
symmetryS S

Article

Analysis of a Robot Selection Problem Using Two Newly
Developed Hybrid MCDM Models of TOPSIS-ARAS
and COPRAS-ARAS

Shankha Shubhra Goswami 1 , Dhiren Kumar Behera 1 , Asif Afzal 2,* , Abdul Razak Kaladgi 2 ,
Sher Afghan Khan 3, Parvathy Rajendran 4,5,* , Ram Subbiah 6 and Mohammad Asif 7

����������
�������

Citation: Goswami, S.S.; Behera,

D.K.; Afzal, A.; Razak Kaladgi, A.;

Khan, S.A.; Rajendran, P.; Subbiah, R.;

Asif, M. Analysis of a Robot Selection

Problem Using Two Newly

Developed Hybrid MCDM Models of

TOPSIS-ARAS and COPRAS-ARAS.

Symmetry 2021, 13, 1331.

https://doi.org/

10.3390/sym13081331

Academic Editors: Jan Awrejcewicz

and Raúl Baños Navarro

Received: 5 June 2021

Accepted: 20 July 2021

Published: 23 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mechanical Engineering, Indira Gandhi Institute of Technology, Sarang 759146, Odisha, India;
ssg.mech.official@gmail.com (S.S.G.); dkb_igit@rediffmail.com (D.K.B.)

2 Department of Mechanical Engineering, P. A. College of Engineering, Affiliated to Visvesvaraya
Technological University, Belagavi, Mangaluru 574153, Karnataka, India; abdulkaladgi@gmail.com

3 Department of Mechanical Engineering, Faculty of Engineering, International Islamic University,
Kuala Lumpur 53100, Selangor, Malaysia; sakhan06@gmail.com

4 School of Aerospace Engineering, Universiti Sains Malaysia, Engineering Campus,
Nibong Tebal 14300, Pulau Pinang, Malaysia

5 Faculty of Engineering & Computing, First City University College, Bandar Utama,
Petaling Jaya 47800, Selangor, Malaysia

6 Gokaraju Rangaraju Institute of Engineering & Technology, Hyderabad 500078, Telangana, India;
ram4msrm@gmail.com

7 Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800,
Riyadh 11421, Saudi Arabia; masif@ksu.edu.sa

* Correspondence: asif.afzal86@gmail.com (A.A.); aeparvathy@usm.my
or parvathy.rajendran@firstcity.edu.my (P.R.)

Abstract: Traditional Multi-Criteria Decision Making (MCDM) methods have now become outdated;
therefore, most researchers are focusing on more robust hybrid MCDM models that combine two or
more MCDM techniques to address decision-making problems. The authors attempted to create two
novel hybrid MCDM systems in this paper by integrating Additive Ratio ASsessment (ARAS) with
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Complex PRoportional
ASsessment (COPRAS). To demonstrate the ability and effectiveness of these two hybrid models i.e.,
TOPSIS-ARAS and COPRAS-ARAS were applied to solve a real-time robot selection problem with 12
alternative robots and five selection criteria, while evaluating the parametric importance using the
CRiteria Importance Through Inter criteria Correlation (CRITIC) objective weighting estimation tool.
The rankings of the robot alternatives gained from these two hybrid models were also compared
to the obtained results from eight other solo MCDM tools. Although the rankings by the applied
methods slightly differ from each other, the final outcomes from all of the adopted techniques are
consistent enough to suggest that robot 12 is the best choice followed by robot 11, and robot 4 is the
worst one among these 12 alternatives. Spearman Correlation Coefficient (SCC) also reveals that
the proposed rankings derived from various methods have a strong ranking relationship with one
another. Finally, sensitivity analysis was performed to investigate the effects of weight variation and
to validate the robustness of the implemented MCDM approaches.

Keywords: hybrid MCDM; ARAS; COPRAS; TOPSIS; robot selection

1. Introduction

In the last few decades, MCDM served as an efficient tool in the field of decision
making. Researchers are working on this area, in order to upgrade the MCDM techniques
and to fulfil the loop holes that exist in the previous methods. Moreover, researchers have
developed new innovative MCDM models to make more precise and accurate decisions.
Each day, MCDM methods are gaining importance, due to their inherent ability to judge
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different alternatives [1]. At the same time, traditional MCDM techniques are becoming
obsolete and outdated. To analyze any complex decision-making problem [1], a single
MCDM tool is not enough to make appropriate judgements. Therefore, two or more MCDM
processes should merge together, to form a hybrid model, in order to make more effective
decisions. The significance of a hybrid technique is that it accumulate the advantages of
each MCDM tool into one model; moreover, this technique could be used to help overcome
the drawbacks of one model from the other.

In contrast, if attention is paid to the significance of industrial robots, in addition to
these, it is clear that manufacturing concerns primarily focus on automated-driving systems
within an industry as time passes by. Automation aids us in achieving our desired goals
and can perform time-consuming tasks repeatedly—without interruption. Most industries
focus on improving automated-driven systems in order to increase productivity and lower
production costs in today’s technologically-advanced society. Additionally, managers have
to make very crucial decisions in today’s competitive market for their organizations, partic-
ularly in fields where technical decisions are essential, such as robot selection [2]. Each day,
customers are becoming more diverse with their demands; as a result, competition is
becoming more intense [2]. Manufacturing firms are, continuously, striving to meet these
complex needs in order to balance customer-oriented performance metrics [2]. Therefore,
managers sometimes face difficulties during proper robot selection due to the number of
available alternative robots that have a wide range of performances and various technical
characteristics [2].

Robots are computer-programmed automated material handling devices that are used
to perform a variety of tasks, such as welding, spray painting, part assembly, loading,
unloading, pick-n-place, etc. As a result, efficient and well-organized handling systems are
required to increase system flexibility and production, improve material flow efficiency, im-
prove facility utilization, reduce lead time, as well as manage handling and labor costs [3].
Improper industrial robot selection not only reduces productivity, but also has a negative
impact on the organization’s reputation [4]. Therefore, proper robot selection is critical
in order to increase production rate with the highest precision and accuracy. There are
numerous conflicting subjective and objective criteria that can influence the appropriate
robot selection decisions [4]. Despite the high initial investment, implementing robots in
industries has numerous advantages. For example, industrial robots can perform repetitive,
complex, and dangerous tasks with precision, and they can also significantly increase the
efficiency and productivity of manufacturing organizations. Bhangale et al. [5] stated that
“over 75 important attributes must be considered when selecting a robot for a specific indus-
trial application”. Among these attributes, Athawale and Chakraborty [6] identified some
of the critical factors to consider when selecting a suitable robot alternative, such as load
carrying capacity, repeatability, accuracy, speed, durability, cost, man-machine interface,
manipulator distance, accuracy, etc. Load capacity refers to how much weight (load) a robot
can pick up; repeatability refers to how well a robot can return to a programmed location;
accuracy refers to how closely a robot can achieve a recommended point; and speed refers
to how quickly a robot can position its actuator [4]. As a result, decision makers are having
difficulty deciding the most appropriate robot alternative due to the involvement of a large
number of competing robot performance characteristics, and the MCDM system is the only
solution to these types of contradictory problems [6].

Because of the aforementioned benefits of robots, there is an immediate need to solve
this selection problem and recommend the best robot alternative to incorporate within
an industry, so that manufacturing firms can obtain simple ideas before investing in the
installation of automated machinery and, parallelly, the development of some novel hybrid
MCDM systems are also required to execute any decision-making processes in a smooth
and effective manner. The authors were motivated and convinced by these stated reasons
and felt bound to create two hybrid MCDM models, implementing them in executing
an industrial robot selection problem in this single research article. While carrying out
a robot selection process, the decision maker (DM) must consider various qualitative and
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quantitative criteria, either maximizing (beneficial) or minimizing (non-beneficial) [7].
As a result, MCDM tools are the best solutions to these types of problems with a variety of
conflicting criteria. This research article presents an example of a robot selection MCDM
problem and evaluates it using two newly developed TOPSIS-ARAS and COPRAS-ARAS
hybrid MCDM methodologies [8]. The current robot selection problem has been solved
previously by several researchers using various MCDM techniques [1,4], but the authors
of this paper find all of those analyses to be contradictory and inconsistent, leaving more
room to expand it by using other potential MCDM methods, and comparing the results
with the previous ones.

Merits and Demerits of the Adopted MCDM Approaches

The authors took initiative in this current research work to combine ARAS [9] with CO-
PRAS [10] and TOPSIS [11–13] due to their distinct qualities (clearly explained in the later
section), and simultaneously attempted to overcome the drawbacks of these three methods.
There are numerous flaws associated with these MCDM tools. The main disadvantage
of the ARAS method is that it can only use maximizing attributes. The minimizing (non-
beneficial) criteria must first be converted into maximizing (beneficial) factors before being
used [14]. As a consequence, the ARAS method may produce contradictory outcomes [14].
In addition, ARAS is a sensitive tool, and even minor changes in the data can have an
impact on the results. This sensitive property of the ARAS method is also demonstrated
during the sensitivity analysis in this present article. On the other hand, the devoted ranks
obtained by COPRAS may differ from those obtained by other methods [15]. As a result,
this is one of the drawbacks of the COPRAS technique.

COPRAS MCDM, despite having some flaws, has a plethora of strong positive charac-
teristics that more than compensate for those minor flaws. First, one of the most significant
advantages of COPRAS is its ability to treat beneficial and non-beneficial parameters
separately, which thankfully correct a shortcoming in the ARAS method [14]. Further-
more, in terms of parameter weight variation, COPRAS is more robust and stable than
ARAS. These explanations support the conclusion that COPRAS is a more effective and
superior tool than ARAS in general. Being an inferior tool, the disadvantages of ARAS
are also more severe than those of COPRAS and needs to be managed properly. Hence,
it is a “high time” for the researchers to take action to improve the performance of ARAS.
Thus, on merging these two tools, and incorporating some of the significant advantages and
qualities of both COPRAS and ARAS, some of the weaknesses can be abolished. As a result,
the current hybrid model was developed to address some of these shortcomings, and it
can produce more relevant results than these solo methods. More specifically, by incorpo-
rating COPRAS alongside it, the performance and stability of the ARAS MCDM can be
deliberately improved.

When it comes to the TOPSIS technique, it also has some merits and demerits. Accord-
ing to Kraujaliene [15], the TOPSIS method has two major drawbacks, which are as follows:
(A) the use of Euclidean distance does not consider the correlation of the attributes [15].
(B) It is difficult to weigh and maintain consistency of judgment in this tool, especially with
additional attributes [15]. However, the TOPSIS method has many potential advantages
and shares some common characteristics with COPRAS:

• Regarding varying input data, TOPSIS provides the possibility of the most stable
performance results than ARAS.

• The conversion of non-beneficial attributes is not required before normalization,
as TOPSIS can treat maximum and minimum criteria separately, like COPRAS.

