〉 = (g1 + g2 + g3)〈t̄t〉+ (g1 + g2 − g3)〈b̄b〉,
2〈σ3〉 = (g1 − g2 + g3)〈t̄t〉 − (g1 − g2 − g3)〈b̄b〉. (70)

Using the top and bottom quark masses mt = m0 + m3, mb = m0 −m3 they read

mt = −(g1 + g3)〈t̄t〉 − g2〈b̄b〉,
mb = −g2〈t̄t〉 − (g1 − g3)〈b̄b〉. (71)

These show that the absence of the bottom quark condensate does not necessarily
mean that the bottom quark mass is zero: in the case that g2 6= 0, that is, when the U(1)A
symmetry is violated, the top quark condensate also provides mass to the bottom quark. If
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instead g2 = 0, but g3 6= 0, finite quark masses are always produced together with their
respective condensates. Both possibilities comply with solutions of the gap equations,
which we address now. Using the physical mb, mt quark masses, one can represent the gap
equations as

(g1−g3)mt − g2mb = ḡ2mt(C̄1 −m2
t C̄2), (72)

(g1+g3)mb − g2mt = ḡ2mb(C̄1 −m2
bC̄2). (73)

The trivial solution given by zero quark masses occurs at µ = Λ and is the only
solution since ḡ2 6= 0. At scales µ < Λ, the equations can have non-trivial solutions
according to the values of the couplings.

Let us first consider the case g2 = g3 = 0. As mentioned before, this corresponds to the
original NJL model. The critical point for the transition from the symmetric Wigner–Weyl phase
to the Nambu–Goldstone phase occurs when the coupling g1 surpasses the critical value gc.

Next, take the case with g2 = 0 and both g1, g3 different from 0. Then the system of
Equations (72) and (73) decouples in the quark masses

m2
b C̄2 = C̄1 −

1
g1 − g3

, (74)

m2
t C̄2 = C̄1 −

1
g1 + g3

. (75)

Thus, one sees that solutions with finite mb can occur even for g2 = 0, if the combi-
nation g1 − g3 > gc = 4π2/NcΛ2. This result is in contrast with the model [22], where a
finite mb can be generated if, and only if g2 6= 0, so when the U(1)A symmetry is violated.

Finally, we discuss what is meant by catalysis of the 〈b̄b〉 condensate. If the condition
g1 > gc holds, which we saw was necessary to generate the quark masses, then an
arbitrarily small value of the coupling g3 will suffice to create the bottom condensate, thus
acting as a catalyst (see also [50]). This phenomenon occurs because g3 is the source of
isospin violation in the model.

4.2. Diagonalization

As mentioned earlier, the quadratic part of VH in the Lagrangian Equation (65) must
be diagonalized. This is a convenient place to do it, as the gap equations carry information
on the two diagonalization angles: the angle θ that diagonalizes the charged sector, and θ′

for the neutral one. They are related to each other and to ratios involving the quark masses
and the couplings g3, g2 through

tan θ =
m3

m0
, tan 2θ′ = 3 tan 2θ − 2

g3

g2
. (76)

Please recall that the states in Equation (65) are defined prior to the redefinition of the scalar
neutral fields that acquire vacuum expectation values. We return to this point in a moment.

In Appendix A are given all details needed to obtain the mass eigenstates

Φ1 = H1 cos θ + H2 sin θ =
1
m
(m0H1 + m3H2), (77)

Φ2 = H2 cos θ − H1 sin θ =
1
m
(m0H2 −m3H1), (78)

where

H1 =

(
π̃2 + iπ̃1

σ′0 −m− iπ̃3

)
, H2 =

(
σ̃1 − iσ̃2

−σ′3 + iπ̃0

)
. (79)
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Here, m =
√

m2
0 + m2

3 ' mt/
√

2. The notation is as follows. The fields with a tilde
result from the orthogonal transformations involving the angles θ′ 6= θ. Now, since σ0 and
σ3 are subject to the shifts of Equation (67), this translates to the transformation with the
angle α = θ − θ′ to the final primed variables

σ′0 = σ̃0 cos α + σ̃3 sin α, (80)

σ′3 = σ̃3 cos α− σ̃0 sin α. (81)

The states H1, H2 build the so-called Higgs basis. A known property of this basis is that
only H1 acquires a finite vacuum expectation value [39], here given by 〈H1〉 = (0,−m).

