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Abstract: This paper deals with a 3D mathematical model for the non-isothermal steady-state flow
of an incompressible fluid with temperature-dependent viscosity in a pipeline network. Using the
pressure and heat flux boundary conditions, as well as the conjugation conditions to satisfy the
mass balance in interior junctions of the network, we propose the weak formulation of the nonlinear
boundary value problem that arises in the framework of this model. The main result of our work is
an existence theorem (in the class of weak solutions) for large data. The proof of this theorem is based
on a combination of the Galerkin approximation scheme with one result from the field of topological
degrees for odd mappings defined on symmetric domains.

Keywords: pipeline network; non-isothermal flows; temperature-dependent viscosity; pressure
boundary conditions; weak solutions; large-date existence

1. Introduction and Problem Formulation

At the current time, pipeline networks of complex geometry, including main pipeline
networks, are extensively applied to liquids and gases transfer [1–4]. Many authors have
studied various problems involving mathematical modeling of the transportation of liquids
and gases. Panasenko [5,6] investigated the Navier–Stokes network problem stated in the
so-called thin structure, i.e., in a network of thin tubes with the ratio of the cross-section
diameter to the height of order ε� 1. Asymptotic analysis of the non-steady Navier–
Stokes equations in such structures is given in [7,8]. A nonlinear one-dimensional model
for the stationary motion of a non-Newtonian fluid in the thin structure is studied in [9].
Banda et al. [10] introduced a model for the gas flow in pipeline networks based on the
isothermal Euler equations and proposed a method to obtain numerical solutions of the
gas network problem for sample networks. Herty and Seaïd [11] numerically investigated
a well-established model for gas flows in pipeline networks using suitable coupling con-
ditions at pipe-to-pipe fittings. Colombo and Garavello [12] considered the generalized
Riemann problem for the p-system at a junction connecting n ducts and proved the exis-
tence and uniqueness of stationary solutions and of their perturbations. Colombo et al. [13]
presented a unified approach for 2× 2 conservation laws at a junction and established the
well-posedness of the corresponding Cauchy problem. Their construction comprehends the
cases of one-dimensional isothermal models for gas flows and the shallow-water equations
for flows in open channels. Herty et al. [14] introduced a model for gas dynamics in pipe
networks assuming that the gravity and inertia effects are neglectable, both justifiable sim-
plifications for the gas flow in pipelines. The derived equations are obtained by asymptotic
analysis in the pressure variable. Colombo and Mauri [15] proved the well-posedness of
the Cauchy problem for the compressible Euler system at a junction. Chalons et al. [16]
investigated the one-dimensional coupling of two systems of gas dynamics at a fixed inter-
face. Banda et al. [17] performed the mathematical analysis of multiphase flows through
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networks under assumption that the flow through the connected arcs is governed by an
isothermal no-slip drift-flux model. Marušić-Paloka [18] presented some results about
asymptotic approximations of the incompressible viscous flow through a network of inter-
sected thin pipes with the prescribed pressure at their ends. Sagadeeva and Sviridyuk [19]
proposed a linear approximation of a model for oil transportation in a pipeline network and
investigated the stability and the optimal control of solutions for the appropriate system
of partial differential equations. Reigstad [20] analyzed a network model for junction
flows that are governed by the one-dimensional isentropic Euler equations. Aida-zade
and Ashrafova [21] numerically solved an inverse problem for a pipeline network with
loopback structure using non-separated boundary conditions. In the paper [22], an optimal
control problem for the linearized Navier–Stokes system with distributed parameters in a
net-like domain is studied. Holle et al. [23] introduced new coupling conditions for the
isentropic flow on networks based on an artificial density at the junction. Baranovskii [24]
proposed a network model that describes the isothermal steady-state 3D flow of an incom-
pressible non-Newtonian fluid with shear-dependent viscosity and proved an existence
theorem in the class of weak solutions to the corresponding boundary value problem. The
recent papers [25–28] are devoted to the analysis of viscous flows and heat transfer in
channels and tubes.

Despite the large number of works, the mathematical theory of heat and mass transfer
in pipeline networks is very far from complete and most of the theoretical results were
obtained for networks with a simplified geometry. Important challenges in this field are
the development and analysis of multi-dimensional nonlinear models describing non-
isothermal viscous flows in pipeline networks subject to the conjugation conditions in
junctions. In the conference paper [29], we obtained the existence results for one such
model under the assumption that the data are sufficiently small. The present paper is a
continuation of this study. Namely, we shall consider here a mathematical model that
describes the non-isothermal creeping flow in a net-like domain P̃ = P ∪ J:

P =
N⋃

i=1

Pi, J =
M⋃
`=1

J`,

where Pi and J` are bounded domains in space R3 with Lipschitz-continuous bound-
aries and

P i ∩ P k = ∅, ∀i, k ∈ {1, 2, . . . , N} such that i 6= k,

J` ∩ Js = ∅, ∀`, s ∈ {1, 2, . . . , M} such that ` 6= s,

Pi ∩ J` = ∅, ∀i ∈ {1, 2, . . . , N}, ` ∈ {1, 2, . . . , M}.