• The TOPSIS method enables interpretation of an absolute evaluation of a specific
alternative and its deviation magnitude is calculated by comparing the results, starting
with the best and worst average alternatives.

• The TOPSIS method is simple in terms of maintaining the same number of steps
regardless of the size of the problem.
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• Studying the development of hypothetical worst and best objects suitable for specific
tasks is worthwhile in many areas where quantitative evaluation is required.

Apart from these advantages, TOPSIS has a very clear and transparent logic and can
be used for both qualitative and quantitative data [14]. It can also be used simply when
the number of options and criteria are large [14,16]. Although TOPSIS requires lengthy
and time-consuming calculation steps, the following advantages of the TOPSIS tool are so
impressive that the authors are destined to integrate TOPSIS alongside ARAS to enhance
the ranking accuracy of both TOPSIS and the ARAS tool, while also attempting to overcome
the drawbacks of one tool by another.

In addition to the various available MCDM techniques, the authors of this paper
combined TOPSIS, COPRAS, and ARAS due to their significant advantages over other
MCDM tools. The merits of the TOPSIS approach have already been discussed; now we
will focus on the benefits of COPRAS and ARAS. First, we will discuss COPRAS MCDM.
COPRAS is used to rate alternatives based on a variety of parameters, including the utility
degrees of the alternatives and the weights associated with the criteria [17]. The best
option is determined by considering both ideal and anti-ideal solutions [17,18]. COPRAS
believes that the importance and utility degree of the investigated versions are directly
and proportionally dependent on a set of criteria, efficiently specifying the alternatives,
as well as the criteria weights and values [17,19,20]. These working principles demonstrate
that the COPRAS approach is an important MCDM technique as well as an effective
decision-making tool. According to Ayrim et al. [17], COPRAS rate alternatives using
a single assessment framework that considers the impacts of both the cost and benefit type
criteria. One significant benefit that distinguishes COPRAS from other MCDM approaches
is that it takes into account the utility degree of alternatives, which represents a percentage,
the extent of which one alternative is better or worse than the other alternatives used for
comparison [17,21]. This information can help the DM make a decision [22]. Furthermore,
recent research indicates that COPRAS-embedded decisions are more efficient and less
biased than TOPSIS and WSM decisions [17,23], and COPRAS has more stability than
WSM in the presence of data variations [15]. Moreover, COPRAS has many advantages
over other MCDM tools, such as PROMETHEE, DEA, VIKOR, AHP, ELECTRE, etc., e.g.,
a very simple and transparent MCDM method requires much less computational time,
and a high probability of graphical interpretation [17,18].

ARAS, on the other hand, is a type of MCDM tool that does not require any complex
calculation steps and is responsible for the ranking of a limited number of decision alter-
natives, each of which must be considered concurrently in terms of the various decision
criteria [9]. The main advantage of using the ARAS approach is that the degree of the
alternative utility is calculated by comparing the variant to the (ideally) best one, which
effectively aids in the prioritization of alternatives. As a result, when this approach is used,
evaluating and ranking the alternatives is extremely convenient [9]. Moreover, Zavadskas
and Turskis [9] also stated that “When attempt is taken to rank various alternatives and
find ways to improve alternative projects, the ratio with an ideal alternative concept can be
used”. It is clear from the preceding scenario that each MCDM technique has its own set of
advantages and disadvantages. It is also true that the drawbacks of one MCDM tool can be
overcome by another method based on the concept of combining two or more approaches
together, and at the same time, the hybrid model accumulates the benefits of the individual
tools and results in producing a more efficient decision-making model. Despite having
many limitations, the authors of this paper considered the given reasons to be so strong and
motivating that they were compelled to combine TOPSIS, COPRAS, and ARAS rather than
other MCDM tools. The author of this article believes that the developed hybrid model
would be much stronger and more robust due to the accumulation of the advantages and
significant properties of these three MCDM tools. The beneficial properties of TOPSIS,
COPRAS, and ARAS are considered and incorporated in the following two hybrid models
of TOPSIS-ARAS and COPRAS-ARAS, resulting in forming an effective, well-organized,
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and competent MCDM system. Some of the benefits of these two newly developed hybrid
MCDM models of TOPSIS-ARAS and COPRAS-ARAS can be described as follows.

• The concept of ideal alternatives is used to improve the ranking efficiency [9].
• One of the most important aspects of this hybrid model is that the quantitative utility

degree and relative closeness coefficient are evaluated by comparing the variant to the
optimally (ideally) best one, which aids in alternative prioritization.

• This hybrid model is very simple and easy, having a clear, rational, and systematic
mathematical approach.

• The most important feature of this hybrid model is its ability to treat maximum and
minimum criteria separately, which eliminates inconsistency, and, as a result, can
produce more precise results that are free of contradictions.

The main purpose of this article is to integrate ARAS [9] with TOPSIS [11–13] and
COPRAS [10], resulting in a combined TOPSIS-ARAS and COPRAS-ARAS hybrid MCDM
systems. The performances of these two hybrid tools are also investigated by implement-
ing it to solve a real-world robot selection problem, while also attempting to eliminate
the weaknesses of the three solo MCDM tools in order to improve their performance
and efficiency. In this research article, a real-life robot selection [1,4] MCDM problem
is considered and the goal is to propose the best robot alternative among 12 alternative
robots for industrial applications. To execute this process, two completely novel hybrid
models combining TOPSIS-ARAS and COPRAS-ARAS were developed and the criteria
weights were evaluated using the CRITIC objective weighting tool [24]. Five conflicting
criteria were considered in this analysis, out of which, three are beneficial (maximum)
criteria, i.e., handling coefficient (HC), load capacity (LC), and velocity (V), while the other
two, i.e., repeatability (R) and cost (C) are the non-beneficial (minimum) criteria. Further,
the ranking obtained from these two hybrid models are also cross-verified and validated
with the help of eight other solo MCDM tools and through sensitivity analysis.

2. Literature Review

Before proceeding further, we will go over some basic fundamental MCDM concepts.
MCDM is a decision-making tool that assists decision makers in making sound decisions
and selecting the best options from a plethora of available alternatives. For example,
suppose someone wants to purchase a new car. In this case, there are numerous car models
from various brands available in the market. As a result, the customer may be perplexed as
to which available model would be the best choice. Furthermore, buyers may have specific
choices and preferences, e.g., wanting a four-seater, it should be diesel-powered, the color
should be black, it should have good mileage and solid comfort, it should cost less than
INR 5 (lakhs), etc. However, it is not possible to meet all of these requirements in a single
model, so the buyers would have to compromise on some of the less important factors.
In such cases, MCDM techniques show individuals the right path to take and assist them
in resolving their confusion while making appropriate alternative choices. MCDM proves
to be a very efficient tool at dealing with these types of decision-making problems having
different conflicting criteria with ease and effectiveness. TOPSIS, PIV, CoCoSo, COPRAS,
PROMETHEE, ARAS, etc., are some popular MCDM techniques that were developed over
the last few decades.

For many years, MCDM techniques have proved its versatility by addressing differ-
ent complex problems with effective solutions in various sectors including manufactur-
ing [21,25,26], transport [27,28], health [28], finance [29], etc. Many researchers applied
MCDM tools to resolve numerous decision-making problems in a wide range of fields.
Since this paper deals with the industrial robot selection issue, some examples of previous
successful MCDM applications in this field are discussed in this section. In recent time,
several hybrid MCDM methods were developed and applied in broad areas. Some new
MCDM methods are also introduced by many researchers. Some applications of different
hybrid MCDM tools in various fields and few successful MCDM implementations for
analyzing robot selection problems are discussed in the following literature. Chatterjee
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et al. [30] used outranking and compromise methods, ELECTRE II and VIKOR, whereas,
Mondal and Chakraborty [4] applied four models of DEA to identify the optimal robots.
Athawale and Chakraborty [6], while solving an industrial robot selection problem, inves-
tigated the ranking performance of 10 well-known MCDM methods and concluded that
GRA, TOPSIS, and WPM performed marginally better than others.

Azimi et al. [31] used the polygon area MADM method and Shahrabi [32] imple-
mented FAHP and FTOPSIS for the selection of the most convenient robot. Khandekar and
Chakraborty [33] explored a robot selection problem, considering nine criteria and seven
alternative robots, using fuzzy axiomatic design. Parameshwaran et al. [34] carried out
a robot selection problem using the fuzzy Delphi method to select the important objective
and subjective criteria based on the decision makers’ opinion, the FAHP method to find
out the criteria weights and, finally, fuzzy-VIKOR or fuzzy-TOPSIS to rank the alterna-
tives. Ghorabaee [35] illustrated a robot selection problem that had eight alternatives and
seven criteria using an MCDM approach based on VIKOR with interval type-2 fuzzy sets.
Karande et al. [1] studied the ranking performance of six popular MCDM methods for
industrial robot selection problems. Xue et al. [36] proposed an integrated linguistic MCDM
approach, combining extended QUALIFLEX for evaluating robot selection problems with
incomplete weight information. Yazdani et al. [37] solved a robot selection problem by
implementing the MOORA and COPRAS method. Bairagi et al. [38], Kamble and Patil [39],
and Sharaf [40] solved a robot selection problem using a new multiplicative MCDM model,
TOPSIS, and an ellipsoid algorithm-based MCDM approach respectively. Wang et al. [41]
established a decision support model combined with the entropy weighting technique that
uses the cloud model and TODIM to handle robot selection problems. Zhou et al. [42]
considered a case study on a mobile robot selection in the healthcare industry to show
the robustness and effectiveness of the FAHP-integrated VIKOR approach. Liu et al. [43]
presented a novel robot selection model by integrating the qualitative flexible multiple
criteria method (QUALIFLEX) and quality function development (QFD) theory under the
interval-valued Pythagorean uncertain linguistic environment.

Banerjee et al. [44] proposed a novel multiple criteria analysis approach, and Gundogdu
and Kahraman [45] developed a spherical FAHP for the ranking and selection of industrial
robots. Kumar and Raj [46] implemented an integrated methodology of AHP and modified
GRA to select the best mobile robot for material handling. Nasrollahi et al. [47] solved
a robot selection problem using the fuzzy best–worst method and PROMETHEE for criteria
weight evaluation and ranking of the alternatives, respectively. Hornakova et al. [48]
confirmed that mobile robots are the best equipment for material handling in an industrial
setting. Rashid et al. [49] integrated the generalized interval-valued trapezoidal fuzzy best-
worst method with extended TOPSIS and extended VIKOR for the selection of the optimal
industrial robot, while concluding that extended TOPSIS is more stable than extended
VIKOR after testing the reliability and stability of both methods through sensitivity analysis.
Rashid et al. [50] developed a hybrid MCDM methodology to select the best industrial
robot alternatives by combining the BWM and EDAS method, followed by sensitivity
analysis, and compared to other distance-based approaches, such as VIKOR and TOPSIS.

