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Abstract: In this paper, we establish several necessary conditions to confirm the uniqueness-existence
of solutions to an extended multi-order finite-term fractional differential equation with double-order
integral boundary conditions with respect to asymmetric operators by relying on the Banach’s fixed-
point criterion. We validate our study by implementing two numerical schemes to handle some
Riemann-Liouville fractional boundary value problems and obtain approximate series solutions that
converge to the exact ones. In particular, we present several examples that illustrate the closeness of
the approximate solutions to the exact solutions.

Keywords: approximate solutions; boundary value problem; existence; Riemann-Liouville derivative

1. Introduction

Fractional calculus is extending quickly, and its interesting and attractive applica-
tions are perfectly utilized in different parts of science [1-3]. It has appeared in financial
models [4], optimal control [5,6], chaotic systems [7], epidemiological models [8,9], engi-
neering [10,11], etc. Particularly, the fractional systems of boundary value problems (FBVP)
of fractional differential equations usually yield other operational mathematical models
for the description of special chemical, physical, and biological processes, which one can
find in recently published works [12-19]. Along with these real models describing the
phenomena, many mathematicians conduct research on the existence theory of solutions
for different abstract structures of FBVPs with general boundary conditions including
three-point, multi-point, multi-order, multi-strip, and nonlocal integral ones [20-29].

Several studies have also concentrated on the numerical techniques to obtain the
analytical and approximate solutions of FBVPs. New numerical methods are introduced
by researchers that have improved the convergence rate and error resulting from the
approximate solutions. Examples of these methods and how to use them are Haar
wavelet method [30,31], CAS wavelet method [32], homotopy analysis transform method
(HATM) [33], -HATM [34], Bernstein polynomials [35], iterative reproducing kernel
Hilbert space method [36], Legendre functions with fractional orders [37], variational
iteration method [38], and so on.
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Since multi-term multi-order fractional differential equations have appeared in a
wide range of fields, many mathematicians have started to review the properties and
numerical solutions of this type of fractional differential equations. On the other side,
because most of the time the exact solution cannot be found or it is very difficult to find,
various numerical techniques have been applied for such FBVPs to obtain the approximate
solutions. For instance, Bolandtalat, Babolian and Jafari [39] compared the convergence
effects of exact and numerical solutions of multi-order fractional differential equations by
means of Boubaker polynomials. In 2016, Hesameddini, Rahimi, and Asadollahifard [40]
presented a new version of the reliable algorithm to solve multi-order fractional differential
equations and investigated the convergence of it. Firoozjaee et al. [41] implemented a
numerical approach on a multi-order fractional differential equation with mixed boundary-
initial conditions. Recently, Dabiri and Butcher [42] invoked a numerical technique based
on the spectral collocation methods and obtained the numerical solutions of multi-order
fractional differential equations subject to multiple delays.

In recent years, many FBVPs with integral boundary conditions have been formulated
by researchers of this field. Ali, Sarwar, Zada, and Shah [43] developed some conditions
with the aid of topological degree results for confirming the existence of solutions to the
nonlinear integral FBVP

{C©g+v(z) =h(z,v(pz)),z€1:=[0,1],u e (0,1),
¢10(0) +c20(1) = 35, ¢1(L,0(1)), c30' (0) + a0’ (1) = 35, 92(L,0(1)),

in which ¢ € (1,2], ¢1,¢2,¢3,¢4 € RT and h, 1, ¢ € C(I x R, R). C©S+ denotes the Caputo
fractional derivative of order ¢ and jg+ is the Riemann-Liouville fractional integral of
order ¢. Liu, Li, Dai, and Liu [44] implemented the fixed point techniques to establish the
existence and uniqueness of solutions for the nonlocal integral FBVP

{®g+v(z) +(z)h(z,v(z)) =0,z € (0,1),

v(0) =v/(0) = --- = v2)(0) =0, v'(1) = p3gev(@),
where ¢ € (k—1,k], ¢ € (0,1], p,u > 0, %

Liouville fractional derivative of order ¢. In 2018, Padhi, Graef, and Pati [45] studied
positive solutions for the given fractional differential equation with Riemann-Stieltjes
integral conditions

< 1 and Z)S+ is the Riemann—

D3, 0(z) + 9(z)h(z,v(z)) =0,z € (0,1),

1
v(0) =0'(0) = --- = v2(0) =0, D5 v(1) = / ¢(r,v(r)) dA(r),
0
where ¢ € (k—1,k] withk >2and1 < w <o —1.
In 2021, Thabet, Etemad, and Rezapour [46] designed and discussed the notion of the

existence for possible solutions of a coupled system of the Caputo conformable FBVPs of
the pantograph differential equation by

CC@S(']UTU(Z) = Pi(z,m(z),m(¢z)),z € [z0,K], 20 >0,

COm(z) = Pa(z,0(2), 0(12)),
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with three-point RL-conformable integral conditions
v(z0) = 0,c19(K) + CZRCJS(’)G*U((S) = wj,
m(zo) = 0,c;m(R) + c;RCI m(v) = w3,

in which ¢ € (0,1], of,05 € (1,2),6,v € (zo,K), c1,co, ci,c5wi,wy € R, £ € (0,1) and
P, P, € C([ZO,K] x R x R, R). In all the above fractional models with integral conditions,
only the required conditions of the existence of solutions have been investigated and FBVPs
have not been solved numerically. Due to the complexity of the structure of these FBVPs
with integral boundary conditions and the difficulty associated with finding their exact
solutions, some modern numerical algorithms have been developed to find approximate
and analytical solutions.

