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Abstract: Symmetry in fluid flow is determined by external factors such as magnetic or electric
fields. Owing to the electrical properties of fluids, liquids containing fine bubble or ionic surfactant
molecules differ from the normal fluid flow. Therefore, the pressure drop and frictional coefficient
in a pipe are measured and estimated for water alone, for mixed microbubble water (MB), and for
complex fluids (anionic surfactant solution and polymer solution) in capillary flow with constant
flow rate. For water alone, good agreement is obtained between the experimental and theoretical
values for laminar Hagen–Poiseuille flow and the Blasius expression in turbulent flow. For the MB,
pseudo-laminarization is suggested up to a Reynolds number of 4.2× 103. Both the anionic surfactant
solution and the polymer solution exhibit the same tendency as that of the MB. In explaining these
behaviors, elasticity and electrical interaction are discussed, and electrical interaction on the capillary
wall is strongly suggested to be a contributing factor. Additionally, surface tension is investigated
and supports the discussion.

Keywords: pseudo-laminarization; microbubble; complex fluid; pressure drop; capillary flow

1. Introduction

Active matter is a general term for non-equilibrium systems consisting of elements
that move spontaneously and is known as the collective movement of birds and fish and
the underwater movement of microorganisms. Active matter has been actively studied
in a crossover manner between physics, chemistry, biology, and other fields [1]. It has
been pointed out that there is an antisymmetric viscosity even in fluids containing mi-
cromachines that break the time reversal symmetry [2]. In these studies, the effects of
magnetic and electric fields have been reported [3]. On the other hand, fine bubbles or ionic
surfactant molecules in liquids are charged electrically. Therefore, phenomena different
from normal fluids could occur. Recently, many studies involving microbubbles (average
particle diameter less than 100 µm) have attracted attention. For example, microbubbles
have been applied to aquaculture and growth promotion in fisheries and agriculture [4–6];
they have been used to improve water quality (purification effect) in environmental and
civil engineering [7–10]; and they have been used for cleaning [11–13], sterilization [14–16],
and drag reduction [17–21] in industrial applications. Kodama et al. developed a tech-
nology to reduce frictional resistance by injecting air bubbles into the wall of a ship [17],
but they used millimeter-sized bubbles. Serizawa et al. reported that mixed microbubble
water (hereinafter referred to simply as MB) in a vertical pipe exhibited pressure loss
in the turbulent region (Reynolds number Re > 1.0 × 104) that was reduced by several
percent [18]. They measured the frictional coefficient λ of MB in a vertical pipe and found
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pseudo-laminarization that almost coincided with the theoretical value for laminar flow,
that is,

λ =
64
Re

, (1)

up to Re = 2.0 × 104. However, the mechanism for that pseudo-laminarization by mi-
crobubbles was unclear. In the above studies, the characteristic length was measured in
millimeters. These findings were a very useful in fluid transport. On the other hand, it
was possible to fabricate micro-sized flow fields with high accuracy due to MEMS tech-
nology. However, there is limited knowledge on fluid transport in small-sized flow fields
(≤1.0 mm). Meanwhile, Ushida et al. reported pseudo-laminarization by adding micellar
solutions and dilute polymer solutions [22,23], and they reported that the rheological
properties (first normal stress differences) exhibited pseudo-laminarization. However,
pseudo-laminarization by microbubble mixtures without rheological properties must be
considered from a different perspective. In the present study, water alone, MB, a surfactant
solution, and a polymer solution flowed through narrow tubes with inner diameters of
110–750 µm, and the pressure drop was measured to estimate the frictional coefficient
at constant flow rate. The purpose of this study is to clarify the mechanism of pseudo-
laminarization by microbubbles.

