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Abstract: One of the most intriguing issues in the mathematical theory of the stationary Navier–
Stokes equations is the regularity of weak solutions. This problem has been deeply investigated for
homogeneous fluids. In this paper, the regularity of the solutions in the case of not constant viscosity
is analyzed. Precisely, it is proved that for a bounded domain Ω ⊂ R2, a weak solution u ∈W1,q(Ω)

is locally Hölder continuous if q = 2, and Hölder continuous around x, if q ∈ (1, 2) and |µ(x)− µ0|
is suitably small, with µ0 positive constant; an analogous result holds true for a bounded domain
Ω ⊂ Rn (n > 2) and weak solutions in W1,n/2(Ω).
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1. Introduction and Statement of the Results

The stationary motions of an inhomogeneous, incompressible viscous fluid in a solid
(bounded domain with connected boundary) Ω of Rn (n ≥ 2) are governed by the Navier–
Stokes equations

2div (µ∇̂u)− div (u⊗ u)−∇p = 0,
div u = 0,

(1)

where u : Ω → Rn, p : Ω → R, are the velocity and pressure field, respectively,
∇̂u = 1

2 (∇u +∇u>) the symmetric part of ∇u, and µ : Ω → R+ is the viscosity coef-
ficient, satisfying the natural assumption

µi ≤ µ(x) ≤ µe, (2)

almost everywhere in Ω. Unless otherwise specified, we will essentially use a standard
notation as in [1]. In particular, BR(x) = {y ∈ Rn : |y− x| < R}; if F is a function space
the subscript σ in Fσ stands for the (weakly) divergence-free condition; the integral mean
of the field u over A will be denoted by uA = 1

|A|
∫

A u. Throughout the paper, the symbol c
will denote a positive constant whose numerical value is unessential for our purposes and
may change from line to line and in the same line, too.

Observe that we are considering the case of viscosity exclusively depending on the
position x (see [2,3], for unsteady flows). This is the case, for example, of immiscible fluids
or fluid mixtures where, in the first instance, we can neglect the natural dependence of
viscosity on pressure and temperature (see, e.g., [4] and the references therein). Limiting
ourselves to isothermal flows, the dependence of viscosity on pressure was already high-
lighted by G.G. Stokes in the seminal work [5] of 1845. In the last decades, many efforts
have been done to take into account the effects of a pressure-dependent viscosity. In partic-
ular, we quote [6,7], where a global in time existence of solutions for the evolution problem
was proved (a previous result [8] regarded a local in time existence and uniqueness result).
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In [6,7], besides on pressure, a further dependence of the viscosity on the shear rate was
required. More recently, a pure dependence of viscosity on pressure was instead supposed
in [9], where an existence and uniqueness result for the stationary Stokes system, obtained
from (1) by neglecting the inertial term, was presented by requiring general assumptions
on µ that are satisfied by the Barus formula and other empiric laws; in the case of a thin
straight pipe with variable cross-section the effective behavior of the flow was found via a
rigorous asymptotic analysis with respect to the pipe’s thickness [10].

In order to deal with the problem of regularity of weak solutions to system (1) with
variable viscosity µ, in this paper, we consider the simplified situation of viscosity depend-
ing on the point µ = µ(x). Besides including meaningful cases as immiscible fluids in the
model, it is worth pointing out that the problem here analyzed is also interesting from a
purely mathematical point of view. Indeed, as far as we are aware, up to now the regu-
larization problem has been considered only for variational solutions to (1) (see, e.g., [11],
where it is considered a more general non linear system of the type of the Navier–Stokes
one; however, it is not difficult to see that our technique can be used to deal with the
equations here considered).

A weak solution (variational if q = 2) to (1) is a field u ∈ W1,q
σ (Ω), q ≥ 2n/(n + 2),

which satisfies the relation

2
∫

Ω
µ∇̂u · ∇ϕ +

∫
Ω

u · ∇u · ϕ = 0, ∀ϕ ∈ C∞
σ,0(Ω). (3)

To a solution to (3) is associated a scalar field p ∈ Lq(Ω) such that [1]

2
∫

Ω
µ∇̂u · ∇ϕ +

∫
Ω

u · ∇u · ϕ−
∫

Ω
p div ϕ = 0, ∀ϕ ∈ C∞

0 (Ω). (4)