In 2005, Dafterdar-Gejji and Jafari [47] employed the Adomian decomposition method
(ADM) to find solutions to a generalized initial system of multi-order fractional differential
equations. One year later, they [48] presented an iterative algorithm jointly for solving
a general functional equation approximately and called it the Dafterdar-Gejji and Jafari
method (DGJIM). Among other numerical algorithms, these two methods, i.e., DGJIM and
ADM, are known as two numerical tools with high accuracy and rapid convergence to an
exact solution. For more details, one can point out to some works in this regard [49-51].
We apply these two strong numerical tools to approximate possible solutions of our sug-
gested FBVP.

In precise terms and with the help of the above ideas, in this paper, we propose
a double-order integral FBVP of the multi-term multi-order differential equation in the
framework of the Riemann-Liouville (RL) asymmetric derivation operators displayed as

D3, u(z) = Az, u(z), Dt u(z), D3 u(z),..., Dyt 'u(z), Dt u(z)),

u(0) =0, u(1) = pIpki (8, u(8)) + g3 ka (17, u(n)),

M

where0<z<1,1<90<2,0<n<mn< <0y < 1,Q>Un+1,ﬁ: [0,1] x R**1 —
R, k;j : [0,1] x R — R, (j = 1,2) are continuous functions; ®8+r lew' .., @gi are RL-
derivatives of order g, 07, . .., 0y, respectively; and Jg+ denotes the RL-integral of order
v € {u,v} withu,v,p,qg > 0and 0 < ¢, < 1. Here, we first obtain the corresponding
integral equation of the given multi-term multi-order RLFBVP (1) based on a theoretical
argument and then establish the existence and uniqueness results with the aid of the fixed
point tool. After that, we propose two numerical algorithms entitled DGJIM along with
ADM to find approximate solutions.

Indeed, we must emphasize that the novelty and motivation of our work is that,
although other papers use the ADM and DGJIM methods for solving IVPs, we here intend
to compute approximate solutions for a complicated multi-order multi-term RLFBVP with
boundary conditions including double-order RL-fractional integrals. In addition, note that,
in the second boundary condition, the value of the unknown function at the end point
z = 1is proportional to a linear combination of RL-integrals with different orders y,v > 0
at the intermediate points z = &, € (0,1), respectively. Along with this, we consider
the right-hand side nonlinear term / as a multi-variable function including multi-order
RL-derivatives finitely.

The rest of this paper is organized as follows. Section 2 recalls fundamental notions
on fractional calculus. Section 3 is devoted to establishing some criteria for confirming the
existence of solutions. Section 4 introduces the two numerical methods named ADM and
DGJIM. In Section 5, the proposed approximation techniques are described using different
examples. Some concluding remarks are provided in Section 6.
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2. Basic Concepts

First, for the convenience of the readers, we need some fundamental properties and
lemmas on fractional calculus which are used further in this paper.

Definition 1. [3] Let ¢ > 0 and ¢ : [0,00) — R be a continuous function. The following integral

(98.9)(z) = r(lg) JACEDIRIOS

is called the Riemann—Liouville integral of order o such that the integral on the right-hand side exists.

Definition 2. [3] Let n — 1 < ¢ < n. Then, the oth Riemann—Liouville derivative of a continuous
function ¢ : [0,00) — R is defined as

0806 = g () [ ot

= (i)” 9(2),

provided that the integral on the right-hand side exists and n = [o] + 1, where [g] denotes the
greatest integer less than o.

The following properties of the fractional operators are necessary for our paper.

Lemma 1. [2] Let u € L'(0,1) and o > ¢ > 0. Then,

o 0.3 u(z )—331%(2)

o DLIu(z) = §0+ “u(z),
o D037 u(z) = u(z).

Lemma 2. [2]Ifo > 0and v > O, then
I'(v)
. ©8+z“71 ={T(v—o)
©g+zv_1 =0, if v—oe{0}UZ",
79 5V = MZHQ.

o+ IF'(v+o+1)

Zv—e—1

7

Lemma3. [2] Letn —1 < ¢ < nand u € C(0,1) and D3, u € L'(0,1). Then,

n Qu(O) )
~Q Q 0+ Q=]

+ Dot ,
Z —]+1)

where n = [o] + 1 and [g] denotes the greatest integer less than .

3. Results of the Existence Criterion

In this section, we first derive an integral equation corresponding to the given multi-
term multi-order RLFBVP (1) and then establish required conditions to confirm the exis-
tence of solutions for (1).

Definition 3. The function u(z) is called a solution for the suggested multi-term multi-order
RLFBVP (1) if u satisfies (1) and D, u(z) € C[0,1] and u(z) € C[0,1].
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Theorem 1. Let 1 < 0 < 2,0<qn < < - <oy <1l 0>0+1 pv,pq>0,
and 0 < &,n < 1. Then, the function u(z) is a solution of the RLFBVP (1) if and only if
m(z) = D u(z) satisfies the integral equation

m(z) = 38, (2,37 m(z), 35 T m(z),..., 35 " m(z),m(z))

4
el el e s

+ % /077(11 —5)" ko (s, Jgim(s))ds

- 38+ ﬁ(zf 3(‘;1111(2), jgi_glm(z), cee, jgﬁ'r_g"*lm(z), m(z))

2_1] z0 =1, )

RLFBVP (1) which it gives m(z) = D1 u(z) € C[0,1]. Applying the RL-operator Jj. on
both sides of equation m(z) = D" u(z), we get

¥

Proof. In the first step, let u(z) € C|0,1] be a solution of the multi-term multi-order
"

0
v o (j(l):m'u) (0) -1
Toim(z) = I Dtu(z) = u(z) — Wz” : ©)
Since (jé: “111)(0) = 0, then we have
u(z) = Jgim(z). 4

In view of the second property in Lemma 1 and by (4), it follows that

D u(z) =Dy ITim(z) = 35 " m(z),

Dt u(z) = DhIgim(z) = 35t m(z).