2. Test Fluids

In this study, four types of test fluids were used: deionized water (electric conductivity
= 0.055 µS/m; hereinafter referred to simply as water) produced using a distillation
apparatus (RFD240NC; ADVANTEC Co., Ltd., Japan), MB, an anionic surfactant solution
(sodium dodecyl sulfate, hereinafter referred to simply as SDS; molecular weight = 288;
Wako Pure Chemical Industries, Ltd., Japan), and a polymer solution (polyacrylamide,
hereinafter referred to simply as PAA; molecular weight = 5 × 106; Wako Pure Chemical
Industries, Ltd.). The void fraction is very important for MB, so it was measured after 5 min
of operation of the commercial microbubble generator (OM1-C200; Aura Tech Co., Ltd.,
Japan) under the following procedure. Microbubbles were generated in 5.0 L of water in a
glass beaker, and the resulting MB was then left at room temperature (22 ◦C for 60 min); the
apparent void fraction, calculated from the decrease in volume, was 0.16 ± 0.1% (number
of trials = 10). Moreover, in a previous study, we showed the lifetime of microbubbles [24].
In the case of the present MB, the particle diameter decreased gradually with elapsed time
from an initial mean diameter of 42 µm, and self-collapse was confirmed. It could also be
seen that self-collapse occurred within a net time of 130 s. The SDS and PAA were used
in the concentrations of 1.0 and 0.10 wt%, respectively. With a concentration (1.0 wt%)
greater than the critical micelle concentration (CMC = 0.12 wt%), the SDS formed spherical
micelles in water.

Figure 1 shows the relationship (log-log plot) between the wall shear stress τw and the
wall shear rate SRw of the test fluids measured by a capillary-type viscosity meter with an
inner diameter of D = 1.4 mm or 600 µm. The viscosity of MB and SDS agreed with that of
water alone (µ = 1.0 × 10−3 Pa · s), and the density for water (ρ = 1.0 × 103 kg/m3) was
used to summarize the experimental results. The experimental results did not vary for the
density of the test fluids. We checked in pre-experiments. By contrast, the PAA exhibited
non-Newtonian viscosity, and the power-law model

τw = K(SRw)
n (2)

was used to evaluate the non-Newtonian viscosity, where the constant factor and power-law
index of the PAA were K = 7.84 × 10−2 Pa · sn and n = 0.653, respectively [25]. Although
the PAA exhibited non-Newtonian viscosity, zero-shear viscosity was not obtained for
limitation of the syringe pump.

Next, the viscoelastic properties of the test fluids were measured as rheological prop-
erties by the jet thrust method [26–28]. Figure 2 shows the jet thrust Tm plotted against the
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wall shear rate SRw (log-log plot) measured using a capillary with an inner diameter of
D = 400 µm. The solid line is the prediction for Hagen–Poiseuille flow, i.e.,

Tm =
4
3

ρQV , (3)

where ρ is the density, Q is the flow rate, and V is the mean velocity passing through the
capillary. Good agreement was obtained between the experimental results for water alone
and the predictions. The values for MB and SDS were almost the same as those for water
alone, while those for PAA were approximate 50% lower, with this being due to the PAA
having viscoelastic propertie. All measurements were performed at room temperature T.
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Figure 1. Relationship between wall shear stress τw and wall shear rate SRw of all test fluids
using capillary-type viscosity meter with inner diameter D = 1.4 mm or 600 µm. Water alone,
mixed microbubble water (MB), and anionic surfactant solution (SDS) exhibited Newtonian viscosity
(µ = 1.0 × 10−3 Pa · s). On the other hand, only polymer solution (PAA) exhibited non-Newtonian
viscosity (power-law model; constant factor K = 7.84 × 10−2 Pa · sn and power-law index n = 0.653).
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Figure 2. Jet thrust Tm plotted against wall shear rate SRw of test fluids. Only polyacrylamide (PAA)
exhibited elastic properties because of reducing jet thrust.
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3. Experimental Setup
3.1. Experimental Apparatus

Figure 3 shows the experimental apparatus used to measure the pressure drop at
constant flow rate. The test fluids were transported at constant flow rate Q using a syringe
pump (JP-H1 and JP-H5; Furue Science Co., Ltd., Japan), and the differential pressure
between sections A and B in Figure 3 was measured as the pressure drop ∆p using a
pressure transducer (SDP-12; Tsukasa Sokken Co., Ltd., Japan).

A

B

L

Capillary

Valve

Pressure transducer

Acrylic base

D

Syringe pump

 

Figure 3. Schematic of experimental apparatus for measuring pressure drop at constant flow rate.