It is natural to ask whether and under what condition a weak solution to (1) is more
regular, for instance Hölder continuous. For homogeneous fluids, this issue has been the
object of several papers, starting from the classical one of D. Serre (1983) [12], who proved
regularity of a weak solution u ∈ W1,q(Ω), q > 3/2, in the physical case n = 3. The
regularity of variational solutions for n = 2, 3 was proved by O.A. Ladyzhenskaia [13] and
for n = 4 by C. Gerhardt [14] (see also [11]). Regularity of variational solutions for n > 4
is an open problem [1]. More recently, Serre’s results were generalized to distributional
solutions in Ln(Ω) by G. P. Galdi [1] and also in Ln

w(Ω) (weak Ln(Ω) space) by H. Kim and
H. Kozono [15], under the assumption of smallness of the norm ‖u‖Ln

w(Ω).
The main purpose of this paper is to extend the results of [1] to system (1). To be

precise, starting from the technique introduced in [16], we shall prove

Theorem 1. Let n = 2. A variational solution u to Equation (1) is locally Hölder continuous.
A weak solution u ∈ W1,q(Ω), q ∈ (1, 2), is Hölder continuous around x if there is a positive
constant µ0 such that |µ− µ0| is small in a neighborhood of x.

Theorem 2. Let n > 2. A weak solution u ∈ W1,n/2(Ω) to Equation (1) is Hölder continuous
around x if there is a positive constant µ0 such that |µ− µ0| is small in a neighborhood of x.

From Theorem 2 it easily follows

Corollary 1. Let u ∈W1,n/2(Ω), n > 2, be a weak solution to Equation (1). If µ ∈ C(Ω), then
u ∈ Co,α

loc(Ω) for every α ∈ (0, 1).

2. Preliminary Results

We collect in this section the main tools we need to prove Theorems 1 and 2 in the
next sections.
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Consider the linear system [17] (see also [18,19])

2div (µ∇̂u)−∇p = 0,
div u = 0.

(5)

A weak solution (variational if q = 2) to (5) is a field u ∈W1,q
σ (Ω) such that∫

Ω
µ∇̂u · ∇ϕ = 0, ∀ϕ ∈ C∞

σ,0(Ω). (6)

It is well-known that for constant µ a weak solution to (5) is real analytic [1].

Lemma 1. If u is a variational solution to (5) in BR′(x), then there is a positive constant γ
depending only on n, µi and µe such that∫

Bρ(x)
|∇u|2 ≤ c

( ρ

R

)γ ∫
BR(x)

|∇u|2, (7)

for all 0 < ρ ≤ R� R′.

Proof. Let g(|y− x|) be a regular cut-off function, vanishing for |y− x| > 2R, equal to 1
for |y− x| < R and such that |∇g| ≤ cR−1. The system

div (h + g2(u− κ)) = 0 in TR(x),

where TR(x) = B2R(x) \ BR(x) and κ is a constant, has a solution W1,2
0 (TR(x)) such that [1]

(Chapter III, Section 3, Theorem III.3.1)

‖∇h‖L2(TR(x)) ≤ c‖(u− κ) · ∇g2‖L2(TR(x)), (8)

where c is independent of R. In writing (8), we used the divergence free condition (1)2.
Since the field h + g2(u− κ) is permissible in (6), one has∫

BR′ (x)
µ∇̂u·∇(h + g2(u− k)) =

∫
TR(x)

µ∇h · ∇̂u

+2
∫

TR(x)
gµ(u− κ) · (∇̂u)∇g +

∫
BR′ (x)

µg2|∇̂u|2 = 0.
(9)

Therefore, taking into account (2),

µi

∫
BR′ (x)

|g∇̂u|2 ≤ −2
∫

TR(x)
gµ(u− κ) · (∇̂u)∇g−

∫
TR(x)

µ∇h · ∇̂u. (10)

Since

2|g∇̂u|2 = |g∇u|2 + div [g2(u− k) · ∇u]− 2g(u− k) · (∇u)∇g,

from (10), it follows that∫
BR′ (x)

|g∇u|2≤ 2
∫

TR(x)
g(u− k) · (∇u)∇g

− 4
µi

∫
TR(x)

gµ(u− κ) · (∇̂u)∇g− 2
µi

∫
TR(x)

µ∇h · ∇̂u,
(11)

where we also took into account that, applying the divergence theorem and the condition
g = 0 outside B2R(x), ∫

BR′ (x)
div [g2(u− k) · ∇u] = 0. (12)
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By the arithmetic–geometric mean inequality and (8), for every α1, α2 > 0

2
∫

TR(x)
|g(u− κ) · (∇u)∇g|≤ α1

∫
TR(x)

|g∇u|2 + α−1
1

∫
TR(x)

|u− κ|2|∇g|2,

4
µi

∫
TR(x)

|gµ(u− κ) · (∇̂u)∇g|≤ 4µe

µi

∫
TR(x)

|g(u− κ) · (∇̂u)∇g|

≤ α2

∫
TR(x)

|g∇u|2 + c
∫

TR(x)
|u− κ|2|∇g|2,

2
µi

∫
TR(x)

|µ∇h · ∇̂u|≤ c
∫

TR(x)
|u− κ|2|∇g|2 +

∫
TR(x)

|∇u|2.