Since 1 < ¢ < 2, by definition of the Riemann-Liouville fractional derivative, DS Lu(z) =

©%+ Jé:gu(z). Now, by (4), we get ’DS+ u(z) =02, Jéigﬁgim(z). Now, by Lemma 1, if we

0
use the semi-group property for Riemann-Liouville fractional integrals, we have

nggjgim(z) = JS:QW”m(z).

Again, by definition of the Riemann-Liouville fractional derivative, we have

@éﬁé:ﬁm’m(z) = ©g+(_g+‘7")m(z) = @S;U”m(z),

and so
©g+u(z) = ©g+ “m(z).

Consequently, the multi-term multi-order equation illustrated by (1), becomes
@g:gnm(z) = fi(z, Jgim(z),jgfglm(z),...,Jgifa”’lm(z),m(z)), 0<z<1. (5
Setting A = ¢ — 0y > 1,Aj =0y — 0j,00 =0 (j=0,1,...n), then (5) can be rewritten as

D).m(z) = h(z, Jgﬁm(z),Jé‘im(z),...,jgflm(z),m(z)), 0<z<1. (6)
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u(1) = 3jim(z)

Hence, by (4), it follows that #(0) = 0, and one can determine the value of the initial
condition m(0). Therefore, since m(z) € C[0,1],

Joim(z) = 1”(;) /OZ(Z —5)7 Lm(s)ds,

~Tn

and so we can arbitrarily provide the initial value of m(z) such that u(0) = 371 m(z) . 0.
z=
We assume that
m(0) = 0. (7)
Now, taking the Riemann-Liouville fractional integral 36\, on both sides of (6), we find that

30 Dpem(z) = I3, Az, Ja\ﬁm(z),Jé‘im(z),...,331’1m(z),m(z)), 0<z<1. (8

By the hypothesis of the theorem, we have A = ¢ — ¢;; > 1. Then, from Lemma 3, the
left-hand side of (8) becomes

3005 m(z) = m(z) + ez + 0zt 2,

hence Equation (8) is rewritten in the following form

m(z) = 30, iz, Ja\ﬁm(z),jg}rm(z),. ..,331’1m(z),m(z)) — 12— M2 ©)
By (7), since m(0) = 0and 2 > A > 1, we get c; = 0. Therefore, Equation (9) becomes
m(z) = jéﬁ(z, Jgﬁm(z)ﬂg}rm(z), . ..,331’1711(2),171(2)) — ML (10)

By using the second boundary condition given in (1) and by (4), we have

u(1) =35m(z)| _ = p3y k(6,3 m() + a3 ka0, Im(). (D)

With the help of Lemma 1 and from (10) and (11), we figure out that

z=1
WA R (A A A O A
= 001 (2, 300m(z), Ttm(z), ..., Tt T m(z), m(z)) - —cl.fg+zA ! )
AR (A ~A A ra o
= 00 (2, 300m(z), Tytm(z), ..., Tt P m(z), m(z)) - _Cll"()\<—|—27,1)ZA+U !
- z=1

__r ./f(ff — $)F Mk (5,35 m(s))ds + ﬁ /0’7(17 —5)""ka (s, 352 m(s))ds.

However, wehave A+ 0, —1 =0—0, + 0, —1 = 0 —1 > 0. Then, one can write

e (&~ )" Tk (5,90 m(s))ds + 1 =9 oo, 35 m(s))ds

T(p) Jo I'(v)
0, 2 ~. ~Ap— F A
= joﬂ)‘fi(z,.J())‘Rm(z),ffgim(z),...,.Ja\+ 'm(z), m(z)) i _Cll"()\(—i—zrn)
[(o—0n)

= 33.7i(2, 351m(z), 305 m(z),..., 35t " tm(z), m(z))

1 T T(o)
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Thus, we get

r 5 _ _
c1 = _TIle) lﬁ&ﬁ(z,ﬁg’im(z),ﬁg’; “Um(z),..., 350 " m(z),m(z))

T(o—on)

il [ o, 9 ms) s

q U v— ou
7 =) 1k2(5/30+m(5))d51~

By substituting the value of ¢; into Equation (10), we obtain the following equation

m(z) = 38, " hi(z, 37 m(z), 35 m(z),..., 35 " m(z),m(z))

I'(o) Pt e
T(g—0on) [F(P’) /0 €=k (s, J0+m(s))ds

+ F(L]v) /077(11 — )"k (s, 35 m(s))ds

— 38 Az, 3 m(z), 3t m(z), ..., 35 " m(z), m(z))

70~ 0n —1’
z=1

which implies that m(z) = D% u(z) € C[0,1] is a solution of (2).