A final step must still be undertaken. Until now, the induced kinetic terms of the spin
0 bosonic fields were not commented on. They do not have the canonical form. To achieve
this, one must normalize the fields π̃α = φα/

√
C̄2, and σ̃α = χα/

√
C̄2 [36]. In terms of the

redefined (physical) fields, one obtains

H1 =
1√
C̄2

(
φ2 + iφ1

χ′0 −
√

C̄2m− iφ3

)
, (82)

H2 =
1√
C̄2

(
χ1 − iχ2

−χ′3 + iφ0

)
,
(

χ′0
χ′3

)
= R(α)

(
χ0

χ3

)
, (83)

R(α) being a standard SO(2) rotation.
At this point, we remark that the gap equations can be expressed in terms of θ

ḡ2C̄1 = g1 −
2g2

cos 2θ
+

g3

sin 2θ
, (84)

ḡ2m2C̄2 =
g3

sin 2θ
− g2

cos 2θ
(85)

which turns out to be helpful to link the states in the spectrum. Before addressing the
spectrum in the next section, we give in the following two paragraphs the result for the
interaction potential of the Higgs fields, as well as the Yukawa terms (for details, see [36]).

4.3. Higgs Doublets Cubic and Quartic Interactions

Defining

H̃1 =

(
φ2 + iφ1

χ′0 − iφ3

)
, H̃2 =

(
χ1 − iχ2

−χ′3 + iφ0

)
=
√

C̄2H2, (86)

the interaction potential takes the form

Vint
H =

2
C̄2

[
1
4
(H̃†

1 H̃1 + H̃†
2 H̃2)

2 + (H̃†
1 H̃1)(H̃†

2 H̃2)

−
(

Im(H̃†
1 H̃2)

)2
]
− 2m√

C̄2
(H̃†

1 H̃1 + H̃†
2 H̃2)χ

′
0

− 4m0√
C̄2

(cos θχ′0 − sin θχ′3)H̃†
2 H̃2 +

4m√
C̄2

φ0 Im(H̃†
1 H̃2)

− 4m3√
C̄2

(cos θχ′3 + sin θχ′0)H̃†
1 H̃1. (87)
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4.4. Yukawa Couplings

Lagrangian Equation (63) contains the Yukawa terms

LY = ψ̄(σ + iγ5π)ψ = ψ̄L(σ + iπ)ψR + ψ̄R(σ− iπ)ψL

= t̄LtR(σ0 + σ3 + iπ0 + iπ3) + t̄LbR(σ1 − iσ2 + iπ1 + π2)

+ b̄LbR(σ0 − σ3 + iπ0 − iπ3) + b̄LtR(σ1 + iσ2 + iπ1 − π2)

+ h.c. (88)

The conversion to the physical fields results in

LY =− ψ̄Mψ + λbψ̄LH̃1bR + λtψ̄
a
LeabH̃∗1btR

+ λtψ̄L H̃2bR − λbψ̄a
LeabH̃∗2btR + h.c., (89)

where M = diag(mt, mb), eab is the antisymmetric tensor with e12 = −e21 = 1 and

λt =
mt

m
√

C̄2
≡ yt√

2
, λb =

mb

m
√

C̄2
≡ yb√

2
. (90)