Aside from these literature studies, TOPSIS, ARAS, and COPRAS methods have a wide
range of applications in other fields for making strategic decisions. Some of the previous
works involving new hybrid MCDM models, TOPSIS, COPRAS, and ARAS, as decision-
making tools, are briefly described as follows. Sakthivel et al. [51] developed two hybrid
models combining FAHP with PROMETHEE and GRA to propose the best car alternative.
Vinodh and Jayakrishna [52] and Khatwani et al. [53] presented a hybrid MCDM approach,
integrating FAHP with fuzzy-VIKOR and TOPSIS to select the best tire recycling process
and an appropriate marketing channel, respectively, where, FAHP is used to identify the
relative importance of the criteria. Adali and Isik [54] solved an air-conditioner selection
problem using COPRAS and ARAS methods. Afful-Dadzie et al. [55] and Kundakci [56]
developed a hybrid MCDM framework of FAHP-PROMETHEE and a combined MCDM
approach of MACBETH and MULTIMOORA for evaluating aid programs and automobile
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selection of a marble company. Ozbek and Erol [57] selected and ranked the factoring
companies with the help of COPRAS and ARAS methods. Valipour et al. [58] and Zhang
et al. [59] proposed a hybrid SWARA-COPRAS framework and a hybrid combination of
DEMATEL, ANP, GRA, and TOPSIS for risk assessment in a deep foundation excavation
project and to select the optimal green material for sustainability.

Asodariya et al. [60] investigated a flywheel material selection problem in which the
AHP and entropy methods were used to determine the subjective and objective criteria
weights, respectively, and the COPRAS and TOPSIS methods were used to determine
the best flywheel material alternatives. Barak and Dahooei [61] investigated the safety
efficiency of airlines using a novel hybrid method involving fuzzy-DEA to calculate the
criteria weights and six fuzzy-based MADM methods to rank the alternatives. Chatterjee
et al. [62] performed an evaluation of green supply chain management using the grey
DEMATEL-ARAS model, which was also validated with other MCDM techniques, such as
grey TOPSIS-COPRAS. Kumar et al. [63] integrated AHP with TOPSIS to determine the
cloud service by the most suitable candidate. Roy et al. [64] and Yang et al. [65] proposed
an efficient FAHP-PROMETHEE II and DEMATEL-based ANP-VIKOR hybrid model to
select the best car model and to improve the cloud service application. Zarbakhshnia
et al. [66] developed a third-party reverse logistics provider selection and evaluation
MADM model with risk factors, where fuzzy-SWARA is used to weight the evaluation
criteria and fuzzy-COPRAS is used to rank and select the best logistics providers. Bahrami
et al. [67] applied a new MCDM method involving BWM-ARAS for integrating multisource
geological datasets to delineate highly Cu prospectivity areas in the Abhar area, NW Iran.

Goswami and Mitra [68] selected the best mobile model by applying AHP-ARAS
and AHP-COPRAS decision-making methodology. Kumari and Mishra [69] presented the
COPRAS method based on intuitionistic fuzzy sets for solving a green supplier selection
problem. Ozdogan et al. [70] used FAHP and fuzzy-TOPSIS to prioritize the municipal
services. Raigar et al. [71] selected an appropriate additive manufacturing process from four
available alternatives using a new hybrid MCDM approach, integrating BWM to determine
the criteria weights and PIV to rank the alternatives. Rani et al. [72] proposed a novel
framework based on the COPRAS and SWARA approaches for evaluating and selecting the
desirable sustainable supplier under the hesitant-fuzzy environment. Spyridonidou and
Vagiona [73] used the GIS-based hybrid MCDM approach and Yildirim and Mercangoz [74]
used FAHP and grey ARAS techniques to develop Greek offshore wind farms and evaluate
the logistics performance of OECD countries. Yildizbasi and Unlu [75] made a comparison
among three companies, towards industry 4.0, using FAHP and FTOPSIS. Chodha et al. [76]
presented an entropy-embedded simple MCDM methodology based on TOPSIS to select
an industrial robot for arc welding operations. Raffic et al. [77] conducted an experimental
study on the effect of three different end milling process parameters using CRITIC for
weight evaluation and TOPSIS for multi-objective optimization.

It is clear from the preceding works that, in most cases, old conventional tools, such as
VIKOR, ELECTRE, PROMETHEE, etc., or other complicated MCDM systems, are frequently
used to determine the best robot alternatives. Traditional MCDM tools are typically time-
consuming, intricate, and involve complex mathematical calculations. As a result, an easy
and simple integrated MCDM system is urgently required that can produce fair and
reasonable results in a short computation period. Despite the fact that TOPSIS, COPRAS,
and ARAS are one of the widely-used popular MCDM tools in the field of decision-
making, but there are very few documented research works recorded on the robot selection
problem that utilizes these three methods together for the assessment of robot alternatives.
Additionally, the hybrid MCDM concept is still uncommon among the researchers and
remains mostly unexplored. Few hybrid models have been developed in recent years,
but those models are either very difficult to understand or not at all user-friendly. Even
researchers have never attempted before to combine those simple and widely-used MCDM
tools, such as TOPSIS, COPRAS, and ARAS. Moreover, subjective weighting tools, such
as AHP, BWM, etc., are mostly used to estimate the criteria weights that can lead to
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biased results, as well as inconsistencies. It is evident from the literature that CRITIC and
other objective weighting tools are rarely used in the decision-making fields to evaluate
the parametric weightages. As a consequence, the authors of this paper chose TOPSIS,
COPRAS, and ARAS due to their significant advantages and initiates, to develop an easy
and systematic CRITIC, integrating two hybrid systems, TOPSIS-ARAS and COPRAS-
ARAS, to execute this robot selection issue, in order to produce unbiased and independent
output results.

Novelty of the Present Article

From the literature discussed above, TOPSIS, COPRAS, and ARAS are underutilized
MCDM methods in regard to exploring industrial robot selection problems, and ARAS,
as a newly developed method, should be exploited more in the field of decision mak-
ing. Previous researchers have conducted extensive research on robot selection using
various MCDM approaches, primarily complex and time-consuming old traditional tools,
such as PROMETHEE, VIKOR, ELECTRE, etc., but still, there is a need to use an easy, clear,
and systematic mathematical approach to guide the decision maker in making effective
industrial robot selection decisions for a specific engineering application. Until now, these
MCDM methods had few applications in the engineering domain, particularly in robot
selection fields. As a result, there is a huge opportunity to utilize these three MCDM tools
and demonstrate their effectiveness in solving robot selection decision-making problems.
Moreover, none of the researchers have ever tried before to merge TOPSIS, COPRAS,
and ARAS, to develop robust hybrid MCDM systems. Hence, this article serves two pur-
poses. One is to establish two new hybrid models by combining ARAS with TOPSIS and
COPRAS, due to their distinct advantages over other MCDM methods, and the other is
to solve a robot selection problem utilizing these two hybrid models, along with eight
other solo MCDM methods, such as COPRAS, ARAS, WSM, WPM, WASPAS, MOORA,
MULTIMOORA, and TOPSIS, by integrating CRITIC objective weights, to validate the
output results. To remove the ambiguity, vagueness, and uncertainty associated with the
previous analysis, this robot selection problem was again re-evaluated using different
MCDM approaches, while determining the criteria weights using the CRITIC weight es-
timation tool. Although, this particular decision-making problem was already solved by
several researchers [1,4] in the past, by implementing several MCDM techniques, the au-
thors of this paper found all of those analyses as inconsistent and unstable, compelling the
authors to again revisit and reconsider the same problem in this article. This research work
intended to fill the existing loopholes and to fix the errors in the results associated with the
previous experiments conducted by Mondal and Chakraborty [4] and Karande et al. [1].
Furthermore, all previous studies used the subjective weighted approach, AHP, to assess
the relative importance of the criterion, which can lead to biased findings. As mentioned
earlier, the AHP method deals with the pair-wise comparison matrix, which is entirely
dependent on the DM’s opinion, and some inconsistency is associated with the weights
produced by the AHP method. On the other hand, the objective weighted method, such
as CRITIC, is independent of the DM’s opinion, assessment, and judgment and, therefore,
yields more reliable, impartial, and unbiased criteria weights than AHP. Additionally, the
CRITIC method is simple and takes less computation time than AHP, because it does not
require a separate pair-wise comparison matrix to calculate the criteria weights. Therefore,
CRITIC is approved in this article to evaluate the criteria weights, while the two newly de-
veloped hybrid models are used to propose the preference ranking order of the alternatives.
Overall, the uniqueness of this research paper is that it solves an industrial robot selection
issue for the first time, using two newly developed hybrid MCDM tools that combines
TOPSIS, COPRAS, and ARAS MCDM methods, while simultaneously filling the research
gaps and removing inconsistencies existing in the previous works.
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3. Materials and Methods

The present robot selection problem is adopted from the article presented by Mondal
and Chakraborty [4], where they used four models of data envelopment analysis (DEA)
i.e., Banker, Charnes and Cooper (BCC), Charnes, Cooper and Rhodes (CCR), cone ratio,
and additive models to sort out the most appropriate alternatives by eliminating the
unsuitable ones and employing the overall weighted efficiency ranking method to propose
the best robot among 12 available alternatives, while evaluating the parameter weightages
using the analytic hierarchy process (AHP). The robot selection process was carried out
on the basis of five conflicting criteria, out of which, three are beneficial (maximum)
criteria, i.e., handling coefficient (HC), load capacity (LC), and velocity (V), while the other
two, i.e., repeatability (R) and cost (C), are the non-beneficial (minimum) criteria. Later,
Karande et al. [1] again reconsidered the same MCDM problem to examine the ranking
performance of six popular MCDM tools utilizing the same AHP weights. The same robot
selection problem is again readopted in this present article and two new hybrid MCDM
models combining TOPSIS-ARAS and COPRAS-ARAS are developed to rank the robot
alternatives, while the criteria weights are re-evaluated using the CRITIC weight estimation
tool. To prove the ability of these two combined models, the outcome results from these
hybrid techniques are also cross-verified using eight others solo MCDM tools and validated
through sensitivity analysis. The steps of the applied MCDM tools and the mathematical
calculations are clearly explained in the upcoming sub-sections. The flowchart model
shown in Figure 1 represents the overall structure of the complete analysis.

3.1. CRiteria Importance through Inter Criteria Correlation (CRITIC)

Diakoulaki et al. [24] invented the CRITIC method in 1995. It is a straightforward
approach based on determining the objective weights without the involvement and inter-
vention of any decision maker [24]. The aim of this method is to determine the objective
weights of relative importance in MCDM problems [24]. The calculated weights take into
account both contrast intensity and conflict, which are both present in the structure of
the decision problem [24]. The developed method is based on an analytical examination
of the evaluation matrix in order to extract all information contained in the evaluation
criteria [24]. The procedure of the CRITIC method and the calculation of weightages are
depicted by the following steps.