3.2. Capillaries

Three capillaries (SUS304) were used. The inner diameters were D = 750 µm (length
L = 230 mm), 490 µm (L = 120 mm), and 110 µm (L = 80 mm), where L is the distance
between sections A and B in Figure 3. Figure 4 shows cross-sectional views of the capillaries
with D = 750 µm (Figure 4a) and 110 µm (Figure 4b), taken with a commercial microscope
(VH-8000; KEYENCE, Japan). The shape is complicated and not perfectly circular, and the
inner diameter was measured by approximating a circle.

(a) (b)

Figure 4. Photographs of the inner diameter for D = (a) 750 µm and (b) 110 µm.

4. Experimental Results
4.1. Frictional Coefficient and Reynolds Number

In the experiment, the pressure drop ∆p was measured and the frictional coefficient λ
was used to organize the experimental results, where λ is given by

λ =
2∆p
ρV2 · D

L
. (4)
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Due to their Newtonian viscosity µ, the Reynolds number Re for water alone, MB,
and SDS was obtained using

Re =
ρVD

µ
. (5)

However, the PAA could not be defined in the same way as water alone because
it exhibited non-Newtonian viscosity (power-law model). Therefore, the generalized
Reynolds number

Re∗ =
ρV2−nDn

K
(

3n+1
4n

)n−1
8n−1

(6)

reported by Harris [29] was used instead.

4.2. Relationship between Frictional Coefficient and Reynolds Number

Figure 5 shows the experimental results for water alone and MB, where the vertical
axis corresponds to the frictional coefficient λ and the horizontal axis corresponds to either
the Reynolds number Re or the generalized Reynolds number Re∗. For water alone and MB,
λ was consistent with that of laminar flow (λ = 64/Re) and with the Blasius expression

λ = 0.3164Re−
1
4 (7)

in the turbulent flow region (Re ≥ 3.0 × 103) after the transition region (2.0 × 103 ≤
Re ≤ 3.0 × 103). The critical Reynolds numbers were Rec = 2.0 × 103 (D = 490 µm) and
2.3 × 103 (D = 110 µm). The MB exhibited Rec = 3.5 × 103 (D = 490 µm) and 4.2 × 103

(D = 110 µm). Figures 6 and 7 show the experimental results for SDS and PAA, respectively,
which also showed pseudo-laminarization with Re (Re∗), remaining in the laminar state up
to between approximately 3.0 × 103 and 4.0 × 103. For SDS, the critical Reynolds numbers
were Rec = 2.9 × 103 (D = 490 µm) and 3.8 × 103 (D = 110 µm). For PAA, the critical
Reynolds numbers were Rec = 3.1 × 103 (D = 490 µm) and 3.2 × 103 (D = 110 µm). For
D = 750 µm, laminar flow persisted up to the limit of the syringe pump for all test fluids.
Moreover, it was confirmed that pseudo-laminarization occurred regardless of whether the
inner diameter D = 110 or 490 µm was used in the experiment.
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(b)

Figure 5. Experimental results for water alone and mixed microbubble water (MB) for frictional
coefficient λ plotted against Reynolds number Re: (a) all data; (b) 1.0 × 103 ≤ Re ≤ 1.0 × 104. The
critical Reynolds number Rec of water alone is 2.0 × 103 (D = 490 µm) and 2.3 × 103 (D = 110 µm).
Moreover, the Rec of MB is 3.5 × 103 (D = 490 µm) and 4.2 × 103 (D = 110 µm).
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Figure 6. Experimental results for water alone and anionic surfactant solution (SDS) for frictional
coefficient λ as a function of Reynolds number Re: (a) all data; (b) 1.0 × 103 ≤ Re ≤ 1.0 × 104. The
critical Reynolds number Rec of SDS is 2.9 × 103 (D = 490 µm) and 3.8 × 103 (D = 110 µm).