5. The MTY Two-Higgs-Doublet Spectrum and Nambu Sum Rule

We proceed to analyse the Higgs masses that stem from Equations (65) and (A14) (see
also [51]). The mass eigenstates are expressed by χα and φα with squared-values

m2
χ0

= 4m2 +
2g2

ḡ2C̄2

(
1

cos 2θ
− 1

cos 2θ′

)
, (91)

m2
χ3

= 4m2 +
2g2

ḡ2C̄2

(
1

cos 2θ
+

1
cos 2θ′

)
, (92)

m2
φ0

=
4g2

ḡ2C̄2 cos 2θ
, (93)

m2
χ± =

4g3

ḡ2C̄2 sin 2θ
, (94)

m2
φi
= 0. (95)

Out of the eight spinless eigenstates, the last three φi, are Goldstone modes that are
absorbed by gauge fields through the Higgs mechanism. The remaining eigenstates satisfy
the sum rule

m2
χ0

+ m2
χ3

+ m2
φ0

=
8g3

ḡ2C̄2 sin 2θ
, (96)

m2
χ+ + m2

χ− =
8g3

ḡ2C̄2 sin 2θ
, (97)

where we have used Equation (85). However, although the sum of the squared masses of
the neutral and charged modes results in the same expression, it differs from the 4m2

t value
required by the Nambu sum rule. Moreover, the first expression contains the contributions
of three states, instead of two Nambu partners. Let us shed some light on such peculiarities.
From the mass formulas (91)–(95), we have

m2
χ0

+ m2
χ3

= m2
φ0

+ 4(m2
t + m2

b), (98)

m2
χ+ + m2

χ− = 2m2
φ0

+ 4(m2
t + m2

b), (99)

which points out the non-zero mass of the φ0 meson as the origin of the Nambu sum
rule violation. When there is no interaction in the coupling constant g2, the model has an
additional U(1)A global Peccei–Quinn-like symmetry [42,43]. As a result, a mass for the φ0
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meson is absent. The latter plays the role of an “electroweak axion”. To see that, if we set
g2 = 0, the Higgs particle masses become:

mχ0 = 2mb, mχ3 = 2mt, mχ± = 2m, mφ0 = 0, (100)

where we used Equation (76) to get the relation

g2

cos 2θ′

∣∣∣
g2=0

= 2g3, (101)

as well as the gap-Equations (74) and (75) to obtain that

2g3 = (m2
t −m2

b)ḡ2C̄2, (102)

at g2 = 0. Now, relations of Equation (100) agree with the Nambu sum rule. In other words,
the U(1)A breaking ∝ g2 accounts for the deviation from the canonical Nambu sum rule
expressed by Equations (96) and (97).

We proceed to analyse the quark content of the composite Higgs particles as a possible
SM-type Higgs particle with a mass that agrees with the empirical value. For example, let
us take the neutral bound state b̄b described by the field function,

χ0 ∝ σ̃0 = σ0 cos θ′ + σ3 sin θ′

∝ t̄t[(g1 + g2 + g3) cos θ′ + (g1 − g2 + g3) sin θ′]

+ b̄b[(g1 + g2 − g3) cos θ′ − (g1 − g2 − g3) sin θ′]

∝ b̄b, (103)

where we used Equation (28) and that at g2 = 0 and m0 6= m3, θ′ = −π/4, as seen
from Equation (76). Likewise, the quark content of the remaining states can be made
explicit. Hence, a light composite Higgs boson is built mainly of b̄b condensates with some
proportion of t̄t due to the interaction ∝ g2. Accordingly an increase in its mass occurs in
the interval 2mb < mχ0 < mt. Notice that if mχ0 � Λ, we can rely on the renormalization
group to improve predictions obtained above for the low-energy Higgs masses. This is
accomplished by re-summing leading logarithmic corrections to arbitrary loop order, for
instance.

6. Gauge Bosons

The integration over the high-frequency components of the quark fields induces
scale-dependent kinetic terms for the gauge fields that are not in the standard form. To
recover the Yang–Mills part as in the Standard Model at µ << Λ, the gauge fields and their
quark couplings must be rescaled, gR = Z1/2

A g, g′R = Z1/2
B g′; here, g and g′ stand for the

renormalized couplings, fulfilling g′/g = tan θW , e = g sin θW , sin2 θW = 0.23, and ZA, ZB
are µ- and Λ-dependent renormalizations, as will be discussed now.