Step 1: formation of an evaluation (decision) matrix (mi × nj) having ‘m’ alternatives
and ‘n’ criteria, according to Equation (1). The evaluation matrix as proposed by Mondal
and Chakraborty [4] is shown in Table 1. ‘eij’ is the performance score of the jth criteria and
ith alternative.

E (mi × nj) =


e11
e21
e31
. . .
em1

e12
e22
e32
. . .
em2

e13
e23
e33
. . .
em3

. . .

. . .

. . .

. . .

. . .

e1n
e2n
e3n
. . .

emn

 (1)

where, i = 1, 2 . . . ., m; j = 1, 2 . . . ., n
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Figure 1. Flowchart model of the whole robot selection MCDM analysis. (Source: authors’ own composition. Created by
AutoCAD 2007).
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Table 1. Evaluation matrix.

Nature of Criteria Min Min Max Max Max

Alternatives C in US$ R in mm HC LC in kg V in m/s

Robot 1 100,000 0.58824 0.995 85 3
Robot 2 75,000 0.4 0.933 45 3.6
Robot 3 56,250 0.2 0.875 18 2.2
Robot 4 28,125 0.58824 0.409 16 1.5
Robot 5 46,875 0.2 0.818 20 1.1
Robot 6 78,125 0.4 0.664 60 1.35
Robot 7 87,500 0.5 0.88 90 1.4
Robot 8 56,250 0.125 0.633 10 2.5
Robot 9 56,250 0.25 0.653 25 2.5

Robot 10 87,500 0.5 0.747 100 2.5
Robot 11 68,750 0.25 0.88 100 1.5
Robot 12 43,750 0.2 0.633 70 3

Best 28,125 0.125 0.995 100 3.6
Worst 100,000 0.58824 0.409 10 1.1

(Source: Mondal and Chakraborty, 2013; Karande et al., 2016).

Step 2: normalize the decision matrix in Table 1 using Equation (2). This transforma-
tion is based on the ideal point concept [24]. As a result, the values ‘Nij

(c)’ below expresses
how close the alternative ‘i’ is to the ideal value ebest

ij , which represents the best performance
and far from the anti-ideal value eworst

ij , which represents the worst performance in criterion

‘j’ [24]. At least one of the considered alternatives achieves both ebest
ij and eworst

ij [24]. Table 2
shows the normalized decision matrix.

Nij(c) =
eij − eworst

ij

ebest
ij − eworst

ij
(2)

where, i = 1, 2 . . . ., m; j = 1, 2 . . . ., n

Table 2. Normalized matrix for CRITIC method.

Alternatives C R HC LC V

Robot 1 0 0 1 0.83333 0.76
Robot 2 0.34783 0.40635 0.89420 0.38889 1
Robot 3 0.60870 0.83810 0.79522 0.08889 0.44
Robot 4 1 0 0 0.06667 0.16
Robot 5 0.73913 0.83810 0.69795 0.11111 0
Robot 6 0.30435 0.40635 0.43515 0.55556 0.1
Robot 7 0.17391 0.19048 0.80375 0.88889 0.12
Robot 8 0.60870 1 0.38225 0 0.56
Robot 9 0.60870 0.73016 0.41638 0.16667 0.56

Robot 10 0.17391 0.19048 0.57679 1 0.56
Robot 11 0.43478 0.73016 0.80375 1 0.16
Robot 12 0.78261 0.83810 0.38225 0.66667 0.76

Standard deviation (σj) 0.29340 0.35747 0.28501 0.38966 0.32039
(Source: authors’ own composition).

Step 3: determine the standard deviation (σj) of each criterion as shown in Table 2,
which quantifies the contrast intensity of the corresponding criterion [24]. As a result,
the standard deviation of Nj

(c) is a measure of the importance of that criterion in the
decision-making process [24].

Step 4: a symmetric matrix with dimensions (nj × nk) and a generic element ‘rjk’ is
built [24], according to Equation (3). The linear correlation coefficient between the vectors
‘Nj

(c)’ and ‘Nk
(c)’ is represented by the ‘rjk’ element [24]. It can be seen that the lower
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the value ‘rjk’, the more discordant the scores of the alternatives in criteria ‘j’ and ‘k’ [24].
Table 3 shows the (5 × 5) symmetric matrix. Here, n = 5.

S (nj × nk) =


r11
r21
. . .
rn1

r12
r22
. . .
rn2

. . .

. . .

. . .

. . .

r1n
r2n
. . .
rnn

 (3)

where, j = 1, 2 . . . ., n; k = 1, 2 . . . ., n

Table 3. Symmetric matrix.

C R HC LC V

C 1 0.44638 −0.70167 −0.70385 −0.21830
R 0.44638 1 −0.04155 −0.41928 0.00421

HC −0.70167 −0.04155 1 0.43892 0.22969
LC −0.70385 −0.41928 0.43892 1 0.04729
V −0.21830 0.00421 0.22969 0.04729 1

(Source: authors’ own composition).

Step 5: the summation in Equation (4) represents a measure of the conflict (Mj,k)
caused by the jth criterion in relation to the decision situation defined by the remaining
criteria [24]. The measure of conflict is determined using Equation (4) and is shown in
Table 4.

Mj,k = ∑n
k,j=1

(
1− rjk

)
(4)

where, j = 1, 2 . . . ., n; k = 1, 2 . . . ., n

Table 4. Measure of the conflict.

C R HC LC V Measure of
the Conflict

C 0 0.55362 1.70167 1.70385 1.21830 5.17744
R 0.55362 0 1.04155 1.41928 0.99579 4.01024

HC 1.70167 1.04155 0 0.56108 0.77031 4.07460
LC 1.70385 1.41928 0.56108 0 0.95271 4.63691
V 1.21830 0.99579 0.77031 0.95271 0 3.93710

Measure of
the conflict 5.17744 4.01024 4.07460 4.63691 3.93710

(Source: authors’ own composition).

Step 6: the quantity of information (Cj) emitted by the jth criterion can be calculated
by composing the measures that quantify the two concepts using the multiplicative ag-
gregation formula shown in Equation (5) [24]. The data in MCDM problems are related
to both the contrast intensity and the conflict of the decision criteria [24]. The amount of
information (Cj) by each criterion is portrayed in Table 5.

Cj = σj ×∑n
k,j=1

(
1− rjk

)
(5)

where, j = 1, 2 . . . ., n; k = 1, 2 . . . ., n.
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Table 5. Final criteria weightages.

Criteria Standard
Deviation (σj)

Measure of
the Conflict Cj Weights (wj) %

C 0.29340 5.17744 1.51906 0.21150 21.150
R 0.35747 4.01024 1.43356 0.19960 19.960

HC 0.28501 4.07460 1.16130 0.16169 16.169
LC 0.38966 4.63691 1.80680 0.25157 25.157
V 0.32039 3.93710 1.26142 0.17563 17.563

Sum 7.18213 100
(Source: authors’ own composition).

Step 7: finally, according to Equation (6), objective weights (wj) are computed by
normalizing these ‘Cj’ values to unity [24]. The greater the value of ‘Cj’, the more infor-
mation the corresponding criterion transmits and the greater its relative importance in
the decision-making process [24]. The final objective criteria weightages are displayed in
Table 5.

wj =
Cj

∑n
j=1 Cj

(6)

where, j = 1, 2 . . . ., n

3.2. TOPSIS-ARAS Hybrid MCDM Model

The traditional TOPSIS method was first developed by Hwang and Yoon [11] in 1981,
which was further extended by Yoon [12] in 1987 and Hwang et al. [13] in 1993. On the
other hand, ARAS is a new MCDM method developed by Zavadskas and Turskis [9] in
2010. TOPSIS method [11–13] is based on the principle that the best alternative should
have the longest distance from the negative ideal solution (NIS) and shortest distance from
the positive ideal solution (PIS) [78], whereas the ARAS method measures the degree of
utility of each alternative from the ideal best choice [9]. These two concepts are combined
to form a new hybrid TOPSIS-ARAS model. The TOPSIS-ARAS hybrid methodology is
illustrated step-wise as follows.

Step 1: this method begins with the creation of an evaluation (decision) matrix
(mi × nj), already depicted in Table 1. Before proceeding with the normalization pro-
cess, an ideal robot alternative ‘Robot 0’ is formed (Table 6) by taking the best values
of each criterion into account, i.e., lower (minimum) values for the non-beneficial (cost)
criterion and higher (maximum) values for the beneficial criterion. Table 6 clearly displays
the nature of criteria and ideal alternative ‘Robot 0′.

Step 2: Table 6 is normalized using Equation (7). In this method, vector normalization
is conducted; Table 7 shows the normalized matrix

Nij(ta) =
eij√

∑m
i=1 e2

ij

(7)

where, i = 1, 2 . . . ., m; j = 1, 2 . . . ., n

Table 6. Customized evaluation matrix for TOPSIS-ARAS and COPRAS-ARAS hybrid models.

Nature of Criteria Min Min Max Max Max

Alternatives C in US$ R in mm HC LC in kg V in m/s

Robot 0 28,125 0.125 0.995 100 3.6
Robot 1 100,000 0.58824 0.995 85 3
Robot 2 75,000 0.4 0.933 45 3.6
Robot 3 56,250 0.2 0.875 18 2.2
Robot 4 28,125 0.58824 0.409 16 1.5
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Table 6. Cont.

Nature of Criteria Min Min Max Max Max

Alternatives C in US$ R in mm HC LC in kg V in m/s

Robot 5 46,875 0.2 0.818 20 1.1
Robot 6 78,125 0.4 0.664 60 1.35
Robot 7 87,500 0.5 0.88 90 1.4
Robot 8 56,250 0.125 0.633 10 2.5
Robot 9 56,250 0.25 0.653 25 2.5

Robot 10 87,500 0.5 0.747 100 2.5
Robot 11 68,750 0.25 0.88 100 1.5
Robot 12 43,750 0.2 0.633 70 3

Square sum 56,953,125,000 1.78829 8.22806 57555 77.00250
Square root 238,648.53865 1.33727 2.86846 239.90623 8.77511

Sum 812,500 4.32647 10.115 739 29.75
(Source: Mondal and Chakraborty, 2013; Karande et al., 2016).

Table 7. Normalized matrix for TOPSIS-ARAS hybrid model.