Conversely, suppose that m(z) = Dt u(z) € C[0,1] is a solution of (2). By applying
the Riemann-Liouville fractional integral 3 on both sides of (z) = Dt u(z), we have

~l—0y

~On __ ~Op On _ (J0+ u) (0)
Jpim(z) = 31 Du(z) = u(z) — o
Due to (Jéi “"u)(0) = 0, we obtain u(z) = Jgim(z). In the next steps, we obtain other
fractional derivatives recursively and the second property in Lemma 1 as follows

Do tu(z) = Dt Igim(z) = 3" m(z),

Dohu(z) =Dk Igim(z) = Igt 'm(z). (12)
By taking the Riemann-Liouville operator J on both sides of (2), it becomes
Jgim(z) = 38, h(z, 351m(z), 35 m(z), ..., 35 " m(z), m(z))

L I'(o) lp

(o —on) | () [ @5 (s, 35 mls)) s

+ F(qv) /0}7(77 —5)" ko (s, Jgim(s))ds

- TJg+ h(z, Torm(z), 35 Mm(z), ..., Jgfa”’l m(z),m(z))

z=

1] L
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u(z) = 35, h(z,35m(z), 3t m(z), ..., 350 " im(z), m(z))

I'(e) p[f _ .
(e~ 0n) [F(V)/o (6 =) (5, 3gim(s) ) ds

+ % /017(17 —5)" ko (s, Joim(s))ds

— 38 (2, 35 m(2), 35 m(z), ..., 3 " m(z),m(z))

21] Izl (13)

In the sequel, by applying the Riemann-Liouville operator ’Dg + on both sides of (13),
it follows

D3, u(z) = D38 Az, 300 m(z), 3y m(z), ..., 3y " m(z),m(z))

T'(o) l p

T(o—on) T(p)

rls [ e 9 (s 35 m(s) s

+ FZ/) /0’7(77 —5)"" 1k, (s, 3gm(s))ds

—38+ﬁ(2,381m(z),Jgfglm(z),...,jgfg"’lm(z),m(z))‘ . D3, Iz

r —
Since, by Lemma 2, Tjgiz‘?_”"_l = (QF(Q;TH)ZQ_l and 5‘38+ZQ_1 =0, we get

D3, u(z) = h(z, 35 m(z),30: m(z), ..., 35 " tm(z),m(z))

+

Pt 1y (o AT
Tﬂ)/o (& =)' ky (5,352 m(s))ds

+ L) /0}7(17 —5)" " Tko (s, Jgim(s))ds

I'(v
— 38 h(z, 35 m(z), 35 m(z), ..., 3 " m(z), m(z)) i 93,207
= h(z,35tm(z), 35 m(z),..., 35 " tm(z),m(z)). (14)

According to (12), the fractional differential Equation (14) reduces to
D¢ u(z) = h(z,u(z), 95t u(z), D u(z), ..., Dy u(z), Dyt u(z)).

Finally, we check both boundary conditions of problem (1). In view of Equation (2) and by
definition of the Riemann-Liouville integral of the function

h(z, 30 m(z), 30 m(z), ..., 350 " im(z), m(z))
of order ¢ — 0, at point z = 0, it is immediately deduced that

m(0) = 3¢, " h(z, 3gtm(z), Igr T m(z),..., 35 " m(z),m(z))
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s el [ s o
N O

— 38 hi(z, 35 m(2), 35 m(z), ..., 3 " m(z),m(z))

=0+0=0.

z=0

ngcrnfl
z=1
(15)
~%n

= Jgim(z), and so u(0) = Jgim(z)| _, = 0. Thus,
u(0) = 0. This means that the first boundary condition holds. Now, to check the second
boundary condition, by substituting z = 1 into (13), we obtain

Thus, m(0) = 0. Hence, we have u(z)

u(1) =38, h(z, 3 m(z), 3"

3G m@), 3G (@), mz)|
I'(o) p - »
+M[w/() (& —s) 1k1(5,J0+m(s))ds

q

ol [ o s, 35 s

— 38 (2, 35 m(2), 35 m(z), ..., 3

LT m(z),mz)|

=38, hi(z, 351 m(z), 35

2=1
g m(z), e 3 m(z),m(2)|
+ F(QF(_QLH) lF(Zt)/o (& —5)" ki (s, 30 m(s))ds
Foy ) =9 a3 m))as
— 38 1i(z, 371 m(2), 35 T m(z), ..., 3 " m(z), m(z)) . Wzg—l B
= pIgek1(Z,u(Z)) + 35 ka (17, u())-

Therefore, we figure out that u(z) satisfies the multi-term multi-order RLFBVP (1) and so u
will be a solution of the mentioned RLFBVP, and the proof is completed. [

Here, we introduce the Banach space E = C|0, 1] with the norm ||m|| = max

}Im(Z)\r

z€(0,1
and, along with this, by Theorem 1, we define an operator ¥ : E — E by

(¥m)(z) = 38;‘7"%(2, Jorm(z), 3t m(z) oo

o A m(z), m(2))

I'(0) p /¢ _ -
To—on) [F(y)/o (& — )"y (5,302 m(s))ds
q

F b =9 s 3 m(s))ds

=38 (2,35 m(z), 304" T m(z), ..., 350 " m(z), m(z))

2_11 z0 =1 (16)
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We clearly have the following equation
Ym=m, mceE, (17)

which is equivalent to Equation (2). If ¥ has a fixed point, then it will be the solution of the
multi-term multi-order RLFBVP (1). On the other side, notice that the continuity of all three
functions 7, k1, and ky confirms that of the operator ¥. In this place, we want to express the
existence theorem in relation to solutions of the multi-term multi-order RLFBVP (1).

Theorem 2. Assume that these assumptions are valid:

(AS1) There exist real constants M;(j = 0,1,...,n) such that

n
h(z,up,u1, ..., un) — h(z, Uy, Uy,..., Uy)| < .Z(:)Mj‘uj -u
]:
forall z € [0,1) and (ug, u1, ..., uy), (Up, Uy, ..., Uy,) € R,
(AS2) There exist two real constants 61,6, > 0 such that

|k1(z,m)—k1(z,u)| §61|m_u|l mruER/
|ka(z,m) —ko(z,u)| < 6alm —u|, m,ueR.