Consider the effective Lagrangian whose kinetic part follows from Equations (6) and (62):

Lkin
gauge = LYM +

C̄2

96
tr
(

F2
µν

)
+

C̄2

256
tr
(
[γµ, γν]Fµν

)2, (104)

in which the trace over color degrees of freedom yields a factor Nc that is absorbed in C̄2.
Therefore, in the equation above, "tr" stands for the trace over SU(2) and Dirac gamma
matrices. Moreover, the last term stems from the Y2 part in Equation (62). This Lagrangian
may be simplified as [36]

Lkin
gauge = LYM −

C̄2

48
tr
(

F2
µν

)
, (105)
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and by integrating out the short-distance components of quark fields, one obtains a low-
energy correction to the Yang–Mills part of the Lagrangian density which, after evaluation
of the trace, yields:

tr
(

F2
µν

)
= 2tr f

[
g′ 2(Q2 + Y2

L)B2
µν + g2G2

µν

]
, (106)

and considering that Gµν = Gµν
i Ti, and YL = 1/6, this gives

Lkin
gauge = LYM −

g2C̄2

48

(
11
9

tan2 θW B2
µν + ~G2

µν

)
. (107)

In terms of physical gauge fields, it may be rewritten as

Lkin
gauge = −

1
4

[(
1

ZB
+

g2C̄2

12
11
9

tan2 θW

)
B2

µν

+

(
1

ZA
+

g2C̄2

12

)
~G2

µν

]
. (108)

The free real constants ZA and ZB are fixed by requiring the standard form for kinetic
terms of gauge-fields

Z−1
A = 1− g2C̄2

12
, Z−1

B = 1− g2C̄2

12
11
9

tan2 θW . (109)

Additionally, by a rescaling of the gauge fields, we have seen that the kinetic term
does not change with µ, unlike the masses of the gauge fields generated by the Higgs
mechanism

Lmass
gauge =

1
4

g2m2C̄2

(
W+

µ W−µ +
Z2

µ

2 cos2 θW

)
, (110)

that depends on µ through C̄2. The gauge field masses are

mW =
1
2

gm C̄1/2
2 = mZ cos θW , (111)

which may be compared with the SM result mW = gv/2, v being the vacuum-expectation
value of the Higgs field. Combining these results yields

v = m
√

C̄2 = 254.6 GeV. (112)

Given that, we may calculate the ratio Λ/µ:

Λ
µ

= exp

[
(2πv)2

Nc(m2
t + m2

b)

]
= 2.345× 1012. (113)

At µ = ΛEW , we have Λ ' 0.58× 1015GeV, which suggests the possible role of GUT
in the appearance of four-quark interactions through GUT symmetry-breaking.

7. Numerical Results

The model we considered here has five free parameters: g1, g2, g3, Λ, µ. They will
be fixed at the SM scale, µ = ΛEW = 246 GeV. Thus, using Equation (113), we get
Λ = 0.58× 1015GeV. Moreover, we assume that g1, g2, g3 are chosen so as to obtain the
phenomenologically consistent solutions to gap equations. In other words, one chooses
the free parameters to get the experimental values of quark masses, mt = 173± 0.4 GeV,
mb = 4.18+0.04

−0.03 GeV. We also require the Higgs mass state to be mχ0 = 125 GeV. We may
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verify that this can be accomplished under compatible conditions. The Higgs state spectrum
as displayed in Equations (91)–(94) depends on three independent parameters, namely mt
and mb, and the ratio g3/g2, which we replace by the dimensionless parameter a

g3

g2
= a tan 2θ. (114)