Weights (wj) 0.21150 0.19960 0.16169 0.25157 0.17563

Alternatives C R HC LC V

Robot 0 0.11785 0.09347 0.34688 0.41683 0.41025
Robot 1 0.41903 0.43988 0.34688 0.35431 0.34188
Robot 2 0.31427 0.29912 0.32526 0.18757 0.41025
Robot 3 0.23570 0.14956 0.30504 0.07503 0.25071
Robot 4 0.11785 0.43988 0.14259 0.06669 0.17094
Robot 5 0.19642 0.14956 0.28517 0.08337 0.12535
Robot 6 0.32736 0.29912 0.23148 0.25010 0.15384
Robot 7 0.36665 0.37390 0.30678 0.37515 0.15954
Robot 8 0.23570 0.09347 0.22068 0.04168 0.28490
Robot 9 0.23570 0.18695 0.22765 0.10421 0.28490

Robot 10 0.36665 0.37390 0.26042 0.41683 0.28490
Robot 11 0.28808 0.18695 0.30678 0.41683 0.17094
Robot 12 0.18332 0.14956 0.22068 0.29178 0.34188

(Source: authors’ own composition).

Step 3: now the weighted values (Dij
(ta)) are evaluated using Equation (8) to form the

weighted matrix shown in Table 8.

Dij(ta) = Nij(ta) ×wj (8)

where, i = 1, 2 . . . ., m; j = 1, 2 . . . ., n
‘wj’ is the weight of the jth criteria. ‘Dij

(ta)’ and ‘Nij
(ta)’ are the weighted and the

normalized values of the jth criteria and ith alternatives.
Step 4: now, we calculate the positive mean geometric distance (PIS) between the

best condition and the target alternative using Equation (9); the negative mean geometric
distance (NIS) between the worst condition and the target alternative is determined using
Equation (10). PIS and NIS are denoted by ‘Si

+’ and ‘Si
−’.

Si
+ =

√
∑n

j=1(D
(ta)
ij − Dbj)

2
(9)

Si
− =

√
∑n

j=1(D
(ta)
ij − Dwj)

2
(10)

where, i = 1, 2 . . . ., m; j = 1, 2 . . . ., n. ‘Dbj’ and ‘Dwj’ are the best and worst values of the jth
criteria, respectively, which are clearly indicated in Table 8.
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Table 8. Weighted matrix for TOPSIS-ARAS hybrid model.

Alternatives C R HC LC V

Robot 0 0.02493 0.01866 0.05609 0.10486 0.07205
Robot 1 0.08863 0.08780 0.05609 0.08913 0.06004
Robot 2 0.06647 0.05970 0.05259 0.04719 0.07205
Robot 3 0.04985 0.02985 0.04932 0.01888 0.04403
Robot 4 0.02493 0.08780 0.02306 0.01678 0.03002
Robot 5 0.04154 0.02985 0.04611 0.02097 0.02202
Robot 6 0.06924 0.05970 0.03743 0.06292 0.02702
Robot 7 0.07755 0.07463 0.04960 0.09438 0.02802
Robot 8 0.04985 0.01866 0.03568 0.01049 0.05004
Robot 9 0.04985 0.03731 0.03681 0.02622 0.05004

Robot 10 0.07755 0.07463 0.04211 0.10486 0.05004
Robot 11 0.06093 0.03731 0.04960 0.10486 0.03002
Robot 12 0.03877 0.02985 0.03568 0.07340 0.06004

Best (Dbj) 0.02493 0.01866 0.05609 0.10486 0.07205
Worst (Dwj) 0.08863 0.08780 0.02306 0.01049 0.02202

(Source: authors’ own composition).

Step 5: we determine the relative closeness coefficient (RCCi) of each alternative using
Equation (11). The positive and the negative distances of the alternatives, along with the
closeness coefficient values, are depicted in Table 9.

RCCi =
S−i

S+i + S−i
(11)

where, i = 1, 2 . . . ., m
The value of RCC ranges from 0 ≤ RCCi ≤ 1. If RCCi = 1, then the alternative has the

best condition, and if RCCi = 0, then the alternative has the worst condition.
Step 6: relative closeness coefficient of the ideal alternative will always be equal to

1. Finally, we compute the closeness coefficient distances (CCDi) of each alternative from
the ideal alternative using Equation (12). The smallest the closeness coefficient distance
from the ideal alternative, the better the alternative. Table 9 shows the distances of the 12
alternatives from the ideal robot variant Robot 0.

CCDi = (RCCi
(ideal) − RCCi) (12)

where, i = 1, 2 . . . ., m

Table 9. Closeness coefficient distances of the robot alternatives.

Alternatives S+ S− RCCi CCDi %

Robot 0 0 0.14608 1 = RCCi
(ideal) - -

Robot 1 0.09607 0.09339 0.49293 0.50707 50.707
Robot 2 0.08215 0.07748 0.48537 0.51463 51.463
Robot 3 0.09472 0.07814 0.45206 0.54794 54.794
Robot 4 0.12409 0.06451 0.34205 0.65795 65.795
Robot 5 0.10021 0.07884 0.44033 0.55967 55.967
Robot 6 0.08823 0.06439 0.42190 0.57810 57.810
Robot 7 0.08940 0.08986 0.50127 0.49873 49.873
Robot 8 0.10212 0.08502 0.45431 0.54569 54.569
Robot 9 0.08950 0.07262 0.44793 0.55207 55.207

Robot 10 0.08113 0.10174 0.55635 0.44365 44.365
Robot 11 0.05876 0.11398 0.65983 0.34017 34.017
Robot 12 0.04321 0.10680 0.71195 0.28805 28.805

(Source: authors’ own composition).
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3.3. COPRAS-ARAS Hybrid MCDM Model

The COPRAS method was first implemented by Zavadskas et al. [10] to access life
cycles of the building and it considers the effect of beneficial and non-beneficial criteria
individually to determine the relative significances and quantitative utility of the alterna-
tives [10]. The ARAS method, on the other hand, measures the degree of utility of each
alternative relative to the ideal best choice [9] and was first developed in 2010 by Zavadskas
and Turskis [9] to evaluate the microclimates in office rooms. The quantitative utility and
the degree of utility concept of the COPRAS and ARAS technique is united in this hybrid
model to reflect the advantages of the two individual MCDM tools. The COPRAS-ARAS
hybrid methodology is illustrated step-wise as follows.

Step 1: this method starts with an evaluation matrix (created in Table 6), followed by
linear normalization using Equation (13). The normalized matrix is shown in Table 10.

Nij(ca) =
eij

∑m
i=1 eij

(13)

where, i = 1, 2 . . . ., m; j = 1, 2 . . . ., n
Step 2: the weighted values (Dij

(ca)) and the relative significances (Ri) of each alterna-
tive are evaluated using Equations (14) and (15), respectively, are and shown in Table 11.

Dij(ca) = Nij(ca) ×wj (14)

Ri = S +i +
S−min ∑m

i=1 S−i

S−i ∑m
i=1

(
S−min

S−i

)= S +i +
∑m

i=1 S−i

S−i ∑m
i=1

(
1

S−i

) (15)

where, i = 1, 2 . . . ., m; j = 1, 2 . . . ., n and ‘Ri’ is the relative significances of the ith
alternative. In Equation (15), ‘S+i’ and ‘S−i’ represents the weighted value summation of
the maximizing and minimizing criteria of the ith alternative, which can be determined
using Equations (16) and (17), respectively. ‘S−min’ is the minimum among the S−i values.

S+i = ∑n
j=1D(ca)

+ij → ∑m
i=1S+i = ∑m

i=1 ∑n
j=1D(ca)

+ij (16)

S−i = ∑n
j=1D(ca)

−ij → ∑m
i=1S−i = ∑m

i=1 ∑n
j=1D(ca)

−ij (17)

where, i = 1, 2 . . . ., m; j = 1, 2 . . . ., n. ‘D+ij
(ca)’ and ‘D−ij

(ca)’ are the weighted values of the
maximizing and minimizing criteria, respectively.

Table 10. Normalized matrix for the COPRAS-ARAS hybrid model.

Weights 0.21150 0.19960 0.16169 0.25157 0.17563

Alternatives C R HC LC V

Robot 0 0.03462 0.02889 0.09837 0.13532 0.12101
Robot 1 0.12308 0.13596 0.09837 0.11502 0.10084
Robot 2 0.09231 0.09245 0.09224 0.06089 0.12101
Robot 3 0.06923 0.04623 0.08651 0.02436 0.07395
Robot 4 0.03462 0.13596 0.04043 0.02165 0.05042
Robot 5 0.05769 0.04623 0.08087 0.02706 0.03697
Robot 6 0.09615 0.09245 0.06565 0.08119 0.04538
Robot 7 0.10769 0.11557 0.08700 0.12179 0.04706
Robot 8 0.06923 0.02889 0.06258 0.01353 0.08403
Robot 9 0.06923 0.05778 0.06456 0.03383 0.08403

Robot 10 0.10769 0.11557 0.07385 0.13532 0.08403
Robot 11 0.08462 0.05778 0.08700 0.13532 0.05042
Robot 12 0.05385 0.04623 0.06258 0.09472 0.10084

(Source: authors’ own composition).
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Step 3: finally, quantitative utility degree (QUi) of each alternative is determined using
Equation (18), and is displayed in Table 11.

QUi =
Ri

R0
(18)

where, i = 1, 2 . . . ., m. ‘R0′ is the relative significance of the ideal robot alternative (Robot
0) indicated in Table 11.

Table 11. Quantitative utility degree of the robot alternatives.

Alternatives C R HC LC V Ri QUi %

Robot 0 0.00732 0.00577 0.01591 0.03404 0.02125 0.13688 = R0 - -
Robot 1 0.02603 0.02714 0.01591 0.02894 0.01771 0.07872 0.57509 57.509
Robot 2 0.01952 0.01845 0.01491 0.01532 0.02125 0.07412 0.54150 54.150
Robot 3 0.01464 0.00923 0.01399 0.00613 0.01299 0.06912 0.50494 50.494
Robot 4 0.00732 0.02714 0.00654 0.00545 0.00886 0.04579 0.33450 33.450
Robot 5 0.01220 0.00923 0.01308 0.00681 0.00649 0.06650 0.48578 48.578
Robot 6 0.02034 0.01845 0.01061 0.02043 0.00797 0.06117 0.44688 44.688
Robot 7 0.02278 0.02307 0.01407 0.03064 0.00827 0.07172 0.52396 52.396
Robot 8 0.01464 0.00577 0.01012 0.00340 0.01476 0.07040 0.51433 51.433
Robot 9 0.01464 0.01153 0.01044 0.00851 0.01476 0.06655 0.48618 48.618
Robot 10 0.02278 0.02307 0.01194 0.03404 0.01476 0.07949 0.58074 58.074
Robot 11 0.01790 0.01153 0.01407 0.03404 0.00886 0.08617 0.62955 62.955
Robot 12 0.01139 0.00923 0.01012 0.02383 0.01771 0.09336 0.68203 68.203

(Source: authors’ own composition).

4. Results and Validation

The closeness coefficient distances (CCDi) and the quantitative utility (QUi) degree of
the alternatives are determined in Tables 9 and 11, respectively. The alternative rankings
are proposed based on the values shown in Table 12. The alternative with the lowest CCDi
and highest QUi values is termed as the best robot choice, while the alternative with the
highest CCDi and lowest QUi is termed as the worst one. Table 12 shows the alternative
rankings by these two hybrid systems.