The domain P̃ can be considered as a network of pipes:

• P1, . . . , PN model pipes;
• J1, . . . , JM represent junctions in which pipes are connected.

Following ideas from [24], we introduce some assumptions about the geometry of the
domain P̃ .

(A1) For each junction J` there exist exactly m` pipes P`1 , P`2 ,. . . , P`m`
, where

1 ≤ m` ≤ N and 1 ≤ `1 < `2 < · · · < `m`
≤ N, such that

J` ∩ P `k
6= ∅, ∀ k ∈ {1, 2, . . . , m`}.

(A2) The intersection S`n
def
= J` ∩ P `n is a flat surface, for any ` ∈ {1, 2, . . . , M} and

n ∈ {1, 2, . . . , m`}.
(A3) For each pipe Pi there exist exactly two junctions Ji1 and Ji2 such that

P i ∩ Ji1 6= ∅, P i ∩ Ji2 6= ∅.
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If m` ≥ 2 in condition (A1), then we shall say that the junction J` is interior; in the case
m` = 1, the junction J` is called external.

From condition (A3) it follows that for each i ∈ {1, 2, . . . , N} there exists a uniquely
determined pair (i′1, i′2) such that

P i ∩ Ji1 = Si1i′1
, P i ∩ Ji2 = Si2i′2

.

Let us introduce the following notation:

Γi
def
= ∂Pi \ (Si1i′1

∪ Si2i′2
), i = 1, 2, . . . , N,

Γ def
=

N⋃
i=1

Γi, S def
=

M⋃
`=1

m⋃̀
n=1

S`n.

Examples of network sections are given in Figures 1 and 2.

Figure 1. The pipe Pi and the junctions Ji1 and Ji2 .

Figure 2. The interior junction J` and the pipes P`1
, P`2 , P`3 .

Consider a stationary mathematical model for non-isothermal creeping flows in the
pipeline network P :

−∇ · [µ(θ)D(u)] +∇π = f i(x, θ) in Pi, i = 1, 2, . . . , N, (1)

∇ · u = 0 in P , (2)

(u · ∇)θ − κ∆θ = ϕi(x, θ) in Pi, i = 1, 2, . . . , N, (3)

u = 0 on Γ, (4)

κ
∂θ

∂n
= −βiθ on Γi, i = 1, 2, . . . , N, (5)
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utan = 0 on S, (6)

π = πi on Si1i′1
∪ Si2i′2

, i = 1, 2, . . . , N, (7)

θ

2
(u · n)− κ

∂θ

∂n
= ψi(x, θ, u) on Si1i′1

∪ Si2i′2
, i = 1, 2, . . . , N, (8)

m`

∑
k=1

∫
S`k

u · n dS = 0 for each ` ∈ {1, 2, . . . , M} such that m` ≥ 2, (9)

where u is the velocity field; π is the pressure; θ is the temperature; f i stands for the external
force that is applied to the fluid filling the pipe Pi; µ(θ) > 0 represents the viscosity of
the fluid; κ > 0 is the thermal conductivity; ϕi denotes the heat source intensity for the
pipe Pi; βi > 0 is the Robin coefficient characterizing the heat transfer on the wall Γi; the
functions πi and ψi describe, respectively, the pressure and the heat fluxes on the surface
Si1i′1
∪ Si2i′2

. By n we denote the outer (with respect to the pipe Pi) unit normal to ∂Pi. As
usual, the subscript notation “tan” indicates the tangential component of a vector, i.e.,

vtan
def
= v− (v · n)n. The term dS denotes infinitesimal surface element of S. The symbol

∇ stands for the gradient with respect to the space variables x1, x2, x3 and

∇v def
=



∂v1

∂x1

∂v1

∂x2

∂v1

∂x3

∂v2

∂x1

∂v2

∂x2

∂v2

∂x3

∂v3

∂x1

∂v3

∂x2

∂v3

∂x3


, ∇ · F def

=



3
∑

i=1

∂Fi1
∂xi

3
∑

i=1

∂Fi2
∂xi

3
∑

i=1

∂Fi3
∂xi


,

∇ · v def
=

3

∑
i=1

∂vi
∂xi

, D(v) def
=

1
2
(
∇v + (∇v)>

)
,

for a vector function v = (v1, v2, v3) and a matrix-valued function F = (Fij)
3,3
i=1,j=1.