The other parameters in Equations (91)–(94) are eliminated using Equation (85). More-
over, the angle θ and the mass m in Equations (91)–(94) depend on the quark masses mt
and mb

tan 2θ =
m2

t −m2
b

2mtmb
, m2 =

1
2

(
m2

t + m2
b

)
, (115)

which yields θ = 43.6◦, while θ′ can be written in terms of the quark masses and the
parameter a only. In addition, from Equation (76)

tan 2θ′ = (3− 2a) tan 2θ, (116)

we see that θ′ < 0 if a > 3/2. The mass formulas (91)–(94) can then be written as

m2
χ0

=
2m2

a− 1
(2a− 1− ∆), (117)

m2
χ3

=
2m2

a− 1
(2a− 1 + ∆), (118)

m2
φ0

=
4m2

a− 1
, (119)

m2
χ± =

4m2a
a− 1

, (120)

where

∆ =
√

cos2 2θ + (3− 2a)2 sin2 2θ. (121)

By fixing the parameter a with mass of the standard Higgs state: mχ0 = 125 GeV →
a = 4.84, we obtain the following estimates: mχ3 = 346 GeV, mχ± = 275 GeV, mφ0 = 125 GeV,
and from Equation (116), θ′ = −44.8◦. The values of four-Fermi couplings follow in a straight-
forward manner. Using Equation (114), we have g3/g2 = 102, so g3 � g2. Therefore, using
the gap-Equations (74) and (75), we may calculate g1 and g3. These equations show, however,
that the coupling constants of the model must be extremely fine-tuned when µ2 � Λ2.
Explicitly,

g1 = gc +O(
µ2

Λ2 ), gc =
4π2

NcΛ2 = 3.9× 10−29 GeV−2,

g3 = gc
m2

t −m2
b

2Λ2 ln
Λ2

µ2 +O( µ2

Λ2 ), (122)

which is the usual fine-tuning or the gauge-hierarchy problem of the SM, here isolated in
the gap equation sector of the NJL approach. Our results imply that g1 nearly coincides
with the critical value gc, and g3 to the value 2.5gc × 10−24 ' 1.0× 10−52 GeV−2. The
couplings must be fine-tuned to within

g1

gc
:

g2

gc
:

g3

gc
∼ 1 : 10−26 : 10−24

of the critical value gc. Finally, in spite of a good agreement in the estimates of both the
quark masses and the ground Higgs state, the values for the neutral, φ0, mass and for the
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mass of the charged, χ± Higgs states are likely experimentally disfavoured. More work
needs to be done in refining the calculation of the mass spectrum using the renormalization
group approach.

8. Conclusions

The purpose of this work has been to display in a pedagogical way the relevance of
using the Schwinger–DeWitt background field method to address the Miransky, Tanabashi
and Yamawaki (MTY) model Lagrangian of compositeness [17]. For that, we adopted a
completely analytical path that preserved and helped to explore the symmetry content
of the model at each step undertaken to express it in the form of a two-Higgs-doublet
model. This path led ultimately to a CP-preserving spectrum of collective states, their
interactions, and Yukawa couplings. By appropriately fixing the symmetry defining
interaction parameters, we elucidated the structure of the collective state spectrum in detail
at the electroweak scale, uncovering novel aspects. In the following, we summarize the
relevant steps and conclusions reached.

We extended the vacuum structure of the MTY model proposed in [17] by performing
a “minimal bosonization” in which no new coupling constants are generated. We used the
Schwinger–DeWitt method to derive an effective Lagrangian whose induced parameters
explicitly depend on two scales Λ and µ and vanish as µ→ Λ (the so-called compositeness
condition). We bypassed the computation of the fermion one-loop diagrams in the Nambu–
Goldstone phase by starting from the massless fermion loop in the symmetric phase which
lead to an effective Lagrangian with simpler gap equations. Then, we analyzed the main
consequences of our model to the spectrum of composite Higgs states.

As repeatedly mentioned, an important result is that the empirical value for the Stan-
dard model Higgs mass can be accommodated in the spectrum, contrary to the customary
wisdom that this model is unable to reproduce the current experimental value of the Higgs
mass. The underlying quark content of the collective states could be scrutinized, see
Equation (103). Within our approach, the standard Higgs is not purely a t̄t-bound state, but
rather, it has contributions from light bottom quarks.The results show that the θ′ mixing
angle is about −π/4, and thus, the b̄b contribution is dominant in the Higgs χ0 field.