Table 12. Ranking of robots by TOPSIS-ARAS and COPRAS-ARAS hybrid models.

TOPSIS-ARAS Hybrid Model COPRAS-ARAS Hybrid Model

Alternatives CCDi % Rank Alternatives QUi % Rank

Robot 1 0.50707 50.707 5 Robot 1 0.57509 57.509 4
Robot 2 0.51463 51.463 6 Robot 2 0.54150 54.150 5
Robot 3 0.54794 54.794 8 Robot 3 0.50494 50.494 8
Robot 4 0.65795 65.795 12 Robot 4 0.33450 33.450 12
Robot 5 0.55967 55.967 10 Robot 5 0.48578 48.578 10
Robot 6 0.57810 57.810 11 Robot 6 0.44688 44.688 11
Robot 7 0.49873 49.873 4 Robot 7 0.52396 52.396 6
Robot 8 0.54569 54.569 7 Robot 8 0.51433 51.433 7
Robot 9 0.55207 55.207 9 Robot 9 0.48618 48.618 9

Robot 10 0.44365 44.365 3 Robot 10 0.58074 58.074 3
Robot 11 0.34017 34.017 2 Robot 11 0.62955 62.955 2
Robot 12 0.28805 28.805 1 Robot 12 0.68203 68.203 1

(Source: authors’ own composition).

These proposed rankings are now validated using the same CRITIC generated objec-
tive criteria weights by using eight other solo MCDM tools, namely, TOPSIS, COPRAS,
ARAS, WSM, WPM, WASPAS, MOORA, and MULTIMOORA, which are listed in the
following sub-sections.
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4.1. Validation Using TOPSIS Method

The same robot selection MCDM problem is validated by the TOPSIS method using
the same criterion weights. The steps of the TOPSIS method are nearly identical to the
TOPSIS-ARAS hybrid model, with two exceptions. The traditional TOPSIS method does
not require the ideal alternative (Robot 0) and the computation of closeness coefficient
distances (CCDi). In this case, an alternative ranking is proposed based on the relative
closeness coefficient (RCCi

(topsis)) values shown in Table 13. The preference ranking order
of the robot alternatives are made according to the decreasing closeness coefficient values
shown in Table 13. Table 13 shows the calculated PIS, NIS, coefficient values, and the
ranking of the alternatives by the TOPSIS method.

Table 13. Ranking of robots by TOPSIS method.

Alternatives PIS NIS RCCi
(topsis) Rank

Robot 1 0.09701 0.10230 0.51327 5
Robot 2 0.08654 0.08323 0.49024 6
Robot 3 0.10345 0.07978 0.43541 8
Robot 4 0.13258 0.06511 0.32937 12
Robot 5 0.10976 0.07983 0.42107 11
Robot 6 0.09303 0.06906 0.42607 10
Robot 7 0.09209 0.09829 0.51629 4
Robot 8 0.11165 0.08644 0.43638 7
Robot 9 0.09733 0.07453 0.43367 9
Robot 10 0.08230 0.11152 0.57537 3
Robot 11 0.06195 0.12250 0.66415 2
Robot 12 0.04653 0.11233 0.70709 1

(Source: authors’ own composition).

4.2. Validation Using COPRAS Method

The steps of the COPRAS method are similar to those of the COPRAS-ARAS hybrid
model. Begin with the Table 1 decision matrix, in this method, the ideal alternative (Robot 0)
is not required. Alternative ranking is proposed based on the quantitative utility (Ui

(copras))
values evaluated using Equation (19) and shown in Table 14.

Ui(copras) =

[
Ri

Rmax

]
× 100% (19)

where, i = 1, 2 . . . ., m
‘Rmax’ is the maximum relative significance value of the alternatives. Relative signifi-

cances and the quantitative utility values of the alternatives are determined and shown in
Table 14 along with the alternative ranking.

Table 14. Ranking of robots by COPRAS and ARAS method.

COPRAS ARAS

Alternatives Ri
copras Ui

copras % Rank Alternatives Vi Ui
aras Rank

Robot 1 0.09050 0.83369 83.369 4 Robot 0 0.13332 = V0 - -
Robot 2 0.08538 0.78652 78.652 5 Robot 1 0.07789 0.58421 4
Robot 3 0.08022 0.73899 73.899 8 Robot 2 0.07284 0.54635 6
Robot 4 0.05338 0.49167 49.167 12 Robot 3 0.06805 0.51039 8
Robot 5 0.07750 0.71394 71.394 9 Robot 4 0.05849 0.43876 12
Robot 6 0.07084 0.65256 65.256 11 Robot 5 0.06443 0.48325 10
Robot 7 0.08276 0.76237 76.237 6 Robot 6 0.05990 0.44927 11
Robot 8 0.08203 0.75564 75.564 7 Robot 7 0.07072 0.53044 7
Robot 9 0.07729 0.71201 71.201 10 Robot 8 0.07487 0.56162 5
Robot 10 0.09173 0.84497 84.497 3 Robot 9 0.06477 0.48581 9
Robot 11 0.09980 0.91931 91.931 2 Robot 10 0.07849 0.58873 3
Robot 12 0.10856 1 100 1 Robot 11 0.08520 0.63907 2

Rmax 0.10856 Robot 12 0.09365 0.68260 1

(Source: authors’ own composition).
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4.3. Validation Using ARAS Method

Since the ARAS method is based on the principle of measuring the degree of utility
from the ideal alternative, an ideal alternative (Robot 0) must be considered here, and the
conversion into beneficial criteria, by taking the reciprocal values of the non-beneficial
criteria, is also required before normalization, because the ARAS method cannot handle
maximizing and minimizing criteria separately. As a result, starting with Table 6, a cus-
tomized decision matrix is followed by linear normalization using Equation (13). In this
case, optimality values (Vi) and the degree of utility (Ui

(aras)) of each alternative are calcu-
lated using Equations (20) and (21), respectively. Table 14 shows the alternative ranking
based on the decreasing degree of utility values.

Vi = ∑n
j=1Da

ij (20)

Ui
aras =

Vi

V0
(21)

where, i = 1, 2 . . . ., m; j = 1, 2 . . . ., n. ‘V0′ is the optimality value of the ideal alternative
(Robot 0).

4.4. Validation Using MOORA and MULTIMOORA Method

Brauers and Zavadskas [79] introduced MOORA in 2006, which measures the net
weighted performance (yi) of each alternative. Later, Brauers and Zavadskas [80,81] ex-
tended the MOORA method, with a full multiplicative form, developing a new model
called MULTIMOORA. The initial steps of MOORA and MULTIMOORA are identical to
the TOPSIS method (until the normalization process). Following normalization, the net
weighted performance (yi) for MOORA and the utility values (Ui

multimoora) for MULTI-
MOORA of each alternative are calculated using Equations (22) and (23), and are shown in
Table 15. The ranking of robots by MOORA and MULTIMOORA are provided in Table 15.

yi = ∑
g
j=1wj Nij −∑n

j=g+1wj Nij (22)

Ui
multimoora =

∏
g
j=1N

wj
ij

∏n
j=g+1N

wj
ij

(23)

where, i = 1, 2 . . . ., m; j = 1, 2 . . . ., n. ‘g’ and ‘(n-g)’ are the number of beneficial and
non-beneficial criteria. The subtraction (second portion) and the denominator part of
Equations (22) and (23) represent the non-beneficial criteria, whereas, the first portion and
the numerator part of Equations (22) and (23) represent the beneficial criteria.

Table 15. Ranking of robots by MOORA and MULTIMOORA method.

MOORA MULTIMOORA

Alternatives yi Rank Alternatives Ui
multimoora Rank

Robot 1 0.04626 5 Robot 1 0.79880 4
Robot 2 0.06009 4 Robot 2 0.79836 5
Robot 3 0.04145 6 Robot 3 0.70231 8
Robot 4 −0.03733 12 Robot 4 0.52626 12
Robot 5 0.02456 10 Robot 5 0.65643 10
Robot 6 0.00906 11 Robot 6 0.67793 9
Robot 7 0.03439 9 Robot 7 0.73838 6
Robot 8 0.03551 7 Robot 8 0.64576 11
Robot 9 0.03527 8 Robot 9 0.71167 7

Robot 10 0.06207 3 Robot 10 0.81755 3
Robot 11 0.10233 2 Robot 11 0.92745 2
Robot 12 0.11561 1 Robot 12 1.04453 1

(Source: authors’ own composition).
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4.5. Validation Using WSM, WPM, and WASPAS Method

WSM is the most basic and widely-used MCDM method. WSM uses Equation (26)
to calculate the weighted sum (WSi) of the alternatives, as shown in Table 16. In this
method, the decision matrix shown in Table 1 is normalized using Equations (24) and (25),
depending on the nature of the criteria.

For beneficial criteria, Nij(w) =
eij

emax
j

(24)

For non− beneficial criteria, Nij(w) =
emin

j

eij
(25)

WSi = ∑n
j=1(N

(w)
ij ×wj ) (26)

where, i = 1, 2 . . . ., m; j = 1, 2 . . . ., n. ‘ej
max’ and ‘ej

min’ are the maximum and minimum
values of the jth criteria. ‘wj’ are the criteria weightages.

In the WPM method, the weighted product (WPi) of the alternatives are determined
using Equation (27) and presented in Table 16.

WPi = ∏n
j=1

(
N(w)

ij

)wj
(27)

where, i = 1, 2 . . . ., m; j = 1, 2 . . . ., n
WASPAS is a combination of WSM and WPM. In this method, the weighted sum and

weighted product values are combined using Equation (28) to determine a joint generalized
criterion (Ji) of the alternatives, as shown in Table 16.

Ji = λWSi + (1 − λ)WPi (28)

where, i = 1, 2 . . . ., m; j = 1, 2 . . . ., n. The value of ‘λ’ ranges from 0 ≤ λ ≤ 1. When λ = 0,
the first part of Equation (28) was eliminated and took the form of WPM, and when λ = 1, it
took the form of WSM, as the second part of Equation (28) was eliminated. In this present
analysis, λ = 0.5 is used to give equal importance to both WSM and WPM. The ranking of
robots by these three methods are proposed in Table 16.

Table 16. Ranking of robots by WSM, WPM, and WASPAS method.