In model (1)–(9), the unknowns are u, θ, and π, while all other quantities are prescribed.
Note that (1) is the balance of linear momentum under assumption that inertial effects
are neglected, i.e., we consider the so-called Stokes flow in which the inertia is negligible
compared to viscous and pressure forces. Equation (2) is the incompressibility condition,
(3) is the energy balance, relation (4) is the no-slip boundary condition on walls of pipes,
and (5) is Newton’s law of cooling. Boundary conditions (6)–(8) govern the fluid flow and
the heat flux through components of S. Finally, relation (9) is the conjugation condition
that represents the mass balance for interior junctions of the network P̃ .

The main aim of this paper is to prove the solvability of boundary value problem (1)–(9)
in the weak formulation under mild assumptions on the data. In order to establish the
existence of weak solutions, we use the Galerkin approximation scheme and one result
(see Proposition 1) from the field of topological degrees. The proof is based on the energy
estimates of approximate solutions in Sobolev spaces, the Krasnoselskii theorem on the
continuity of the Nemytskii superposition operator in Lebesgue spaces as well as the
compactness theorems for the imbedding and trace operators.

The paper is organized as follows. In the next section, we introduce the main notation
and function spaces, as well as some assumptions on the model data. Section 3 is devoted to
the functional setting of boundary value problem (1)–(9). In this section we also formulate
the central result of the paper, the Theorem 1 on the existence and some properties of weak
solutions. Finally, Section 4 deals with the proof of Theorem 1.

2. Preliminaries: Main Notation, Function Spaces, and Assumptions

For the reader’s convenience, mostly standard notation is used.
By measn(·) denote the Lebesgue n-dimensional measure of a set.
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For matrices X = (Xij)
n,n
k=i,j=1 and Y = (Yij)

n,n
i=1,j=1, by X : Y denote the component-

wise matrix product, i.e.,

X : Y def
=

n

∑
i,j=1

XijYij.

By |x| denote the Euclidean norm of a vector x = (x1, . . . , xn) and by |X| denote the
Frobenius norm of a matrix X:

|x|2 def
= x · x =

n

∑
i=1

x2
i , |X|2 def

= X : X =
n

∑
i,j=1

X2
ij.

We shall use the Lebesgue space Lp(Ω), where Ω is a bounded Lipschitz domain in R3

and p ∈ [1, ∞), with the norm

‖v‖Lp(Ω)
def
=

( ∫
Ω

|v|p dx
)1/p

and the Sobolev space H1(Ω)
def
= W1,2(Ω), which is equipped with the norm

‖v‖H1(Ω)
def
=

( ∫
Ω

|v|2 dx +
∫
Ω

|∇v|2 dx
)1/2

;

see [30] for definitions of these spaces and the systematic description of their properties.
For the sake of brevity, we shall denote the corresponding spaces of vector-valued functions
by using bold face letters, i.e.,

Lp(Ω)
def
= Lp(Ω)× Lp(Ω)× Lp(Ω),

H1(Ω)
def
= H1(Ω)× H1(Ω)× H1(Ω).

Recall that the restriction of a function v ∈ H1(Ω) to the surface ∂Ω is defined by the
formula v|∂Ω = γv, where γ : H1(Ω)→ L4(∂Ω) is the trace operator (see [31], § 2.4.2).

By definition, put

V(P) def
=
{

w : P → R3 : w|P i
∈ C∞(P i) for each i = 1, 2, . . . , N and

w satisfies (2), (4), (6), and (9)
}

.

We introduce the space V(P) defined as

V(P) def
= the closure of the set V(P) in the Sobolev space H1(P)

with the scalar product

(u, v)V(P)
def
=

N

∑
i=1

∫
Pi

D(u) : D(v) dx.

Note that the associated norm

‖ · ‖V(P)
def
= (·, ·)1/2

V(P)

is equivalent to the norm induced from the Sobolev space H1(P). This follows from
Korn’s inequality.
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Lemma 1 (Korn’s inequality). Suppose Ω is a bounded domain in space R3 with boundary
∂Ω ∈ C0,1. If Σ ⊂ ∂Ω and meas2(Σ) > 0, then there exists a positive constant C = C(Ω) such
that the following inequality

‖D(v)‖L2(Ω) ≥ C(Ω)‖v‖H1(Ω)

holds for all v ∈ H1(Ω) satisfying the boundary condition v|Σ = 0.