Therefore, choosing α1, α2 � 1, (11) implies∫
BR′ (x)

|g∇u|2 ≤ c
∫

TR(x)
|u− κ|2|∇g|2 +

∫
TR(x)

|∇u|2. (13)

Using the properties of the function g and, in particular, that g = 1 in BR(x) and
|∇g| ≤ cR−1, it follows∫

BR(x)
|∇u|2 =

∫
BR(x)

|g∇u|2 ≤
∫

BR′ (x)
|g∇u|2 ≤ c

R2

∫
TR(x)

|u− κ|2 +
∫

TR(x)
|∇u|2.

Hence, choosing k = uTR(x), and using Poincaré’s inequality ‖u − uTR(x)‖2
L2(TR(x))

≤ cR2‖∇u‖2
L2(TR(x)) (see, e.g., [20]), it follows

∫
BR(x)

|∇u|2 ≤ c
∫

TR(x)
|∇u|2. (14)

Adding c
∫

BR(x) |∇u|2 to both sides of (14) yields

∫
BR(x)

|∇u|2 ≤ τ
∫

B2R(x)
|∇u|2, τ =

c
c + 1

. (15)

Now, to (15) we can apply a classical result in the theory of regularity of weak solutions
to elliptic systems (see, e.g., [21], Lemma 8.23), to conclude that (7) holds, with γ =
− log τ/ log 2.

Lemma 2. (Campanato’s inequality)– If µ is constant and u ∈W1,q(BR′(x)) is a weak solution
to (5), then for every p ∈ [1,+∞)∫

Bρ(x)
|∇u|p ≤ c

( ρ

R

)n ∫
BR(x)

|∇u|p, (16)

for all 0 < ρ ≤ R << R′ and for some positive constant c depending only on n and p.

Lemma 3. If F ∈ Lq(BR), q ∈ (1,+∞), then the system

2div (µ∇̂u)−∇p + div F = 0 in BR(x),
div u = 0 in BR(x),

u = 0 on ∂BR(x),

has a unique solution u ∈W1,q
0 (BR(x)) and

‖∇u‖Lq(BR(x)) ≤ c‖F‖Lq(BR(x)), (17)

for some constant c independent of R.
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A proof of Lemmas 2 and 3 can be found in [11,22] (see Remark 10.1 in [22]).

Lemma 4. Let u ∈W1,q(BR̄(x)), q ∈ [1, n]. If∫
Bρ(y)

|∇u|q ≤ c
( ρ

R

)n−q+αq ∫
BR(y)

|∇u|q,

for every 0 ≤ ρ ≤ R = R̄− |x− y| and for every y ∈ BR̄(x), then u is Hölder continuous around
x with exponent α.

Lemma 4 is due to C. Morrey (see [23], p. 79).

Lemma 5. Let Φ be a non negative and non decreasing function. Then there exists ε0 such that if

Φ(ρ) ≤ c0

[( ρ

R

)α
+ ε
]
Φ(R) + c1Rβ,

for all ρ ≤ R ≤ R̄ with c0, c1, α, β positive constants, β < α and ε < ε0, then for all ρ ≤ R ≤ R̄,

Φ(ρ) ≤ c
[( ρ

R

)β
Φ(R) + c1ρβ

]
,

where c is a constant depending on α, β, c0.

Lemma 5 is due to S. Campanato [24] (see also [11], p. 179).