(AS3) Let

_ I'(0)pt1g” I'(0)g621"
0<®= T(o— o)l (p+ 1T (0 +1) + T(o— o) T(v+ 1) (0 +1)

M;T (o)

Z o ¥ =t o 7D

Then, the multi-term multi-order RLFBVP (1) has a unique solution.

Proof. In view of Theorem 1, it is explicit that the existence of solutions to the multi-term
multi-order RLFBVP (1) is derived from the existence of solutions to Equation (16) or (17).
Thus, it suffices to prove that (16) has a unique fixed point. Now, let A = ¢ — 0y, 09 = 0,
and Aj = 0y — 0; forj=0,1,...,n. Then, from (AS1), it follows that for any my,m, € E,
we have

‘ﬁ(z,jmml( ) oo, Ipi m (2),m (2)) — Bz, 300 ma (), ...,:igz—lmz(z),mz(z))]

L oy A
<y Mj‘Joiml(z) — 3yl ma(2) ]
j=0

(18)

Taking the Riemann-Liouville operator 3 on both sides of inequality (18), we find that

n
= HWll*mzHZm = Hml*m2\|]§)r(9_%+gn_gj+1)
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= [l = m2||2 (o= a+1) (19)

On the other side, by using (LAS2), we get

T'(o) p ¢ ~On i 1 v— 39n
T(\) [r(mfo (&= )" ka (s, I (s WS*W/O (7 =)" "k (s, 37 ma (s))ds

=3 bz, 3 m (), 3Gt (2), i (2)) ZJZM
To)[ p ¢ _ i q 17 o .
-t [1"(;4)/0 (& — )" Tk (5,30 ma(s))ds + W/o (1 — )" ka5, 3% ma(s) ) ds
_ Ngn-&-/\h( ~é\$m2( ) .,jgflmz(z),mz(z)) Zl:|Z/\—l
< II:'EQ)) lr(?;) /Og(f: _ s)}l—l‘kl (S,Jgiml (S)) —kq (S,jg’}rmz(s)‘ds

]
+ W/O (n— s)vfl‘kz(s,jgiml (s)) —ka(s, ngMZ(s)‘ds

~On 7 ~ Ay % ~ ~An
4 350z, 30 ma 2, T2 T (2),my () — iz, A2 ma(2) ., T n(2), ma(2))

.

i[ Por ;471 Tlgiml( ) jU" TTI2 ‘ds
q 1|50, 0, L Aj
T 1) / )V Tgma(s) — Igima (s )‘ds+301 Z(;)ijoiyml(z) —my(z)| 1 (20)
= z=
T(e) por¢" 9621 - M; _
ST [T+ DT(on +1) | T+ T (on +1) ]; Ty s A+ a5 |Im—ml
oot | L e et L]
Fl—0n) [ T(p+1l(0n+1)  Tw+DI(ou+1)  ZT(en+o—0j+1) ‘
Consequently, by adding both sides of (19) and (20) and according to the definition of ¥ in
(16), we have
¥y (z) — ¥ma(z)| < [ T(o)porc” n T(0)9621"
! 2= Tlo—o)T(p+ ) (0u+1) ' T(o—0n)T(v+ 1) (0 +1)

MiI'(¢) )

+2( o~ (T]+1)+F(Q_UH)F(Q+UH—(Tj+1) [y = ma ).

By using (AS3), we find

[ —¥mal] < @y ~
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where ® € (0,1). Hence, by the Banach fixed point theorem [52], it follows that ¥ has a
unique fixed point which points out that the suggested multi-term multi-order RLFBVP (1)
has a unique solution. O

4. Approximation of Solutions via DGJIM and ADM Methods

This section is devoted to implementing the numerical methods named DGJIM and
ADM. Indeed, we here state how we can employ these methods to our suggested multi-term
multi-order RLFBVP. In both algorithms, appropriate recursion relations are formulated to
approximate the solutions of (1) along with their convergence. Our techniques are inspired
by [47,48].

4.1. DGJIM Numerical Method

We prove above that the solutions of Equations (1) and (2) are equivalent. Thus, we
now suppose that the right-hand side of (17) is written under the following decomposition
(not uniquely) N N

(¥m)(z) = L(m(z)) + N(m(z)) +{(2),

where the operator L is linear, the operator N stands for the nonlinear terms, and [isa
known function. Then, one can rewrite (2) in the decomposed form

m(z) = L(m(z)) + N(m(z)) + {(2). (21)

Suppose that the solution of (21) is written as a series as follows

—+o00
m(z) = Zomn(z). (22)
By combining (22) and (21), we get
+oo T 1
Y ma(z) =L 1 ma(2)) + N( X ma()) +2(). 23)

Since L is linear, by a simple manipulation, we obtain the following algorithm known as
the DGJIM numerical method:

(
my(z) = L(m1(z)) + N(mo(z) + mi(z)) — N(mo(z)),
(

3

2(2)) + N(mo(2) + m1(2) +ma(2)) = N(mo(2) + m (2)), 24)

n—1

) = Ll 1) + 8T mia)) -8 L mia),

i=0

Therefore, we can obtain the n-term approximate solution of the integral Equation (2) as

w(z) = Yomz). @)
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In view of (25), we simply get
i (2) = wn(2) = wn1(2). (26)
Thus, a combination of (24) and (26) gives
Wn(2) = Wy—1(2) + L(wy-1(2) = wy—2(2)) + N(wy-1(2)) = N(wy2(2)).  (27)
Now, let
|Tm —Lu|| < plm—ul, 0<wm <1,
[Nm —Nul| < pallm—ul|, 0<pr<1,
where y1 + yp < 1. Therefore, the Banach fixed point principle guarantees the existence
of a unique solution @(z) for (21) and so for the integral Equation (2). According to the
relation (27), the following iterative expression is derived
|wn — wy—1|| < p1||wp—1 — wp—2|| + p2||wp—1 — wp—2||

= (1 + Vz)”wnq - wn—zH

< (m+ Hz)ZHwnfz — wy_3]|

IN

IN

(1 + p2)"™ |y —wo

7

which implies the absolute convergence and the uniform convergence of the sequence
{wy} to the exact solution w(z).