This lemma is a consequence of Theorems 2.2 and 2.3 that is given in [32], Chapter I.
Further, introduce the space W(P) defined as

W(P) def
=
{

θ : P → R : θ|Pi ∈ H1(Pi) for each i = 1, 2, . . . , N
}

with the scalar product

(θ, ξ)W(P)
def
= κ

N

∑
i=1

∫
Pi

∇θ · ∇ξ dx +
N

∑
i=1

βi

∫
Γi

θξ dΓ.

Since meas2(Γi) > 0 for each i ∈ {1, 2, . . . , N}, it can be proved that the associated norm

‖ · ‖W(P) = (·, ·)1/2
W(P)

is equivalent to the norm ‖ · ‖H1(P).
Let us now describe the conditions that are imposed on the data of problem (1)–(9).

(B1) The function µ : R→ R is continuous.
(B2) There exist constants µ0 and µ1 such that

0 < µ0 ≤ µ(r) ≤ µ1, ∀ r ∈ R.

(B3) The functions f i(·, r) : P → R3, ϕi(·, r) : P → R, ψi(·, r, y) : P → R are measurable
for any i ∈ {1, 2, . . . , N}, r ∈ R, y ∈ R3.

(B4) The functions f i(x, ·) : R→ R3, ϕi(x, ·) : R→ R, ψi(x, ·, ·) : R×R3 → R are continu-
ous for each i ∈ {1, 2, . . . , N} and almost every x ∈ P .

(B5) There exist constants K f , Kϕ, Kψ such that

| f i(x, r)| ≤ K f , |ϕi(x, r)| ≤ Kϕ, |ψi(x, r, y)| ≤ Kψ, ∀ i ∈ {1, 2, . . . , N},

for almost every x ∈ P and for any r ∈ R and y ∈ R3.
(B6) The function πi : Si1i′1

∪ Si2i′2
→ R belongs to the Lebesgue space L2(Si1i′1

∪ Si2i′2
) for

each i ∈ {1, 2, . . . , N}.

3. Functional Setting of the Problem and Main Results

In this section, we give the weak formulation of problem (1)–(9). We start with the
following lemma, which suggests how to define a weak solution in a suitable way.

Lemma 2. If (u, θ, π) is a classical solution to boundary value problem (1)–(9), then

N

∑
i=1

∫
Pi

µ(θ)D(u) : D(v) dx +
N

∑
i=1

∫
Si1 i′1
∪Si2 i′2

πiv · n dS =
N

∑
i=1

∫
Pi

f i(x, θ) · v dx, (10)
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−
N

∑
i=1

3

∑
k=1

∫
Pi

ukθ
∂ξ

∂xk
dx + κ

N

∑
i=1

∫
Pi

∇θ · ∇ξ dx +
N

∑
i=1

βi

∫
Γi

θξ dΓ

+
N

∑
i=1

∫
Si1 i′1
∪Si2 i′2

(
θ

2
u · n + ψi(x, θ, u)

)
ξ dS =

N

∑
i=1

∫
Pi

ϕi(x, θ)ξ dx (11)

hold for any functions v ∈ V(P) and ξ ∈W(P).

The proof of this lemma is much like that of Lemma 1 in [33] (see also [34], Remark 4)
and, therefore, it will be omitted here.

Definition 1. We shall say that a pair (u, θ) ∈ V(P)×W(P) is a weak solution of problem (1)–(9)
if equalities (10) and (11) hold for any functions v ∈ V(P) and ξ ∈W(P).

By M denote the set of all weak solutions to problem (1)–(9).

Remark 1. If a weak solution of system (1)–(9) is obtained, then one can find the velocity and tem-
perature fields in interior junctions of the network P̃ by solving the corresponding nonhomogeneous
boundary value problems. Since the conjugation conditions (9) hold, these problems are well-posed.

We now formulate the main results of this paper.

Theorem 1. Suppose conditions (A1)–(A3) and (B1)–(B6) hold. Then,

(i) Boundary value problem (1)–(9) has at least one weak solution.
(ii) Any weak solution (u, θ) ∈ V(P)×W(P) of problem (1)–(9) satisfies the following energy

equalities:

N

∑
i=1

∫
Pi

µ(θ)|D(u)|2 dx +
N

∑
i=1

∫
Si1 i′1
∪Si2 i′2

πiu · n dS =
N

∑
i=1

∫
Pi

f i(x, θ) · u dx, (12)

κ
N

∑
i=1

∫
Pi

|∇θ|2 dx +
N

∑
i=1

∫
Si1 i′1
∪Si2 i′2

ψi(x, θ, u)θ dS +
N

∑
i=1

βi

∫
Γi

|θ|2 dΓ

=
N

∑
i=1

∫
Pi

ϕi(x, θ)θ dx. (13)

(iii) If (u1, θ) ∈M and (u2, θ) ∈M, then u1 ≡ u2.
(iv) The weak solutions set M is sequentially weakly closed in the space V(P)×W(P).