101 102 103 104 105
10-3

10-2

10-1

100

101

Re , Re
*
 [-]

 [
-]

  Hagen-Poiseuille flow
  Blasius expression

D = 750 m
Water ( T = 21.4 °C )
PAA ( T = 20.9 °C )

D = 490 m
Water ( T = 21.9 °C )
PAA ( T = 21.5 °C )

D = 110 m
Water ( T = 22.0 °C )
PAA ( T = 22.3 °C )

(a)

103 104
10-2

10-1

Re , Re
*
 [-]

 [
-]

  Hagen-Poiseuille flow
  Blasius expression

D = 750 m
Water ( T = 21.4 °C )
PAA ( T = 20.9 °C )

D = 490 m
Water ( T = 21.9 °C )
PAA ( T = 21.5 °C )
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Figure 7. Experimental results for water alone and PAA for frictional coefficient λ versus Reynolds
number Re or generalized Reynolds number Re∗: (a) all data; (b) 1.0 × 103 ≤ Re ≤ 1.0 × 104. The
critical Reynolds number Rec of PAA is 3.1 × 103 (D = 490 µm) and 3.2 × 103 (D = 110 µm).

5. Discussion

In this study, it was confirmed that the pseudo-laminarization reported previously [18]
occurred when microbubbles were used. This mechanism is discussed together with the
experimental results for the PAA and SDS.

5.1. Elastic Properties

For the PAA, pseudo-laminarization was obtained (Figure 7), and it exhibited the
elastic properties shown in Figure 2. Meanwhile, Hasegawa et al. reported the possibility of
elasticity in water passing through micro-orifices [30–32], but the resultant pressure drops
for water alone, MB, and SDS agreed with the predictions for laminar flow (Equation (1))
and turbulent flow (Equation (7)). Furthermore, it was clear that these test fluids could not
exhibit elasticity (Figure 2).
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5.2. Electric Interaction

In the case of SDS, pseudo-laminarization was observed up to Re ∼ 3.0 × 103, which
was the same as that for MB. The surfactant SDS with a molecular weight of 288 did not
show elasticity in the jet thrust measurement. SDS is an anionic surfactant, which means
that it becomes anionic in aqueous solution and forms aggregated spherical micelles above
a critical micelle concentration (0.12 wt%) [33–35]. This is a major difference from water
alone. Moreover, it could be considered a factor in the occurrence of pseudo-laminarization.
We discuss SDS and MB in terms of electrical interaction. It is well known that a metallic
wall in water forms an electric double layer because of its zeta potential [36–38], and
because SDS has negatively charged spherical micelles, they were attracted to the positively
charged electric double layer. Thus, the number of spherical micelles near the wall was
expected to be larger than that of the bulk. In this condition, the interfacial tension between
the wall and the SDS was expected to be much lower than that in water because of the
enhanced wettability caused by the surfactant. Meanwhile, it is known that microbubbles
are also negatively charged in water [39–41]. In the same way, it could be assumed that the
microbubbles were attracted to the electric double layer and gathered near the wall.

5.3. Interface between Solid and Liquid

In Section 5.2, we discussed the possibility that the interfacial tension between the wall
and the test fluids decreased because of electric interaction. This was verified by measuring
the surface tension using the du Noüy method [42], and Figure 8 shows an overview of the
experimental apparatus. A circular ring connected to an electronic balance (GR-200; A&D
Co., Ltd., Japan) was lowered via a string, and the ring was gradually pulled away from
being in contact with the test fluid. A Petri dish filled with the test fluid was placed on the
z-axis stage, which was then raised to bring the ring into contact with the surface. At this
time, the scale value H1 of the z-axis was read. As the stage was lowered gradually, the
liquid attached to the lower end of the ring was gradually stretched and eventually broke,
whereupon the maximum value Fm of the electronic balance and the scale value H2 of the
z-axis were recorded. If we consider the balance of forces, the force Fm acting on the liquid
in contact with the ring and being pulled up is equal to the force due to its own weight
(gravity) and the surface tension σs, giving

σs =
Fm

π(d1 + d2)
− ρg(d1 − d2)(H1 − H2)

4
, (8)

where d1 is the outer diameter of the ring (=15.5 mm), d2 is the inner diameter (=15.0 mm),
and g is the acceleration due to gravity (= 9.81 m/s2). The values of σs were 50.9 ±
1.2 mN/m (MB), 36.3 ± 0.9 mN/m (SDS), and 59.8 ± 2.8 mN/m (PAA). Considering that
the value of σs for water is 71.6 ± 0.7 mN/m, the surface tension of the MB and SDS was
reduced by approximately 30% and 49%, respectively.