4.2. ADM Numerical Method

To implement the ADM numerical method, the nonlinear term N( Z My (z)) intro-
n=0
duced in (23) is decomposed into a series of Adomian polynomials as
_ —+o0o —+o00
N( Z mn(z)) =Y An(mo,my,...,my),
n=0 n=0
where A, (mg,my,...,my,) is produced by
1 9" [~/ k
A (mo,my, ... my) = ——— N(kaz) , (neNuU{0}). (28)
n! oz = 70

Consequently, Equation (23) reduces to

+o00 > +oo
;)mn(z) = L( Z:Omn(z)> + Z%]An(mo(z),ml(z),...,mn(z)) +{(2),

n=
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which gives us the following iterative schemes called the ADM method:

m3(z) = L my(z)) + Ax(mo(z), m1(z),...,mu(z)), 29)
my(z) = L(my-1(2)) + Ay-1(mo(2), m(2),..., mu(2)),
Finally, by writing M-term approximate solution of the integral Equation (2) as
M
wp(z) = Z my(z), (30)
n=0
we obtain the exact solution of (2) by
m(z) = lim wp(z). (31)

M—+o

Lastly, we find that the approximate solutions and the exact solution of the multi-term multi-
order RLFBVP (1) are extracted as uy(z) = Jg} wy(z) and u(z) = 37 m(z), respectively.

5. Application

Here, we prepare two distinct examples. In the first, the theoretical existence results are
examined, and, in the second, the approximate solutions of a given RLFBVP are obtained
with the help of the DGJIM and ADM numerical methods introduced above. Note that, in
the second example, we compare the approximate solutions obtained by two mentioned
numerical methods with the exact ones for different given fractional orders.

Example 1. Let us consider the following RLFBVP

1 1 2
D58u(z) = 2% + = sin(2u(z)) + EZDSilu(z) + ——arctan (DJ7u(z)), z€ (0,1),

8 10
u(0) =0,
1 (1-25)%(1 i(1—4s)*(e +si
u(1) :6/2 ( s)%( +u(s))ds+24/4( s)*(e +s1n(u(s)))ds,
0 ST(4)(4+5) 0 I'(5)1024
1 1
where we take data 9 = 1.8, n =2,00 =0,07 =04, 0, =05, = 5 n= 7 p=64=24

u =4, and v = 5. Along with these, continuous functions

h(z,s(z),x(2),y(z)) = 2> + %sin(Zs(z)) + %x(z) + % arctan (y(z)),

and
_ e *+sin(u(z))
4 7
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are defined on their domain. Clearly, Mg = M = 0.25 and My = 0.2. On the other side, we get

I+u(z) 1+U(z ‘ lu(z) —
4+ 22 4+z2 —4+2

[k1(z,u(2)) = ki(z, U(2))] < ‘ u(z)|,

and

Ika(z,u(z)) — ka(z, U(2))| < ’fz +Szn(u(7~)) _eF +Si:(U(z))’ 1

Thus, 61 = 6, = 0.25. In addition,

@ I()pic" L(0)q621"
Tlo—o)I(p+1)T(0w+1) T(o—on)l(v+1)T (0 +1)

M;T(0)
+Z { I'(o— (f]+1) +1"(Q—(7n)1"(g])+(7n—aj+1)

} ~ 0.8951 < 1

In consequence, by Theorem 2, a unique solution exists for the multi-term multi-order RLFBVP
considered above.

For the next example, we consider three different cases for the order of the proposed
RLFBVP and compare obtained approximate results with exact outcomes, which shows the
effectiveness of both DGJIM and ADM numerical methods together.

Example 2. In the present example, we consider three distinct values for oas ¢ =14, 0 =17
and ¢ = 1.9.
e Case(I) :0 = 1.4: Let us consider the following RLFBVP which has a structure as

D5tu(z) = u(z) + D92u(z) + ¢(z), z€(0,1),

1(0) = 0, —8/ ds+54/ s,

SN 2 06 2 17 2
G =tae® “Tan: %
In this problem, we have taken data 9 =14, =1/2,1=1/3,0, =03, uy=v=1,p = 8and
q = 54. It is known that ¢ — 0, = 1.1 > 1. In addition, ki (z,u(z)) = ka(z,u(z)) = u(z) for
z € [0,1]. By assuming m(z) = i)gfu(z), the equivalent integral equation of the problem (32) is
the following

(32)

where

(z) = 341 42n(@) 4 m(2) + 0] + D (s [* 2m(syis

+ 54/0% 303m(s)ds — 354 [303m(z) + m(z) + ¢(2)] Z_1>z0-1

8T'(1.4
= 33tm(z) + 35tm(z) + 34t ¢(z) + 201 F((l 1>) / 393m(s)ds

I ) (e — SEe () )

. 0.1
COT(11) (3ptm(2)|,,) — W(j(l)f(i’(zﬂzzl)- (33)
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Thus, we decompose the right-hand side of (33) as

m(z) = L(m(z)) + N(m(z)) + {(2),

where
L(m(z)) = 3§tm(z) — 35im(z),
N(n(z) = I [ ansyas + SO g s
0.1
L ()], ) - T o) ),
and

0.1
£la) = 30(e) - T (altaca) ).