WSM WPM WASPAS

Alternatives WSi Rank Alternatives WPi Rank Alternatives Ji Rank

Robot 1 0.62379 3 Robot 1 0.52187 4 Robot 1 0.57283 4
Robot 2 0.58215 5 Robot 2 0.52158 5 Robot 2 0.55186 5
Robot 3 0.52531 8 Robot 3 0.45883 8 Robot 3 0.49207 7
Robot 4 0.43382 12 Robot 4 0.34381 12 Robot 4 0.38881 12
Robot 5 0.48856 10 Robot 5 0.42885 10 Robot 5 0.45871 10
Robot 6 0.46322 11 Robot 6 0.44290 9 Robot 6 0.45306 11
Robot 7 0.55560 6 Robot 7 0.48239 6 Robot 7 0.51900 6
Robot 8 0.55534 7 Robot 8 0.42188 11 Robot 8 0.48861 8
Robot 9 0.49653 9 Robot 9 0.46494 7 Robot 9 0.48073 9

Robot 10 0.61281 4 Robot 10 0.53411 3 Robot 10 0.57346 3
Robot 11 0.65408 2 Robot 11 0.60591 2 Robot 11 0.63000 2
Robot 12 0.68604 1 Robot 12 0.68240 1 Robot 12 0.68422 1

(Source: authors’ own composition).

From the rankings obtained from different applied MCDM methods presented in
Tables 12–16, it can be observed that all of the techniques suggest robot 12 and robot 4
as the best and worst choices, respectively. As can be observed from Table 17, even the
first three positions are same for all applied techniques, except WSM. Although there
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are some ranking variations in the middle-order alternatives, but the outcomes from this
analysis are sufficiently consistent enough to provide the exact same best and worst results
in all cases. Table 18 also shows that the Spearman rank correlation coefficient (SCC) is
greater than 0.8 in all cases, implying that the current proposed rankings have a strong rank
correlation with each other. Furthermore, all of the applied MCDM approaches have SCC
greater than 0.9, with the final ranking demonstrating their effectiveness in this ongoing
decision-making investigation. Table 17 compares the current rankings to the previous
researcher results, and the final ranking of robots is also proposed in Table 17 using the
Copeland method.

Table 17. Ranking comparisons among different MCDM methods.

Presents Rankings

Alternatives TOPSIS-
ARAS COPRAS-ARAS TOPSISCOPRAS ARAS MOORA

(Ratio System)
MULTI
MOORA WSM WPM WASPAS

Final Ranking
by Copeland

Method

Robot 1 5 4 5 4 4 5 4 3 4 4 4
Robot 2 6 5 6 5 6 4 5 5 5 5 5
Robot 3 8 8 8 8 8 6 8 8 8 7 8
Robot 4 12 12 12 12 12 12 12 12 12 12 12
Robot 5 10 10 11 9 10 10 10 10 10 10 10
Robot 6 11 11 10 11 11 11 9 11 9 11 11
Robot 7 4 6 4 6 7 9 6 6 6 6 6
Robot 8 7 7 7 7 5 7 11 7 11 8 7
Robot 9 9 9 9 10 9 8 7 9 7 9 9
Robot 10 3 3 3 3 3 3 3 4 3 3 3
Robot 11 2 2 2 2 2 2 2 2 2 2 2
Robot 12 1 1 1 1 1 1 1 1 1 1 1

Previous proposed rankings

References Alternatives WSM WPM WASPAS
MOORA

MULTIMOORA
Ratio system Reference

point

Karande
et al.

(2016) [1]

Robot 1 6 9 7 9 11 4
Robot 2 4 5 5 5 7 3
Robot 3 5 4 4 4 2 6
Robot 4 12 12 12 12 11 12
Robot 5 9 8 9 7 2 10
Robot 6 11 11 11 11 7 11
Robot 7 10 10 10 10 9 8
Robot 8 1 2 2 1 1 9
Robot 9 8 6 6 6 5 7
Robot 10 7 7 8 8 9 5
Robot 11 3 3 3 3 5 2
Robot 12 2 1 1 2 2 1

(Source: Karande et al., 2016; Authors’ own composition).

Table 18. Spearman rank correlation coefficient among the present proposed rankings.

COPRAS-ARAS TOPSIS-
ARAS COPRAS ARAS TOPSIS MOORA MULTI

MOORA WSM WPM WASPAS Final
Rank

COPRAS-ARAS - 0.97902 0.99301 0.97902 0.97203 0.94406 0.91608 0.99301 0.91608 0.99301 1

TOPSIS-ARAS - 0.97203 0.95105 0.99301 0.88112 0.89510 0.96503 0.89510 0.97203 0.97902

COPRAS - 0.97203 0.95804 0.93007 0.89510 0.98601 0.89510 0.98601 0.99301

ARAS - 0.94406 0.93706 0.83916 0.97203 0.83916 0.95804 0.97902

TOPSIS - 0.87413 0.90210 0.95804 0.90210 0.96503 0.97203

MOORA - 0.87413 0.93007 0.87413 0.95105 0.94406

MULTI
MOORA - 0.90909 1 0.93706 0.91608

WSM - 0.90909 0.98601 0.99301

WPM - 0.93706 0.91608

WASPAS - 0.99301

Final rank -

(Source: authors’ own composition).
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From Table 17, it can be observed that the previous rankings proposed by Karande
et al. [1] are inconsistent, as the best robot choices are dissimilar for different methods.
Karande et al. [1] found robot 12 to be the best alternative by WPM, WASPAS, and MUL-
TIMOORA, while WSM and MOORA suggested that robot 8 is the best choice. Hence,
there is still some confusion regarding the best robot alternative between robot 8 and
robot 12 from the previous outcomes, and as a result, Karande et al. [1] completely fail to
achieve the primary goal of selecting the best robot among the 12 available alternatives.
Similarly, using a two-phase combined approach of DEA and a weighted overall efficiency
ranking method, Mondal and Chakraborty [4] proposed robot 12 as the best alternative.
Although the decision by Mondal and Chakraborty [4] is accurate and matches with the
present analysis outcomes, they failed to suggest the worst robot alternative. Mondal and
Chakraborty [4] proposed a partial ranking order of the robot alternatives for the first three
positions only, i.e., first, second, and third. In any decision-making analysis, suggesting the
worst option is just as equally important as proposing the best one. Therefore, the analysis
carried out by Mondal and Chakraborty [4] is incomplete and inadequate. On the other
hand, the current study proposes a complete preference ranking order of the alternatives.
The current rankings demonstrate its stability and consistency, as all of the applied methods
suggest that robot 12 is the best choice followed by robot 11, and robot 4 is the worst among
the 12 alternatives. As a result, there is no doubt and confusion about which robots are the
best and worst choices, like in the previous two cases. Even the rankings from the two new
hybrid models show very good/strong rank correlation with the other MCDM methods,
as revealed in Table 18, demonstrating their good decision-making abilities and consistency
in comparison to other techniques. The final ranking of the robots, according to the mode
of preference using the Copeland rule can be proposed as follows.

Robot 12 > robot 11 > robot 10 > robot 1 > robot 2 > robot 7 > robot 8 > robot 3 > robot
9 > robot 5 > robot 6 > robot 4.

5. Sensitivity Analysis

Sensitivity analysis is a study that demonstrates the effects of variations in input data
produced by the MCDM models, and determines the intensity of the model [1]. According
to Ustinovichius and Simanaviciene [82], sensitivity analysis was described as “a study
of how uncertainty in the model output can be allocated on the model input to various
sources of uncertainty”. It is therefore an effective tool to assess the robustness of the
results achieved from an MCDM model in the presence of vagueness and uncertainty [1].
The sensitivity analysis thus allows (a) to verify the robustness of the decision-making
model results; (b) to recognize the most unpredictable input parameters that trigger major
performance variances on the output; and (c) to figure out the range of input parameter
values for which the model displays a stable output [1,83]. Zavadskas et al. [84] stated that
the outputs generated in an MCDM method are influenced by two input parameters, i.e.,
criteria weights and performance data. As a consequence, sensitivity analysis is carried out
to study the impact of variations in criteria weights on the final alternative rankings [1].
It allows decision makers to analyze the potential of MCDM techniques in ostensible
performance trading, fix ambiguity in selection issues, and identify the least sensitive
solution [1]. Single dimension weight sensitivity analysis is therefore conducted in this
paper to examine the impact of differing criteria weights on the final rankings of the
alternatives as obtained using the applied MCDM models [1].

In this method, weight is varied within a feasible range for the most relevant criterion,
and the rest of the parameter weights are modified equally to maintain the additive weight

restriction,
n
∑

j=1
wj = 1 [1]. Since the difference in weight for the most relevant criterion

is evenly distributed among the remaining criteria, it is often called non-proportional
sensitivity analysis [1]. Typically, a criterion with the highest weight means that it has
the greatest effect on the alternatives rating, so it can be regarded as the most relevant
criterion [1]. Since this approach is based on the principle of additivity of weights, and
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since the weights of the criteria cannot be negative, the maximum possible weight of the
chosen criterion is thus restricted [1]. Therefore, the potential range within which the
weight of the chosen criterion can be varied needs to be established [1]. In this case, it is
possible to minimize the weight of the most important criterion to 0 and raise it to w∗j [1].
Using Equation (29), the value of w∗j can be obtained as follows [1].

w∗j =
[
wmax

j + (n− 1)× wmin
j

]
(29)

where, wmax
j (LC = 0.25157) and wmin

j (HC = 0.16169) are the maximum and minimum
criteria weights, respectively. ‘n = 5′ is the number of criteria. Increasing the weight of
the most significant criterion above wj

* would make the weight of the lowest criterion
negative [1]. The local weight stability interval shows the range of weight in which the
ranking of the best alternatives remains unchanged, while the global weight stability
interval determines the range of weights within which the overall rank of the alternatives
remain unaltered for any particular technique, with respect to the results and rankings
obtained using the actual criteria weightages [1].

The most important criterion for carrying out single dimensional weight sensitivity
analysis is first defined as LC with the highest priority weight of 0.25157. Its weight now
varies within a feasible range of 0 ≥ wLC ≥ 0.89834, while retaining the restriction of
weight additivity [1]. The weight of criterion LC cannot be increased above 0.89834, since
the lowest criteria weights, i.e., HC parameter will become negative [1]. Therefore, 20 new
sets of criterion weights are created, as shown in Table 19, and this problem is again solved
with those new sets of criterion weights to obtain the robot alternative rankings using
the adopted methods [1]. The following paper also provides intervals of local and global
weight stability for each MCDM process, which are shown in Table 20. Figures 2–11 show
the effects on the alternative rankings due to variation in criteria weights by 10 different
adopted MCDM tools.

Table 19. Twenty new sets of criteria weights.