3. Proof of Theorem 1

• Let u ∈W1,2(Ω) and x ∈ Ω. By uniqueness u = u1 + u2, with u1 and u2 solutions to

2div (µ∇̂u1)−∇p1 = 0 in BR(x),
div u1 = 0 in BR(x),

u1 = u on ∂BR(x),
(18)

and
2div (µ∇̂u2)−∇p2 + div [u⊗ (u− κ)] = 0 in BR(x),

div u2 = 0 in BR(x),
u2 = 0 on ∂BR(x),

(19)

respectively, for every constant κ (this follows from the divergence free condition (1)2). By
Lemma 1 there exist positive constants c and γ, such that∫

Bρ(x)
|∇u1|2 ≤ c

( ρ

R

)γ ∫
BR(x)

|∇u1|2, (20)

and by Lemma 3 and Schwarz’s inequality,∫
BR(x)

|∇u2|2 ≤ c
∫

BR(x)
|u|2|u− k|2 ≤ c‖u‖2

L4(BR(x))‖u− k‖2
L4(BR(x)). (21)

Choosing κ = uBR(x), by Ladyzhenskaia’s inequality (see [1], p. 55) and Poincaré’s inequality

‖u− uBR(x)‖2
L4(BR(x)) ≤ c‖u− uBR(x)‖L2(BR(x))‖∇u‖L2(BR(x))

≤ cR‖∇u‖2
L2(BR(x)).
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Therefore, (21) yields∫
BR(x)

|∇u2|2 ≤ cR‖u‖2
L4(BR(x))

∫
BR(x)

|∇u|2 = cω(R)
∫

BR(x)
|∇u|2, (22)

where ω(R) = R‖u‖2
L4(BR(x)). Putting together (20) and (22) and using the inequality

|a + b|2 ≤ 2(|a|2 + |b|2), for all a, b ∈ R, one has∫
Bρ(x)

|∇u|2 ≤ 2
∫

Bρ(x)

(
|∇u1|2 + |∇u2|2

)
≤ 2c

( ρ

R

)γ ∫
BR(x)

|∇u1|2 + 2cω(R)
∫

BR(x)
|∇u|2

≤ c
( ρ

R

)γ ∫
BR(x)

|∇u|2 + cω(R)
∫

BR(x)
|∇u|2.

(23)

Hence, taking into account Lemma 5, it follows that∫
Bρ(x)

|∇u|2 ≤ c
( ρ

R

)γ′ ∫
BR(x)

|∇u|2, (24)

for some γ′ ∈ (0, γ).
By a well-known argument (see, e.g., [22], pp. 313–314) (24) implies that

sup
y∈I, ρ≤R̃

1
ργ′

∫
Bρ(y)

|∇u|2 < +∞,

where I is a neighborhood of x and R̃ such that Bρ(y) ⊂ I. Hence by Lemma 4 it follows

that u is Hölder continuous around x with exponent
γ′

2
depending only on µi, µe.

• Let u ∈W1,q(Ω), q ∈ (1, 2), and let |µ− µ0| be suitably small in a neighborhood of
x. Now u = u1 + u2, with u1 and u2 solutions to

µ0∆u1 −∇p1 = 0 in BR(x),
div u1 = 0 in BR(x),

u1 = u on ∂BR(x),
(25)

and
µ0∆u2 −∇p2 + div G = 0 in BR(x),

div u2 = 0 in BR(x),
u2 = 0 on ∂BR(x),

(26)

respectively, with
G = 2(µ− µ0)∇̂u + u⊗ (u− κ), (27)

for every constant κ (this follows from the divergence free condition (1)2). By Lemma 2∫
Bρ(x)

|∇u1|q ≤ c
( ρ

R

)n ∫
BR(x)

|∇u1|q, (28)

and by Lemma 3 ∫
BR(x)

|∇u2|q ≤ c
∫

BR(x)
|G|q. (29)
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By Hölder’s inequality,

∫
BR(x)

|u⊗ (u− κ)|q ≤
{ ∫

BR(x)
|u|2

}q/2{ ∫
BR(x)

|u− κ|2q/(2−q)

}(2−q)/2

.

Therefore, choosing κ = uBR(x) and using Sobolev’s inequality,

∫
BR(x)

|u− uBR(x)|2q/(2−q) ≤ c

{ ∫
BR(x)

|∇u|q
}2/(2−q)

,

one has ∫
BR(x)

|u⊗ (u− uBR(x))|q ≤ c

{ ∫
BR(x)

|u|2
}q/2 ∫

BR(x)
|∇u|q. (30)

Moreover, since

2
∫

BR(x)
|µ− µ0|q|∇̂u|q ≤ εq

∫
BR(x)

|∇̂u|q,

taking into account that limR→0 ‖u‖
q
L2(BR(x)) = 0, (29) writes

∫
BR(x)

|∇u2|q ≤ c
[
εq + ‖u‖q

L2(BR(x))

] ∫
BR(x)

|∇u|q ≤ cε′
∫

BR(x)
|∇u|q, (31)

with ε′ suitably small. Putting together (28) and (31) and using the inequality |a + b|q ≤
2q−1(|a|q + |b|q), for all a, b ∈ R, one gets∫

Bρ(x)
|∇u|q ≤ c

∫
Bρ(x)

(
|∇u1|q + |∇u2|q

)
≤ c
( ρ

R

)n ∫
BR(x)

|∇u1|q + cε′
∫

BR(x)
|∇u|q

≤ c
( ρ

R

)n ∫
BR(x)

|∇u|q + cε′
∫

BR(x)
|∇u|q.

