
symmetryS S

Article

The Deep Learning LSTM and MTD Models Best Predict Acute
Respiratory Infection among Under-Five-Year Old Children
in Somaliland

Mohamed Yusuf Hassan

����������
�������

Citation: Hassan, M.Y. The Deep

Learning LSTM and MTD Models Best

Predict Acute Respiratory Infection

among Under-Five-Year Old Children

in Somaliland. Symmetry 2021, 13,

1156. https://doi.org/10.3390/

sym13071156

Academic Editor: Juan Luis García

Guirao

Received: 18 May 2021

Accepted: 21 June 2021

Published: 28 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Statistics, College of Business, United Arab Emirates University,
Al Ain P.O. Box 15551, United Arab Emirates; myusuf@uaeu.ac.ae; Tel.: +971-50-743-4612

Abstract: The most effective techniques for predicting time series patterns include machine learning
and classical time series methods. The aim of this study is to search for the best artificial intelligence
and classical forecasting techniques that can predict the spread of acute respiratory infection (ARI)
and pneumonia among under-five-year old children in Somaliland. The techniques used in the
study include seasonal autoregressive integrated moving averages (SARIMA), mixture transitions
distribution (MTD), and long short term memory (LSTM) deep learning. The data used in the study
were monthly observations collected from five regions in Somaliland from 2011–2014. Prediction
results from the three best competing models are compared by using root mean square error (RMSE)
and absolute mean deviation (MAD) accuracy measures. Results have shown that the deep learning
LSTM and MTD models slightly outperformed the classical SARIMA model in predicting ARI values.

Keywords: artificial intelligence; training data; Pearson correlation; Dickey–Fuller test; long short-
term memory; machine learning

1. Introduction

Acute respiratory infections (ARI) are the most common causes of both illness and
mortality in children under five regardless of where they live or what their economic
situation is [1,2]. ARIs, particularly lower respiratory tract infections (LRTI), are a major
cause of death among children under five years of age. It is estimated that between 1.9 and
2.2 million children die annually because of this infection. Other estimates indicate that
some 10.8 million children die each year [3]. Studies conducted by [4] suggested that more
than 95% of all cases attributed to clinical pneumonia in young children worldwide occur in
developing countries. Ref. [5] estimated that 4 million child deaths occur due to pneumonia
each year, including 2.6 million infants and 1.4 million children aged 5–14 years. Despite the
fact that forty-two percent of these ARI related deaths occur in Africa, the epidemiology and
pathogenesis of LRTI remains understudied [6]. Accurate information on specific diseases
in African children dying from respiratory illnesses is scarce [7]. Refs. [8–10] indicated the
incidence of ARI is closely associated with the nutritional status of the child, socio-economic
level of the family, and the family size. Studies conducted by [11,12] have shown that
children who are under one year old are more likely to have ARI compared to older children.
Some studies have associated environmental and sociodemographic factors with ARI. These
include age of the mother, family size, and unhealthy environments [13–15]. Similar results
from studies conducted in India showed a higher prevalence in urban areas [16]. Other
studies demonstrated that children born to mothers younger than 20 years old had higher
incidence of ARI infection compared to those with mothers older than 20 years [17]. Results
from other studies have also shown increased incidence of ARI among children from homes
that use unclean cooking fuel such as charcoal and firewood [18]. Ref. [19] suggests that
improving nutrition and parental literacy may contribute to lowering the incidence of acute
lower respiratory infections. Ref. [20] noted that other factors contributing to the incidence
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and severity of lower respiratory infections in developing countries include crowding in
households, high birth rate, vitamin A deficiency, and population.

The World Health Organization (WHO) estimates under-five mortality in Somalia at
200 deaths per 1000 births, which is one of the highest in the world. Approximately one
third of these are neonatal deaths, occurring during the first month of life. Pneumonia and
diarrhea are the main killers, each contributing 20–25 percent of all under-five mortality [21].
Since different regions of the world may not experience outbreaks of communicable diseases
at the same time, it is difficult to make worldwide joint predictions for the seasonal
outbreaks of these diseases. Despite this, many studies have been conducted to predict
the spread of these diseases using classical statistics and deep learning techniques. Deep
learning models do not only play a prominent role in disease prediction, but these models
are also used in analyzing and segmenting images [22], detection of tumors and lesions in
medical images [23,24], and computer-aided diagnostics [25,26].