Then, the sequence of approximate solutions of (32) and (33) are obtained by means of algorithms of
the DGJIM and ADM methods as follows:

ee Approximate solutions via DGJIM method for o = 1.4:
By using the suggested algorithm known as DGJIM numerical method in (24), we get

mo(z) = 1.2948z'7 — 0.42622>8 — 0.29362>! — 0.47482"1,
my(z) = 0.2936z>1 — 0.1228z*2 — 0.0382z*° — 0.239821° + 0.42612%% — 0.09682%7,
my(z) = 0.1722%% — 0.01652%° — 0.0033z>7 — 0.0852z27 + 0.12282z*% — 0.02972>3

—0.0430z2° — 0.0315z1° + 0.09682%7 — 0.0167z° — 0.1683z%3 % 0.4086z'2 + 4.4196z%1.

Therefore,

wo(z) = 1294827 — 0.42622>8 — 0.2936231 — 0.47482%1,
w1 (z) = 1294827 — 0.12282*2 — 0.0382z*° — 0.3398z!
—0.09682>7 — 0.4100z'? — 4.42922%1,
wy(z) = 1294827 — 0.01652>¢ — 0.0033z>7 — 0.08522%°
—0.02972>3 — 0.0430z%° — 0.0315z'¢ — 0.01672°
— 0.06832%3 — 0.00142z"? — 0.0096z%1 — 0.0382z*° + 0.2398z19,

and

up(z) = 2% — 0.29372>1 — 0.1973234 — 0.50912%4,
u1(z) = 2% — 0.0764z*5 — 0.0234z*8 — 0.26947'8

— 0.0614z%2 — 0.3398z!° — 4.74917%4,
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U (z) = 2% — 0.00952>7 — 0.0019z%7 — 0.05822%% — 0.01742>°
—0.0302z%2 — 0.0246z'7 — 0.0099z°3 — 0.0493z%° — 0.0012z!°

—0.0103z%% — 0.0234z*8 + 0.1901z!8.

oo Approximate solutions via ADM method for o = 1.4:
By using the suggested algorithm known as ADM numerical method in (29), we get

mo(z) = 1.2948z"7 — 0.42622>8 — 0.29362%! — 0.47482°1,
my(z) = 0.2936z>1 — 0.12282*% — 0.0382z%° — 0.3398z'° + 0.42612>8 — 0.09682z%° — 0.4100z'2 — 3.95442°1,
my(z) = 0.1720z>> — 0.0165z°° — 0.0033z> — 0.0852z%7 + 0.12282z*2 — 0.02972°3 — 0.2430z%°

—0.0015z1° +0.0968z%2 — 0.0167z° — 0.1683z%3 + 0.4050z2.

Therefore,
wo(z) = 12948217 — 0.4262z>8 — 0.29362>1 — 0.47482°1,
w1 (z) = 1294827 + 4.41102° — 0.12282%2 — 0.0382z*°
+0.339821° — 0.09682%° — 0.4100z'2,
Wy (z) = 1.29482'7 +0.17202>5 — 0.01662>° — 0.0033z>7 — 0.085222°
—0.02972%2 — 0.2430z%° — 0.0015z"° — 0.01672° — 0.1683z>>
—0.0044z"% — 0.0282z%1 — 0.0382z*° + 0.33982'2,
and

up(z) = z% — 0.0716z*! — 0.1973z34 — 0.50912%4,
uy(z) = 22 4+ 4.7296z°4 — 0.0764z%° — 0.0234z%8
+0.2694z8 — 0.0614z*2 — 0.3398z!,
U (z) = 2% +0.11222>8 — 0.0095z>7 — 0.0019z% — 0.05822>2
— 0.01742>% — 0.1704z%° — 0.0012z"° — 0.0099z°2 — 0.12152%°

—0.0036z1° — 0.03022%% — 0.0234z*8 + 0.2694718.

In this case, the graphs of the three-term approximate solutions obtained by the DGJIM and
ADM algorithms for the suggested RLFBVP (32) and the integral Equation (33) are plotted in
Figure 1.

Note that, in view of Theorem 1, we prove that u(z) is the solution of RLFBVP (1) if and only
if m(z) = D" u(z) is the solution of the integral Equation (2). Now, in the case ¢ = 1.4, since the
exact solution of RLFBVP is given by u(z) = z?, the corresponding exact solution of the equivalent
integral equation is

2
m(z) = Dgi2* = 0Pz = ¢ 27 z'7 = 1294877
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Exact solution of int. eq. compared with third-DGJIM and third-ADM-solutions

1 _Exact .S.D.I. Df mteg ra l. equamn ............... R
03r Third-DGJIM- =50l of integral equation

sl --:-Third:-ADM-s.ol.ofint:egral eq:uatiun . ........ .........
- ________ ________ R ________ .
OGF - ......... ......... ........ ........ ......... - ........ ........
7] S S ________ e _ :
A7 AN 0 A S O B
03h. . ........ T AN SRR N
SR TERUN SRS WS P« N S RO SO
o1k ......... ........ ......... B ........ ........ ......... ........