The proof of this theorem is given in the next section.

4. Proof of Main Results

The following two propositions will be needed to prove Theorem 1.

Proposition 1. Let Ω be an open bounded set in Rn such that

• the inclusion 0 ∈ Ω is valid;
• Ω is symmetric in the following sense: if x ∈ Ω, then −x ∈ Ω.

Suppose G : Ω× [0, 1]→ Rn is a continuous map and the following two conditions hold:

• G(x, λ) 6= 0 for any pair (x, λ) ∈ ∂Ω× [0, 1];
• G(·, 0) : Ω→ Rn is an odd mapping, i.e., G(−x, 0) = −G(x, 0) for any vector x ∈ Ω.
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Then, for any λ ∈ [0, 1] the equation G(x, λ) = 0 has at least one solution xλ, which belongs
to the set Ω.

The proof of Proposition 1 is based on symmetry principles and topological degree
methods (for details, see [35], Section 5).

Proposition 2. Let O be a bounded domain in Rn. Suppose h : O × Rd → R is a function
such that

• the function h(·, y) : O → R is measurable for every y ∈ Rd;
• the function h(x, ·) : Rd → R is continuous for almost every x ∈ O;
• there exist constants pk, q ≥ 1, ν ≥ 0 and a function ζ ∈ Lq(O) such that the inequality

|h(x, y)| ≤ ζ(x) + ν
d

∑
k=1
|yk|pk/q

holds for every y ∈ Rd and for almost every x ∈ O.

Then the Nemytskii operator Nh : Lp1(O)× · · · × Lpd(O)→ Lq(O) defined by

Nh[y1, . . . , yd](x) def
= h(x, y1(x), . . . , yd(x))

is a bounded and continuous map.

For the proof of Proposition 2, we refer the readers to the book [36], Chapter I.
First we shall establish the existence result (i). The proof will be achieved through

three steps.
Step 1: The Galerkin approximation scheme.
Let {v`}∞

`=1 be an orthonormal basis of the space V(P) and let {ξ`}∞
`=1 be an orthonor-

mal basis of the space W(P). Without loss of generality it can be assumed that

{v`}∞
`=1 ⊂ V(P), {ξ`}∞

`=1 ⊂ C∞(P).

For an arbitrary fixed m ∈ N, consider a finite-dimensional approximate problem:
Find a pair of functions (um, θm) such that

N

∑
i=1

∫
Pi

µ(λθm)D(um) : D(v`) dx + λ
N

∑
i=1

∫
Si1 i′1
∪Si2 i′2

πiv` · n dS

= λ
N

∑
i=1

∫
Pi

f i(x, θm) · v` dx, ` = 1, . . . , m, (14)

−λ
N

∑
i=1

3

∑
k=1

∫
Pi

umkθm
∂ξ`
∂xk

dx + κ
N

∑
i=1

∫
Pi

∇θm · ∇ξ` dx +
N

∑
i=1

βi

∫
Γi

θmξ` dΓ

+λ
N

∑
i=1

∫
Si1 i′1
∪Si2 i′2

(
θm

2
um · n + ψi(x, θm, um)

)
ξ` dS

= λ
N

∑
i=1

∫
Pi

ϕi(x, θm)ξ` dx, ` = 1, . . . , m, (15)

um =
m

∑
i=1

amivi, θm =
m

∑
i=1

bmiθi, (16)
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where am1, . . . , amm and bm1, . . . , bmm are unknown numbers, λ is a parameter, and λ ∈ [0, 1].
Step 2: A priori estimates for the Galerkin solutions.
Assume that a pair (um, θm) satisfies (14)–(16) for some λ ∈ [0, 1]. We multiply (14) by

amj and add the corresponding equalities for j = 1, . . . , m; this gives

N

∑
i=1

∫
Pi

µ(λθm)|D(um)|2 dx + λ
N

∑
i=1

∫
Si1 i′1
∪Si2 i′2

πium · n dS = λ
N

∑
i=1

∫
Pi

f i(x, θm) · um dx,

whence, by conditions (B2), (B5), (B6), the Cauchy–Schwarz inequality, and λ ∈ [0, 1],
we derive

µ0

N

∑
i=1

∫
Pi

|D(um)|2 dx ≤
N

∑
i=1

( ∫
Si1 i′1
∪Si2 i′2

|πi|2 dS
)1/2( ∫

Si1 i′1
∪Si2 i′2

|um|2 dS
)1/2

+ K f

N

∑
i=1

meas3(Pi)
1/2
( ∫
Pi

|um|2 dx
)1/2

.