For disease prediction, some of the previous studies about the prediction of ARI that
have used classical time series and deep learning techniques were conducted by [27–33].

2. Materials and Methods
2.1. Data

The data used in this study were collected from five regions in Somaliland from
2011–2014. The numbers of reported cases of acute respiratory infection and pneumonia
during this period were 246,349 and 61,599, respectively. Ethical approval was provided by
the institutional ethics review board of Somaliland’s Ministry of Health (degree # 2020-7-
027). The requirement for informed consent was waived because the data used in the study
contained only the historical time series values for the number of admitted patients to the
hospitals. Statistical and deep learning techniques are utilized to understand the trends of
these diseases. SARIMA, MTD, and LSTM techniques are employed to assess and predict
the spread of these diseases.

2.2. Long Short Term Memory (LSTM) Model

Artificial neural networks are designed to perform tasks in a similar fashion to human
neurons. Many variates of these algorithms are currently used in machine learning. Recur-
rent neural networks (RNN) are special cases of the general neural networks used to model
patterns in sequential data. These networks are capable of capturing the dependency of
sequential data like the data collected from sensors and stock markets over time. One of
the limitations for these models is a vanishing or exploding gradient that has a negative
impact on their convergence [34,35].

Ref. [35] introduced long short-term memory (LSTM), which is a type of recurrent
neural network that overcomes the problem of vanishing/exploding gradients. These
models can be trained in both short and long-term dependences. For some of the most
recent studies about LSTM and ARIMA, see [36–40]. LSTM is made up of a memory cell,
an input gate, an output gate, and a forget gate. The memory cell has the information of
the past filtration, while the gates control the amount of memory needed to pass to the
next stage given the new information and the past filtration. Unlike a feedforward neural
network, LSTM has a looping mechanism that feeds information cyclically in a loop. This
allows the use of both current information input and what has been learned previously.
Figure 1 displays LSTM architecture.

ft = σ
(

W f [ht−1, xt] + b f

)
it = σ(Wi[ht−1, xt] + bi)

C̃t = Tanh(Wc[ht−1, xt] + bc)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ(Wo[ht−1, xt] + bo)
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ht = ot ∗ Tanh(Ct)

where Ct−1 is the memory cell for past filtration, and ft, it, and ot are the forget gate, input
gate, and the output gate, respectively. σ is a logistic sigmoid function and Tanh is a
hyperbolic activation function, whereas W and b are the matrix of the parameters and the
bias, respectively.
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2.3. Mixture Transition Distribution (MTD) Model

Another promising technique for the analysis and the prediction of time series data is
the MTD models introduced in 1985 by [41] for the modeling of high-order Markov chains
with a finite state space. Since then, it has been successfully employed in a wide range of
research problems. Ref. [42] proposed a univariate MTD with Gaussian components. For
bivariate cases, Ref. [43] investigated a class of bivariate mixture transition distribution
(BMTD) models using mixtures with components of different probability distributions.
For non-Gaussian distributions, Ref. [44] considered MTD for high Markov chains and
non-Gaussian time series. For more recent references about MTD, see, for example, [45–47].

In this study, a univariate version of the MTD model that has Gaussian components is
used. The model has the following form:

φ
(

yt

∣∣∣yt−1, ϕ
)
=

p

∑
j=1

αjφj

(
yt

∣∣∣yt−1, ϕj

)
,

where φj is a probability density function for the jth component of the mixture for j = 1, 2, 3
. . . , p, yt−1 is the past filtration, αj is the weight for the jth component, and ϕ is the set of
the model parameters.

3. Results

After the data were collected, they were randomly split into training and test sets with
70% for training and 30% for testing. Training data are fitted to the MTD, SARIMA, and
LSTM models, and they are then validated with the test data to compare the performance
of the models. RMSE and MAD accuracy measures are used to choose the best model for
predicting the spread of the disease.