Sets of Criteria Weights C R HC LC V

Set 1 0.27440 0.26249 0.22459 0 0.23853
Set 2 0.26190 0.24999 0.21209 0.05 0.22603
Set 3 0.24940 0.23749 0.19959 0.1 0.21353
Set 4 0.23690 0.22499 0.18709 0.15 0.20103
Set 5 0.22440 0.21249 0.17459 0.2 0.18853
Set 6 0.21190 0.19999 0.16209 0.25 0.17603

Set 7 (Actual weights) 0.21150 0.19960 0.16169 0.25157 0.17563
Set 8 0.19940 0.18749 0.14959 0.3 0.16353
Set 9 0.18690 0.17499 0.13709 0.35 0.15103
Set 10 0.17440 0.16249 0.12459 0.4 0.13853
Set 11 0.16190 0.14999 0.11209 0.45 0.12603
Set 12 0.14940 0.13749 0.09959 0.5 0.11353
Set 13 0.13690 0.12499 0.08709 0.55 0.10103
Set 14 0.12440 0.11249 0.07459 0.6 0.08853
Set 15 0.11190 0.09999 0.06209 0.65 0.07603
Set 16 0.09940 0.08749 0.04959 0.7 0.06353
Set 17 0.08690 0.07499 0.03709 0.75 0.05103
Set 18 0.07440 0.06249 0.02459 0.8 0.03853
Set 19 0.06190 0.04999 0.01209 0.85 0.02603
Set 20 0.04981 0.03791 0 0.89834 0.01394

(Source: authors’ own composition).
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Table 20. Local and global weight stability intervals of five MCDM models.

MCDM Methods
Weight Stability Intervals

Local Global

COPRAS-ARAS 0 ≥ wR ≥ 0.35 0.25 ≥ wR ≥ 0.25157
TOPSIS-ARAS 0 ≥ wR ≥ 0.3 0.25 ≥ wR ≥ 0.25157

TOPSIS 0 ≥ wR ≥ 0.25157 0.25 ≥ wR ≥ 0.25157
COPRAS 0 ≥ wR ≥ 0.35 0.25 ≥ wR ≥ 0.25157

ARAS 0.1 ≥ wR ≥ 0.3 0.25 ≥ wR ≥ 0.25157
MOORA 0 ≥ wR ≥ 0.3 0.25 ≥ wR ≥ 0.25157

MULTIMOORA 0.05 ≥ wR ≥ 0.4 NIL
WSM 0.05 ≥ wR ≥ 0.3 NIL
WPM 0.05 ≥ wR ≥ 0.4 NIL

WASPAS 0.05 ≥ wR ≥ 0.35 0.25 ≥ wR ≥ 0.25157
(Source: authors’ own composition).

Figure 2. Robot ranking variations in the COPRAS-ARAS hybrid model. (Source: authors’ own composition. Created using
a Microsoft chart).
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Figure 3. Robot ranking variations in the TOPSIS-ARAS hybrid model. (Source: authors’ own composition. Created using
a Microsoft chart).

Figure 4. Robot ranking variations in the TOPSIS model. (Source: authors’ own composition. Created using a Mi-
crosoft chart).
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Figure 5. Robot ranking variations in the COPRAS model. (Source: authors’ own composition. Created using a Mi-
crosoft chart).

Figure 6. Robot ranking variations in the ARAS model. (Source: authors’ own composition. Created using a Microsoft
chart).
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Figure 7. Robot ranking variations in the MOORA model. (Source: authors’ own composition. Created using a Mi-
crosoft chart).

Figure 8. Robot ranking variations in the MULTIMOORA model. (Source: authors’ own composition. Created using a
Microsoft chart).
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Figure 9. Robot ranking variations in the WSM model. (Source: authors’ own composition. Created using a Microsoft chart).

Figure 10. Robot ranking variations in the WPM model. (Source: authors’ own composition. Created using a Mi-
crosoft chart).
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Figure 11. Robot ranking variations in the WASPAS model. (Source: authors’ own composition. Created using a Mi-
crosoft chart).

The illustrated graphs depict that all of the alternative rankings by the applied MCDM
techniques are affected to some extent by the variation of criteria weights. It is clear from
Figures 2–11 that the employed tools gradually gain stability as they move right, to the
higher weight region. There are a few more verdicts that can be made from this sensitivity
analysis. We will go over some key points one by one. To begin with, the robustness of the
implemented MCDM approaches, the local, and global weight stability intervals presented
in Table 20, depict that hybrid COPRAS-ARAS, and solo COPRAS MCDM appears to be
the most robust and stable method with a maximum local interval (LI) of 0 ≥ wR ≥ 0.35
and global interval (GI) of 0.25 ≥ wR ≥ 0.25157. Although it is difficult to make judgement
based on only global weight stability intervals, most of the applied methods have the same
GI, except MULTIMOORA, WSM, and WPM, which do not have GI. Despite the fact that
MULTIMOORA and WPM have the same LI as COPRAS-ARAS and COPRAS, these two
methods lack in dedicated global weight stability intervals, as shown in Table 20, proving
their ineffectiveness and inefficient tools for this current analysis. Now, if the sensitivity
of any model is taken into account, then ARAS and WSM would be the most appropriate
choices. It is also difficult to predict which of these two tools is the most sensitive, because
ARAS has the lowest LI followed by WSM and, thus, the most sensitive tool based on the
local stability interval, but WSM is more sensitive than ARAS based on the global stability
interval, because no GI is found for this approach.

Next, we look at two things: (a) whether the two newly developed hybrid systems,
TOPSIS-ARAS and COPRAS-ARAS, were able to fulfil our expectations; (b) whether the
hybrid models outperformed the solo techniques. When comparing these two hybrid
models to the standalone MCDM tools, TOPSIS, COPRAS, and ARAS, the following
decisions can be made. First, as we can see from Table 20, the local stability interval of
COPRAS-ARAS is greater than all of the applied tools, particularly ARAS. As a result of
integrating COPRAS with ARAS, both the stability and ranking efficiency of the ARAS
MCDM is enhanced. As previously being one of the most sensitive tools, the performance
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of ARAS improved by incorporating COPRAS, so much so that it later became one of the
most robust MCDM systems. Similarly, the TOPSIS-ARAS hybrid model also performs
better and has a higher LI than solo TOPSIS and ARAS, making the hybrid model more
stable and consistent than the single standalone techniques. Therefore, the overall analysis
leads to the conclusion that combining ARAS with TOPSIS and COPRAS improves the
efficiency and performance of the individual TOPSIS and ARAS methods to some extent.
Furthermore, the consistency, effectiveness, and stability of these two hybrid models are
better than the single techniques when used individually.

6. Conclusions

This paper examined an industrial robot selection problem using two newly developed
CRITIC-embedded TOPSIS-ARAS and COPRAS-ARAS hybrid MCDM systems, and paral-
lelly, significantly boosted and enhanced the previous proposed rankings by removing the
complexity, confusion, and vagueness associated with the existing literature. The following
two hybrid models were developed with the goal of recommending the best robot for a
given industry. The creation of such MCDM models is the primary contribution to the fields
of manufacturing and decision theory. At the same time, it contributes toward improving
the performance, effectiveness, stability, and efficiency of the solo ARAS and TOPSIS
MCDM. From this analysis, it can be concluded that robot 12 is the best choice followed by
robot 11 among the 12 alternative robots, and robot 4 should be ignored completely as it is
the worst choice by all of the methods. Apart from these, the key concluding remarks and
the core contribution to this work can be summarized as follows:

• The two newly developed hybrid MCDM systems provide a very effective and appro-
priate selection of the best robot alternative for an industry.

• Both of the developed hybrid models prove to be very stable and efficient decision-
making tools. COPRAS-ARAS is the one and only tool whose ranking exactly matches
with the Copeland-based final proposed ranking and Spearman rank correlation
coefficient between the TOPSIS-ARAS hybrid model and the final ranking is as high
as 0.97902, indicating its good decision-making potential and ability.

• As discussed under the results and validation section, the previous proposed rank-
ings were clearly unstable. As a result, the current review is more rigorous, strong,
and provides a genuine ranking order; thus, it greatly improves the previous literature.

• Both established hybrid MCDM systems are simple, straightforward, systematic,
understandable, and rational approaches that can easily fit into any decision-making
analysis.

• Several previously mentioned statements are proven during the sensitivity analysis.
As a result, the following conclusions can be drawn regarding those specific points.

(a) ARAS is a highly sensitive tool, and even minor variations in the input data
cause a significant impact on the outcomes.

(b) COPRAS outperforms ARAS in terms of efficiency and effectiveness. More-
over, COPRAS is more robust and stable than ARAS in terms of parameter
weight variation.

(c) In the presence of varying input data, TOPSIS outperforms ARAS in terms of
performance stability.

(d) Judgement delivered by COPRAS is more efficient and less biased than TOPSIS
and WSM-embedded decisions. Moreover, COPRAS has greater consistency
than WSM in the presence of data variation.

• Objective weighting estimation methods, such as entropy or CRITIC, are more superior
to using subjective weighting methods, such as AHP, BWM, or SWARA. Objective tools
are not influenced by the decision makers’ views, opinions, knowledge, or experiences;
therefore, it can generate more reliable and consistent performance results.

• This study may provide ideas to industries, and address manufacturing concerns,
in regard to the installation of automated material handling systems in organizations.
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When purchasing new material handling equipment, decision makers can also use
these hybrid approaches to select a specific type.

Limitations: The following study is entirely based on estimation and mathematical
computations. This study does not guarantee that there are no other robots on the market
that are better than the proposed one; rather, it suggests that robot 12 is the best option
among the 12 alternative robots considered for this analysis. This article only covers one
general concept and tries to clear up any confusions that may arise when choosing a suitable
robot. Furthermore, MCDM problems are heavily reliant on the parametric weightages,
and any variations in the weightage values can affect the performance results. As a result,
other weightage estimation tools, such as AHP, SWARA, BWM, entropy, SMART, etc., may
produce different criteria weights, which eventually alter the final ranking. If subjective
weighting methods, such as AHP, BWM, SWARA, SMART, etc., are involved, it may lead to
biased decisions, because subjective tools deal with the relative importance matrix, which
is completely dependent on the DM’s opinion, views, and judgement; therefore, some
inconsistencies and biasedness are associated with the weights produced by the subjective
methods. Additionally, the following robot selection problem is performed on a limited
number of essential criteria and alternatives; however, there are other alternative robots
and parameters that can be considered in addition to these, which can cause the results to
deviate [85].

Future scope: the following points can be considered in the framework of future
studies:

• Other weighting tools, such as Entropy, BWM, SMART, SWARA, etc., can be used
to determine the parameter weights, and the differences in alternative rankings can
be noted.

• In order to make the selection process more specific and reliable, more parameters
and robot alternatives can be considered in addition to these.

• There are numerous MCDM tools available, such as EDAS, CODAS, PROMETHEE,
PIV, CoCoSo, and others, which can be used to solve this same robot selection problem,
and the results can be compared with these present outcomes.

• Other potential and efficient MCDM tools can be merged to develop new robust
hybrid models.

• Lastly, these two newly developed TOPSIS-ARAS and COPRAS-ARAS hybrid MCDM
systems can be implemented in a broad variety of areas, such as the banking sector,
the health and education sector, the industrial and manufacturing sector, transporta-
tion and logistics, etc., in order to expand its applicable areas, and to explore the ability
of these novel hybrid models.
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