This yields that

µ0‖um‖2
V(P) ≤

N

∑
i=1
‖πi‖L2(Si1 i′1

∪Si2 i′2
)‖um‖L2(Si1 i′1

∪Si2 i′2
)

+ K f

N

∑
i=1

meas3(Pi)
1/2‖um‖L2(Pi)

. (17)

Note that

‖um‖L2(Si1 i′1
∪Si2 i′2

) ≤‖γ‖L(H1(Pi),L2(Si1 i′1
∪Si2 i′2

))‖um‖H1(Pi)

≤C1‖um‖V(P), (18)

where γ : H1(Pi)→ L2(Si1i′1
∪ Si2i′2

) is the trace operator, and

‖um‖L2(Pi)
≤ C2‖um‖V(P). (19)

Here and in the succeeding discussion, the symbols C1, C2, . . . denote positive constants
that depend only on the data of system (1)–(9).

Taking into account (18) and (19), we deduce from (17) the following estimate

µ0‖um‖2
V(P) ≤

(
C1

N

∑
i=1
‖πi‖L2(Si1 i′1

∪Si2 i′2
) + K f C2

N

∑
i=1

meas3(Pi)
1/2

)
‖um‖V(P).

Dividing both sides of this inequality by µ0‖um‖V(P), we obtain

‖um‖V(P) ≤ C3 (20)

with

C3
def
= µ−1

0

(
C1

N

∑
i=1
‖πi‖L2(Si1 i′1

∪Si2 i′2
) + K f C2

N

∑
i=1

meas3(Pi)
1/2

)
.
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Next, we multiply (15) by bmj and add the corresponding equalities for j = 1, . . . , m;
this gives

−λ
N

∑
i=1

3

∑
k=1

∫
Pi

umkθm
∂θm

∂xk
dx + κ

N

∑
i=1

∫
Pi

|∇θm| dx +
N

∑
i=1

βi

∫
Γi

|θm|2 dΓ

+λ
N

∑
i=1

∫
Si1 i′1
∪Si2 i′2

(
θm

2
um · n + ψi(x, θm, um)

)
θm dS

= λ
N

∑
i=1

∫
Pi

ϕi(x, θm)θm dx. (21)

Let us introduce the notation

I1
def
= −λ

N

∑
i=1

3

∑
k=1

∫
Pi

umkθm
∂θm

∂xk
dx, I2

def
= κ

N

∑
i=1

∫
Pi

|∇θm| dx +
N

∑
i=1

βi

∫
Γi

|θm|2 dΓ

and rewrite (21) as follows

I1 + I2 + λ
N

∑
i=1

∫
Si1 i′1
∪Si2 i′2

(
θm

2
um · n + ψi(x, θm, um)

)
θm dS

= λ
N

∑
i=1

∫
Pi

ϕi(x, θm)θm dx. (22)

Applying integration by parts, we obtain

I1 =− λ

2

N

∑
i=1

3

∑
k=1

∫
Pi

umk
∂|θm|2

∂xk
dx

=− λ

2

N

∑
i=1

3

∑
k=1

( ∫
Γi

umknk|θm|2 dx +
∫

Si1 i′1
∪Si2 i′2

umknk|θm|2 dx−
∫
Pi

∂umk
∂xk
|θm|2 dx

)

=− λ

2

N

∑
i=1

( ∫
Γi

(um · n)︸ ︷︷ ︸
=0

|θm|2 dx +
∫

Si1 i′1
∪Si2 i′2

(um · n)|θm|2 dx−
∫
Pi

(∇ · um)︸ ︷︷ ︸
=0

|θm|2 dx
)

=− λ
N

∑
i=1

∫
Si1 i′1
∪Si2 i′2

|θm|2
2

um · n dx.

Moreover, it is obvious that
I2 = ‖θm‖2

W(P).