In addition, we predicted the existence of a heavier neutral state which would be the
Nambu partner of the standard Higgs within the Nambu sum rule, along with a neutral
pseudoscalar state, φ0, that in the limit of a global U(1)A symmetry is a Goldstone mode.
We have seen that there occurs a violation in the standard picture of Nambu partners due to
the presence of a fifth, φ0, neutral boson in Equation (98). The resulting “electroweak axion”
acquires mass through U(1)A symmetry-breaking interactions which are a subleading
effect in a large Nc counting. Because a coupling governed by small g2 (as compared to g1)
is necessary for generating the mass of this state, we conclude that the standard expressions
for the Nambu sum rule are only valid at leading order 1/Nc, and we have shown how the
rule gets modified due to subleading corrections.

We obtained an accidental degeneracy between the main Higgs χ0 and φ0, mχ0 ' mφ0 .
We expect that it may be lifted by considering quantum corrections, since in 2HDM models
there appears only a genuine degeneracy, in the inert doublet model, in which an exact discrete
Z2 symmetry is present in the vacuum. In that case, all particles of the SM and one of the
two-Higgs-doublet components are even, and the second Higgs doublet component is odd
under such multiplicative discrete symmetry [40,41]. In these works, the double Higgs models
are classified by the Z2, U(1)A, SO(3), and three classes of generalized CP-symmetries. The
inert model is not realized in the present case because it would require Reλ5 = λ1 − λ3 − λ4
and m2

12 = 0 (or equivalently, g3 = 0) and g2 = 0 are simultaneously fulfilled.
The main drawback of our approach is that the dynamics lies at a very high-energy

scale Λ ∼ 1015 GeV which corresponds to the GUT scale 1015 GeV. Despite rendering credit
to the scenarios generated by GUT physics, the model is very fine-tuned. Such a feature
is isolated in the gap equations: if one tunes the couplings g1, g2, g3 to the solution, the
quadratic divergences are cancelled in other amplitudes.
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As a future work, we mention considering electroweak and strong corrections for the
spectrum of states, which may be achieved using renormalization group techniques.
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Appendix A. Diagonalization of the Higgs States

The diagonalization of a quadratic form

Ωx
y(a, b, c/2) = (x, y)

(
a c/2

c/2 b

)(
x
y

)
(A1)

is effected by an orthogonal transformation R(θ) to the new variables (x̃, ỹ)(
x
y

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x̃
ỹ

)
= R(θ)

(
x̃
ỹ

)
. (A2)

The off-diagonal terms are removed using the condition

tan 2θ =
c

b− a
(A3)

and the diagonal pieces are

Ωx
y(a, b, c/2) = Ωx̃

ỹ(a11, a22, 0),

a11 =
1
2

[
a + b + (a− b)

√
1 + tan2 2θ

]
,

a22 =
1
2

[
a + b− (a− b)

√
1 + tan2 2θ

]
. (A4)

This is used to obtain the diagonal form of the quadratic terms of the potential
Equation (64), after applying the redefinitions σ0 → σ0 −m0 and σ3 → σ3 −m3,

V(2)
H = Ωπ0

π3 + Ωσ3
σ0 + Ωπ2

σ1 + Ωσ2
π1 , (A5)

with the arguments of the quadratic forms denoted accordingly

aπ0,π3
11 =

1
ḡ2 (g1 + g2) + m2C̄2 − C̄1,

aπ0,π3
22 =

1
ḡ2 (g1 − g2) + m2C̄2 − C̄1,

aπ0,π3
12 = 2m0m3C̄2 −

g3

ḡ2 . (A6)