ARI accounted for 80% of the 307,948 combined cases for both diseases. To glean
insights from the data, a qualitative assessment of the data is presented; Figures 2 and 3
display the time series trends of ARI and pneumonia for those four years. These trends
show that both ARI and pneumonia are increasing over time, but the increase in ARI is
relatively higher.
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It is observed from Figure 4, that the shape of the ARI distribution appears to be
bimodal with a peak in November through January and another from March to May. This
demonstrates that the disease is common through the seasons from winter to spring in
Somaliland. The bar chart in Figure 5 also explicitly shows that increase.

Quantitative summary statistics of the data are depicted in Tables 1 and 2. From
Table 1, for the last three years, the infection rate of ARI has increased by 18%, 19%, and
8%, respectively, whereas the annual increase of pneumonia incidences were 31%, 3%, and
10% during the same period. In addition, Table 2 displays 95% confidence intervals for the
true monthly means of ARI and pneumonia incidences. Additionally, it has been observed
that pneumonia is highly correlated with ARI. The Pearson correlation coefficient between
ARI and pneumonia is 0.866, with a p-value of (<0.001). Since ARI and pneumonia are
highly correlated and the majority of the cases are acute respiratory infections, we restrict
our study to the investigation of the ARI trends.

Table 1. Yearly Percentage Increase.

Disease 11/12 12/13 13/14

ARI 18% 19% 8%
Pneumonia 31% 3% 0%



Symmetry 2021, 13, 1156 5 of 10

Table 2. 95% CI of the Mean.

Disease 95% CI

ARI (4757–5507)
Pneumonia (1205–1362)
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The original ARI data were not stationary, and its sample autocorrelation and partial
autocorrelation functions are displayed in Figure 6a,b. The autocorrelation function dies
down very slowly and the partial autocorrelation cuts off after the first lag, which is clearly
an indication that the series is non-stationary. These results reveal that data transformation
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is needed to make the time series stationary. The autocorrelation and the partial auto-
correlation functions of the series after the first differencing are presented in Figure 6c,d
respectively. Both functions die down very quickly after the first differencing.
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The Dickey–Fuller test statistic for stationarity was computed and a value of −3.9 was
obtained with a p-value of 0.022. The above results indicate the stationarity of the time
series after the first differencing. Machine learning algorithms and Box–Jenkins forecasting
methods are employed to predict the spread of the disease. The three competing models
were chosen from the deep learning long short term memory (LSTM), EM-algorithm based
mixture transition distribution (MTD), and the seasonal autoregressive integrated moving
averages (SARIMA) techniques. The data were fitted to each one of these models and
their results were compared to understand the patterns of the disease. 70% of data are
used for training and the remaining 30% for testing. Root mean square error (RMSE) and
mean absolute deviation (MAD) accuracy measures are used to choose the best model for
predicting the future spread of the disease.

The best LSTM model identified by the two accuracy measures (RMSE and MAD)
is the model with a learning rate of 5%, hidden-dim = 3, activation function = Tanh, loss
function = MSE, optimizer = Adam, and the number of epochs = 300. The model is trained
very well with the data and the training error rate has fallen very sharply, as shown in
Figure 7. The best MTD model is the second order model with the parameter estimates
(α1,α2) = (0.1, 0.43), (µ1, µ2) = (0.93, 2.4), and (σ1,σ2) = (14.8, 1.39). Finally, the best SARIMA
model is SARIMA (1, 1, 0)(1, 0, 0)12.
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Table 3 shows the estimated parameters of the SARIMA model with the test statistics
and p-values. Both p-values are less than 0.02. Ljung–Box Chi-Square statistics of the
SARIMA are also calculated for lags 12 and 24 and presented in Table 4 to check the
adequacy of the fitted ARIMA model. RMSE and MAD indicated that the results of the
three fitted models are very close with slight differences as shown in Table 5. However,
MTD and LSTM performed better than the well-known and the more commonly used
SARIMA model.

Table 3. Parameter Estimates.

Type Coefficient T-Statistic p-Value

ARI1 −0.415 −2.54 0.016
SAR12 0.961 7.74 0.000

Table 4. Ljung-Box Chi-Square statistics.