Substituting the obtained expressions for I1 and I2 into equality (22), after simple
transformations we arrive at the relation

‖θm‖2
W(P) + λ

N

∑
i=1

∫
Si1 i′1
∪Si2 i′2

ψi(x, θm, um)θm dS = λ
N

∑
i=1

∫
Pi

ϕi(x, θm)θm dx.
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Using condition (B5), the Cauchy–Schwarz inequality, and λ ∈ [0, 1], we derive

‖θm‖2
W(P) =− λ

N

∑
i=1

∫
Si1 i′1
∪Si2 i′2

ψi(x, θm, um)θm dS + λ
N

∑
i=1

∫
Pi

ϕi(x, θm)θm dx

≤
N

∑
i=1

( ∫
Si1 i′1
∪Si2 i′2

|ψi(x, θm, um)|2 dS
)1/2( ∫

Si1 i′1
∪Si2 i′2

|θm|2 dS
)1/2

+
N

∑
i=1

( ∫
Pi

|ϕi(x, θm)|2 dx
)1/2( ∫

Pi

|θm|2 dx
)1/2

≤Kψ

N

∑
i=1

meas2(Si1i′1
∪ Si2i′2

)1/2‖θm‖L2(Si1 i′1
∪Si2 i′2

)

+ Kϕ

N

∑
i=1

meas3(Pi)
1/2‖θm‖L2(Pi)

.

Note that

‖θm‖L2(Si1 i′1
∪Si2 i′2

) ≤‖γ‖L(H1(Pi),L2(Si1 i′1
∪Si2 i′2

))‖θm‖H1(Pi)

≤C4‖γ‖L(H1(Pi),L2(Si1 i′1
∪Si2 i′2

))‖θm‖W(P)

and
‖θm‖L2(Pi)

≤ ‖θm‖H1(Pi)
≤ C4‖θm‖W(P).

Therefore, we have

‖θm‖2
W(P) ≤C4

(
Kψ

N

∑
i=1

meas2(Si1i′1
∪ Si2i′2

)1/2‖γ‖L(H1(Pi),L2(Si1 i′1
∪Si2 i′2

))

+ Kϕ

N

∑
i=1

meas3(Pi)
1/2
)
‖θm‖W(P).

Dividing both sides of this inequality by ‖θm‖W(P), we obtain

‖θm‖W(P) ≤ C5 (23)

with

C5
def
=C4

(
Kψ

N

∑
i=1

meas2(Si1i′1
∪ Si2i′2

)1/2‖γ‖L(H1(Pi),L2(Si1 i′1
∪Si2 i′2

))

+ Kϕ

N

∑
i=1

meas3(Pi)
1/2
)

.

From (20) and (23) it follows that

‖(um, θm)‖V(P)×W(P) = (‖um‖2
V(P) + ‖θm‖2

W(P))
1/2 ≤ C6 (24)

with the constant C6
def
= (C2

3 + C2
5)

1/2, which is independent of m and λ.
Let

Ω =

{
(a1, . . . , am, b1, . . . , bm) ∈ R2m :

m

∑
i=1

a2
i +

m

∑
i=1

b2
i < (C6 + 1)2

}
.
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The application of Proposition 1 to problem (14)–(16) yields that this problem is solvable
for each m ∈ N and any λ ∈ [0, 1].

Step 3: Passing to the limit m→ ∞.
Let (ũm, θ̃m) be a solution to problem (14)–(16) with λ = 1. We obviously have

N

∑
i=1

∫
Pi

µ(θ̃m)D(ũm) : D(v`) dx +
N

∑
i=1

∫
Si1 i′1
∪Si2 i′2

πiv` · n dS

=
N

∑
i=1

∫
Pi

f i(x, θ̃m) · v` dx, ` = 1, . . . , m, (25)

−
N

∑
i=1

3

∑
k=1

∫
Pi

ũmk θ̃m
∂ξ`
∂xk

dx + κ
N

∑
i=1

∫
Pi

∇θ̃m · ∇ξ` dx +
N

∑
i=1

βi

∫
Γi

θ̃mξ` dΓ

+
N

∑
i=1

∫
Si1 i′1
∪Si2 i′2

(
θ̃m

2
ũm · n + ψi(x, θ̃m, ũm)

)
ξ` dS

=
N

∑
i=1

∫
Pi

ϕi(x, θ̃m)ξ` dx, ` = 1, . . . , m. (26)

In view of (24), the following estimate

‖(ũm, θ̃m)‖V(P)×W(P) ≤ C6, ∀m ∈ N,

is true. Therefore, without loss of generality it can be assumed that

ũm ⇀ u∗ weakly in V(P) as m→ ∞, (27)

θ̃m ⇀ θ∗ weakly in W(P) as m→ ∞, (28)

for some pair (u∗, θ∗) ∈ V(P)×W(P).
Moreover, by using the compactness theorems for imbedding and trace operators (see,

e.g., [31], Chapter 2, Section 2.6, Theorems 6.1 and 6.2), we obtain

ũm → u∗ strongly in L4(P) as m→ ∞, (29)

θ̃m → θ∗ strongly in L4(P) as m→ ∞, (30)