www.cost.eu
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aσ3,σ0
11 =

1
ḡ2 (g1 + g2) + 3m2C̄2 − C̄1,

aσ3,σ0
22 =

1
ḡ2 (g1 − g2) + 3m2C̄2 − C̄1,

aσ3,σ0
12 = 6m0m3C̄2 −

g3

ḡ2 . (A7)

aπ2,σ1
11 =

1
ḡ2 (g1 − g2) + (m2

0 + 3m2
3)C̄2 − C̄1,

aπ2,σ1
22 =

1
ḡ2 (g1 + g2) + (3m2

0 + m2
3)C̄2 − C̄1,

aπ2,σ1
12 =

g3

ḡ2 . (A8)

aσ2,π1
11 =

1
ḡ2 (g1 + g2) + (3m2

0 + m2
3)C̄2 − C̄1,

aσ2,π1
22 =

1
ḡ2 (g1 − g2) + (m2

0 + 3m2
3)C̄2 − C̄1,

aσ2,π1
12 = − g3

ḡ2 , (A9)

recalling the definition m2 = m2
0 + m2

3. The diagonalization leads to

θπ0π3 = θπ2σ1 = θσ2π1 ≡ θ, (A10)

where

tan 2θ =
m2

t −m2
b

2mtmb
, or tan θ =

m3

m0
. (A11)

To obtain these expressions use of the gap Equations (72) and (73) has been made. A
different angle is obtained for Ωσ3

σ0

θσ3σ0 ≡ θ′, (A12)

with relation

tan 2θ′ = 3
m2

t −m2
b

2mtmb
− 2

g3

g2
= 3 tan 2θ − 2

g3

g2
. (A13)

The diagonalized quadratic piece of the potential VH is

V(2)
H =

g2

ḡ2
m2

t + m2
b

mtmb
π̃2

0 +
2g3

ḡ2
m2

t + m2
b

m2
t −m2

b

(
σ̃2

1 + σ̃2
2

)
(A14)

+

[
(m2

t + m2
b)C̄2 +

g2

ḡ2

(
1

cos 2θ
− 1

cos 2θ′

)]
σ̃2

0

+

[
(m2

t + m2
b)C̄2 +

g2

ḡ2

(
1

cos 2θ
+

1
cos 2θ′

)]
σ̃2

3 .

The coefficients (masses) associated to the bosonic variables given in V(2)
H are related

to the initial doublets Equation (30) by the orthogonal transformation(
Φ1

Φ2

)
=

(
cos θ sin θ
− sin θ cos θ

)(
Φ̃1

Φ̃2

)
, (A15)
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where the transformed states are

Φ̃1 =

(
π̃2 + iπ̃1

σ′0 − iπ̃3

)
, Φ̃2 =

(
σ̃1 − iσ̃2

−σ′3 + iπ̃0

)
. (A16)

Here σ′0 and σ′3 are related to the physical neutral scalar states σ̃0, σ̃3 through(
σ′3
σ′0

)
≡
(

cos α − sin α
sin α cos α

)(
σ̃3

σ̃0

)
. (A17)

with α = θ − θ′.
These expressions diagonalize the quadratic part of the potential VH , under the as-

sumption that the vacuum state is correctly determined. However when one minimizes the
potential to obtain the ground state, one must take into consideration that the fields may
acquire non-zero vacuum expectation values, and thus one must redefine the variables in
Equation (A15) σ0 → σ0 −m0, and σ3 → σ3 −m3 as in Equation (79). These substitutions
do not alter Φ̃2 = H2, since(

σ′3
σ′0

)
→
(

σ′3
σ′0

)
− R(−α)R(−θ′)

(
m3

m0

)
=

(
σ′3
σ′0

)
− R(−θ)

(
m3

m0

)
=

(
σ′3
σ′0

)
−
(

0
m

)
, (A18)

where the relations

cos θ =
m0

m
, sin θ =

m3

m
. (A19)

were used in the last stage. However Φ̃1 changes to H1 with a (real and negative) vacuum
expectation value−m in the lower component. The vacuum expectation value of H2 is zero.
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