Electric balance

String
Ring

Petri dish

Test fluids z-stage

Figure 8. Schematic of experimental apparatus for measuring interfacial tension (du Noüy method).
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At this point, it could be suitable to base the discussion on the solid–liquid interface.
Figure 9 shows the frictional coefficient plotted against the capillary number

Ca =
µV
σs

, (9)

which is defined as the ratio between the force based on viscosity and that based surface
tension. Figure 9 shows the critical capillary number Cac at which the transition began.
For D = 490 µm, Cac is 5.0 × 10−2 (water), 1.3 × 10−1 (MB), and 1.7 × 10−1 (SDS). For D =
110 µm, Cac is 2.7 × 10−1 (water), 7.1 × 10−1 (MB), and 7.4 × 10−1 (SDS). It was found that
Cac < 100 and the flow field was strongly influenced by the interface.

10-4 10-3 10-2 10-1 100 101
10-3

10-2

10-1

100

101

102

Ca [-]

 [
-]

D = 750 m
Water ( T = 19.5 °C )
MB ( T = 19.2 °C )
SDS ( T = 20.1 °C )

D = 490 m
Water ( T = 22.6 °C )
MB ( T = 21.9 °C )
SDS ( T = 20.5 °C )

D = 110 m
Water ( T = 20.7 °C )
MB ( T = 20.8 °C )
SDS ( T = 21.6 °C )

Figure 9. Frictional coefficient λ against capillary number Ca of water alone, MB, and SDS. For water
alone, the critical capillary number Cac is 5.0 × 10−1 (D = 490 µm) and 2.7 × 10−1 (D = 110 µm).
For MB, the critical capillary number Cac is 1.3 × 10−1 (D = 490 µm) and 7.1 × 10−1 (D = 110 µm).
For SDS, the critical capillary number Cac is 1.7 × 10−1 (D = 490 µm) and 7.4 × 10−1 (D = 110 µm).

5.4. Summary of Discussion

The above discussion is summarized here. Ushida et al. measured the frictional loss
of ultra-fine bubble (averaged particle diameter = 110 nm) passing through micro-orifices
and reported that no drag reduction occurred at the characteristic length used in their
experiment [43]. It was also reported that the surface tension of ultra-fine bubble was
reduced by approximately 15% [44]. The pseudo-laminarization of the PAA with a 17%
decrease in surface tension could be considered to exhibit elasticity rather than a decrease in
surface tension. For the pseudo-laminarization of the MB and SDS, the absence of elasticity
could be confirmed by jet thrust (Figure 2). As SDS contains negatively charged spherical
micelles and the microbubbles of MB are also negatively charged [45], it was thought that
their electrical interaction with the electric double layer near the wall lowered the surface
tension. Thus, the number of spherical micelles were higher in SDS and MB than in the
bulk.

6. Conclusions

In this study, the flow properties of water alone, mixed microbubble water, anionic
surfactant solution, and polymer solution were investigated in capillaries with inner
diameters of 750, 490, and 110 µm. For water alone, the frictional coefficient agreed
with the laminar flow and the Blasius expression. For mixed microbubble water, the
same tendency was obtained, but laminar flow persisted up to a Reynolds number of
approximately 4.2 × 103. The anionic surfactant solution and polymer solution exhibited
the same results as those of the mixed microbubble water. Thus, pseudo-laminarization
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of mixed microbubble water and complex fluids was obtained. When discussing the
mechanism, it was considered that the pseudo-laminarization of the polymer solution
was caused by elasticity whereas that of the microbubble water and the anionic surfactant
solution was caused by the solid–liquid interface due to electrical interaction.
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Nomenclature

Ca: capillary number
Cac: critical capillary number
D: inner diameter (mm, µm)
K: constant factor (Pa · sn)
L: length between two pressure holes (mm)
n: power-law index
Q: flow rate (m3/s)
Re: Reynolds number
Re∗: generalized Reynolds number
Rec: critical Reynolds number
SRw: wall shear rate (s−1)
T: temperature (◦C)
Tm: jet thrust (N)
V: mean velocity passing through a capillary (m/s)
∆p: pressure drop (Pa)
λ: frictional coefficient of pipe
µ: Newtonian viscosity (Pa · s)
ρ: density (kg/m3)
σs: static surface tension (mN/m)
τw: wall shear stress (Pa)
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