ũm|Si1 i′1
∪Si2 i′2

→ u∗|Si1 i′1
∪Si2 i′2

strongly in L2(Si1i′1
∪ Si2i′2

) as m→ ∞, (31)

θ̃m|Γi → θ∗|Γi strongly in L2(Γi) as m→ ∞, (32)

for each i ∈ {1, 2, . . . , N}.
Using Proposition 2 and the convergence results (27)–(32), we pass to the limit m→ ∞

in equalities (25) and (26); this gives:

N

∑
i=1

∫
Pi

µ(θ∗)D(u∗) : D(v`) dx +
N

∑
i=1

∫
Si1 i′1
∪Si2 i′2

πiv` · n dS =
N

∑
i=1

∫
Pi

f i(x, θ∗) · v` dx, (33)
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−
N

∑
i=1

3

∑
k=1

∫
Pi

u∗kθ∗
∂ξ`
∂xk

dx +
N

∑
i=1

∫
Pi

κ∇θ∗ · ∇ξ` dx +
N

∑
i=1

βi

∫
Γi

θ∗ξ` dΓ

+
N

∑
i=1

∫
Si1 i′1
∪Si2 i′2

(
θ∗
2

u∗ · n + ψi(x, θ∗, u∗)
)

ξ` dS =
N

∑
i=1

∫
Pi

ϕi(x, θ∗)ξ` dx, (34)

for any ` ∈ {1, 2, . . . }.
Recall that {v`}∞

`=1 is a basis of the space V(P) and {ξ`}∞
`=1 is a basis of the space

W(P). Therefore, equalities (33) and (34) remain valid if we replace v` and ξ` with arbitrary
functions v ∈ V(P) and ξ ∈W(P), respectively. This means that the pair of functions
(u∗, θ∗) is a weak solution of boundary value problem (1)–(9), and, hence, statement (i)
is proved.

In order to prove (ii), we substitute v = u into (10) and arrive at (12). Next, setting
ξ = θ into (11) and using integration by parts, we derive (13).

Let us now show (iii). From Definition 1 it follows that

N

∑
i=1

∫
Pi

µ(θ)D(u1) : D(v) dx +
N

∑
i=1

∫
Si1 i′1
∪Si2 i′2

πiv · n dS =
N

∑
i=1

∫
Pi

f i(x, θ) · v dx, (35)

N

∑
i=1

∫
Pi

µ(θ)D(u2) : D(v) dx +
N

∑
i=1

∫
Si1 i′1
∪Si2 i′2

πiv · n dS =
N

∑
i=1

∫
Pi

f i(x, θ) · v dx, (36)

for any vector-valued function v ∈ V(P). Subtracting (36) from (35), we obtain

N

∑
i=1

∫
Pi

µ(θ)D(u1 − u2) : D(v) dx = 0. (37)

Setting v = u1 − u2 into (37), we arrive at the following equality

N

∑
i=1

∫
Pi

µ(θ)|D(u1 − u2)|2 dx = 0.

Taking into account this equality, by condition (B2) we derive

0 ≤
N

∑
i=1

∫
Pi

|D(u1 − u2)|2 dx = µ−1
0

(
N

∑
i=1

∫
Pi

µ0|D(u1 − u2)|2 dx

)

≤ µ−1
0

(
N

∑
i=1

∫
Pi

µ(θ)|D(u1 − u2)|2 dx

)
= 0,

whence

‖D(u1 − u2)‖2
L2(P) =

N

∑
i=1

∫
Pi

|D(u1 − u2)|2 dx = 0.

Using Lemma 1, we deduce that u1 ≡ u2.
Finally, by applying the passage-to-limit procedure in the same way as at Step 3,

it can be shown that the set M is sequentially weakly closed in the Cartesian product
V(P)×W(P). Thus, the proof of Theorem 1 is complete.
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5. Conclusions

In this paper, we introduced and studied a 3D network model for the non-isothermal
steady-state flow of an incompressible fluid with temperature-dependent viscosity. Our
main result is the theorem on the existence of weak solutions to this model with arbitrary
large data (external forces, heat sources terms, and boundary data). Moreover, we proved
the uniqueness of the velocity field for a given temperature regime and established that the
set of weak solutions is sequentially weakly closed. The proposed approach provides ways
for new investigations of such models. The authors suggest the following directions for
future investigations:

• the task of proving the unique solvability under smallness of the data (as in the case
of the Navier–Stokes equations);

• the study of the continuous dependence of solutions on the model data;
• the well-posedness analysis of non-steady problems;
• the numerical analysis of network models;
• the analysis of flow control problems and finding optimal solutions.
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