Type 12 24

Chi-Square 16.28 20.69
DF 10 22

p-Value 0.092 0.540

Table 5. Accuracy Measures.

MODEL RMSE MAD

LSTM 0.307 0.302
MTD 0.503 0.433

SARIMA 0.60 0.476

4. Discussion

In this study, time series trends of acute respiratory infection and pneumonia among
Somaliland children are investigated. Both the qualitative and the quantitative assessments
of the data sets are performed. LSTM, MTD, and SARIMA models are employed to predict
the spread of the ARI. Two accuracy measures, RMSE and MAD, were used to identify the
best model that could be applied to predict acute respiratory infection. Results obtained in
the study demonstrate that implementing several different machine learning and classical
time series predictive modeling techniques could aid in the search for the best model that
can predict the spread of diseases with high accuracy. Stationarity and data normalization
improved the predictive accuracy. Furthermore, those predictive modeling techniques
are varied in their performance depending on the given data, and on the stability of
their convergence. Thus, finding a method that could generate predictive models that
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outperform all other models for any given time series data is unlikely, and instead, the
implementation of multiple techniques is the standard practice in model development.

There is a large body of literature on predicting the spread of acute respiratory infection
among different regions of the world. They generally use one of the predictive modeling
techniques, but we are not aware of any modeling methods that compare the performance of
the classical techniques, including but not limited to, Box–Jenkins, exponential smoothing,
and decomposition with MTD and artificial intelligence. The comparisons implemented
here are, as far as we know, the first attempt to compare deep learning sequential techniques
with MTD and classical time series methods.

There are a number of limitations to this study. First, the time series data sample size
was relatively small. Although the number of observations is 246,349, the data collection
period was 48 months. Second, each of the three employed techniques has its own draw-
backs. For example, parameter estimates of the MTD are based on the EM algorithm that
has reproducibility problems if not carefully chosen. Major disadvantages of the LSTM
algorithm include longer training times and more memory to train. For the Box–Jenkins
models, the main weakness is the satisfaction of the residual assumptions and model
stability. Finally, to overcome the limitations of those techniques, domain knowledge could
be useful to select the initial values of the parameters.

In conclusion, the results of this study showed that LSTM and MTD both performed
better than the SARIMA model. LSTM and MTD models demonstrated their flexibility and
competitiveness in the study, which may lead to their being considered viable alternatives
to the existing time series models.

5. Conclusions

In this study, we have compared the prediction performance of MTD, seasonal autore-
gressive integrated moving averages (SARIMA), and the long short term memory (LSTM)
deep learning models. The data used in the study were monthly ARI and Pneumonia cases
among under-five year old children that were collected from five regions of Somaliland
from 2011–2014. To get reliable results from the above models, a number of changes has
been made to the original observations of the data before comparing competing models.
First, the data are transformed by differencing to make them stationary; the autocorrelation
function (ACF), partial autocorrelation (PACF), and the Dickey–Fuller test for stationarity
were computed to check the stationarity of the series. The results of these measures indi-
cated that the time series is stationary. Second, data were randomly split into training and
testing sets with a ratio of 70:30 (70% training and 30% testing). Third, the independent
variables in the training data were normalized by subtracting their means and dividing
them by their standard deviations. Data normalization in the preprocessing stage is needed
to implement machine learning algorithms to reduce the variability among the different
variables. Training data are fitted to the three models, and then validated with the test data
to compare the performance of the competing models. RMSE and MAD accuracy measures
are used to choose the best model in predicting the spread of the disease.

The results of this study have shown that no model is a panacea over the other two
models, but they demonstrated that the deep learning LSTM and MTD models slightly
outperformed the classical SARIMA model in predicting ARI values.

Although there is a large body of literature dealing with the comparison of Box–
Jenkins and machine learning techniques, we are not aware of any studies that compare the
MTD, the SARIMA, and the LSTM models. Perhaps one of the most important outcomes
of this study is the performance of the MTD model. The study illustrated the utility and
the efficacy of the MTD model, which is not familiar to many researchers. Besides, this
study is the first to attempt to show that MTD could be a highly competitive and flexible
predictive model that can challenge other machine learning algorithms.
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