(32)

Hence, Hölder continuity of u around x follows from Lemmas 4 and 5. �

4. Proof of Theorem 2

Let u1 and u2 be the solutions to (25) and (26), respectively. By Lemma 2∫
Bρ(x)

|∇u1|n/2 ≤ c
( ρ

R

)n ∫
Bρ(x)

|∇u1|n/2, (33)

and by Lemma 3 ∫
BR(x)

|∇u2|n/2 ≤ c
∫

BR(x)
|G|n/2. (34)

By Hölder’s inequality,

∫
BR(x)

|u⊗ (u− uBR(x))|n/2 ≤ c

{ ∫
BR(x)

|u|n
}1/2{ ∫

BR(x)
|u− uBR(x)|n

}1/2

.

Therefore, by Sobolev’s inequality,{ ∫
BR(x)

|u− uBR(x)|n
}1/2

≤ c
∫

BR(x)
|∇u|n/2,
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one has ∫
BR(x)

|u⊗ (u− uBR(x))|n/2 ≤ c

{ ∫
BR(x)

|u|n
}1/2 ∫

BR(x)
|∇u|n/2. (35)

Moreover, since

2
∫

BR(x)
|µ− µ0|n/2|∇̂u|n/2 ≤ εn/2

∫
BR(x)

|∇u|n/2,

(34) writes∫
BR

|∇u2|n/2 ≤ c
[
εn/2 + ‖u‖n/2

Ln(BR(x))

] ∫
BR

|∇u|n/2 ≤ cε′
∫

BR

|∇u|n/2, (36)

with ε′ suitably small. Putting together (33) and (36) and repeating the steps yielding (32),
one has ∫

Bρ(x)
|∇u|n/2 ≤ c

∫
Bρ(x)

(
|∇u1|n/2 + |∇u2|n/2)

≤ c
( ρ

R

)n ∫
BR(x)

|∇u1|n/2 + cε′
∫

BR(x)
|∇u|n/2

≤ c
( ρ

R

)n ∫
BR(x)

|∇u|n/2 + cε′
∫

BR(x)
|∇u|n/2,

for small positive ε′. Hence the desired result follows from Lemmas 4 and 5. �

It should be of some interest to detect whether for n > 2 the above regularity results
can be extended to function spaces larger than W1,n/2(Ω), like the grand Sobolev spaces
introduced by T. Iwaniec and C. Sbordone [25]. In this connection see [26,27].

5. Conclusions

In this paper, the regularity properties of the solutions to the steady Navier–Stokes
equations with a variable viscosity coefficient µ = µ(x) have been examined (see [2,3]).
By only requiring µ ∈ L∞(Ω), it has been proved that if Ω ⊂ R2 the weak solutions
u ∈W1,2(Ω) are locally Hölder continuous and the weak solutions u ∈W1,q(Ω), q ∈ (1, 2),
are Hölder continuous around x if there exists a constant µ0 such that |µ(x)− µ0| is suitably
small; analogously for weak solutions u ∈W1,n/2(Ω) if Ω ⊂ Rn, n > 2.

The interest in considering models with variable viscosity goes back to the researches
by G.G. Stokes [5] and all the derived studies where, for instance, a pressure-dependent
viscosity is considered (see [6–10] and the references therein for a qualitative analysis of
the solutions). The idea is to use the results obtained in this paper, regarding the simplified
case of viscosity depending on the point—that is, however, interesting itself, as pointed
out in the introduction—to tackle the problem of regularity of solutions in the case of
more general inhomogeneities, as the one due to the variation of viscosity with pressure.
Obviously, a pressure-dependent viscosity brings an additional nonlinearity to system (1)
and makes the pressure no more, merely a Lagrange multiplier, so that the mathematical
analysis of the system is more complicated and this work can be considered a starting point
in this perspective.
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6. Málek, J.; Nečas, J.; Rajagopal, K.R. Global analysis of the flows of fluids with pressure-dependent viscosities. Arch. Rational Mech.

Anal. 2002, 165, 243–269. [CrossRef]
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