(a)

T G e e _
m— yact sol. ufnur EIVF' : : : : .

g Third-DGJIM-sol. of our BYP

= mmmm Thjrd-ADM- 20l of our BYWF
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045
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03

0z

0.1

(b)

Figure 1. Graphs of the exact solutions of the (a) integral Equation (33) and (b) RLFBVP (32)

compared with their third-DGJIM and third-ADM approximate solutions for ¢ = 1.4.

e Case(Il) ;0 =17

In the next case, we consider the same problem for ¢ = 1.7. In fact, at this time, we consider the

following RLFBVP

D5 u(z) = u(z) + DY2u(z) + ¢(z), z¢€(0,1),

u(0) =0,

: :
u(l) = 8/ u(s) ds+54/ u(s)ds,
0 0
where 5 )
@(Z) _ ZOB _ Z1.7 _ ZZ,

(34)
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such that we consider parameters ¢ = 1.7, =1/2, 1 =1/3,04, =03, uy =v =1,p =§,
and q = 54. Obviously, 0 — 0, = 1.4 > 1. In addition, k1(z,u(z)) = ka(z,u(z)) = u(z) for
z € [0,1]. By assuming m(z) = i)gf’u(z), the equivalent integral equation of the problem (34) is
given by
(17 2
m(z) = 35 [353m(z) + m(z) + ¢(z)] + 1"((14§ (8/02 302m(s)ds

20'4
z=1

8r(1.7) [z
= 337m(z) + 3ytm(z) + 34t p(z) + 204 I“(l.;L) /0 393m(s)ds

1
454 /O * 303 (s)ds — 3L [103m(z) + m(z) + ¢(2)]

ZMM /0é 503 (s)ds — F(L)Z(M(ja (z) ’2:1)

r(4) Jo 07" T(14) o+
204 7),04
- % (37m(2)],_y) - %(365 9(2)],_y)- (35)

Then, we decompose the right-hand side of (35) as

m(z) = L(m(z)) + N(m(z)) +{(2),

where
L(m(z)) = 357m(z) + 35im(z),
z 2 7)20% 3
N(m(z)) = 8FI(%17A)L) 302m(s)ds + 541;((11.74)) / Jo2m(s)ds
r(1.7)z04 _ T(1.7)2%

*'7'(33”"(2)‘?1) W(Jéfm(z)]zzl),

Then, the sequence of approximate solutions of (34) and (35) are obtained by means of two DGJIM
and ADM methods as follows:

oo Approximate solutions via DGJIM method for ¢ = 1.7:

wo(z) = 12948217 — 0.31862>1 — 0.1973z3* — 0.68932%4,
w1 (z) = 12948217 +0.0169z>4 — 2.7346294 — 0.04872*8
—0.1040z>! — 0.2783z%! — 0.1886z*> — 0.3839z'8,
wy(z) = 1.29482z'7 +0.0169z>* — 0.01152%4 — 0.02342*8
—0.08882>1 — 0.0019z%! — 0.14712* + 0.26542'8

—0.0033z%° — 0.10782%° + 0.0044z°8 — 0.0165z°7,
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and

up(z) = z% — 0.21412>4 — 0.1296z%7 — 0.67312%7,

u1(z) = 2% +0.01112>7 — 2.6703z%7 — 0.1493z°1
—0.06152°% — 0.2052z%4 — 0.0982z48 — 0.29212%1,

us(z) = 22 4 0.01112%7 — 0.0112z%7 — 0.0141z>1 — 0.0525z°4
—0.0014z%* — 0.0002z71 — 0.0449z%1 — 0.0075z%> — 0.07032>%
+0.0025z5! — 0.00182%% — 0.00942%2 — 0.0899z48 - 0.2025z%1.

ee Approximate solutions via ADM method for o = 1.7:

wy(z) = 1.2948z7 — 0.31862>! — 0.1973z34 — 0.6893z%4,

w1 (z) = 1.29482'7 +0.01692>* — 0.03462%4 — 0.04872*8
—0.1040z>1 — 0.2783z%1 — 0.18862*5 — 0.3839z'%,

wy(z) = 1294827 + 0.0169z2>4 — 0.03462%4 — 0.02342z*8 4 0.00122>!
+1.71192%1 — 0.14712*5 — 1.36542'8 — 0.0033z%> — 0.00052%%

—0.0703z38 — 0.01342°2 — 0.10782z°° + 0.0044z°8 — 0.0165z%°,

and

up(z) = 2% — 0.21412%4 — 0.1296z%7 — 0.67312%7,

u1(z) = 2% +0.1055z>7 — 0.0338z"7 — 0.0111z>7 — 0.0293z>!
—0.0083z>* — 0.2052z%* — 0.1153z*8 — 0.29212%1,

up(z) = 22 4+0.01112%7 — 0.0338z%7 +0.0111z%7 — 0.01412>!
4 0.0007z°* 4 1.2619z%* — 0.0899z*% — 1.04162%1 — 0.00182%8

—0.0002z71 — 0.0449z%1 — 0.00752°° — 0.0703z%8 + 0.0025z%1 — 0.00942%2.

In consequence, the graphs of the three-term approximate solutions obtained by the DGJIM and
ADM algorithm for the suggested RLFBVP (34) and the integral Equation (35) are plotted in

Figure 2.
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Exact solution of int. eq compared with third-DGJIM and third- ADM solutions
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Figure 2. Graphs of the exact solutions of (a) the integral Equation (35) and (b) RLFBVP (34)

compared with their third-DGJIM and third-ADM approximate solutions for ¢ = 1.7.

e Case(III) :0 =19

Finally, we consider the first problem for ¢ = 1.9 as the third case. Consider the following RLFBVP

D5 u(z) = u(z) + D2u(z) + ¢(z), z € (0,1),

u(l) = 8/0% u(s) 0ls+54/0é u(s)ds,

where

(36)
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The parameterso =19, =1/2,1 =1/3,0, =03, u =v =1, p = 8, and q = 54 are assumed
here. Evidently, 0 — 0, = 1.6 > 1. In addition, k1(z,u(z)) = ka(z,u(z)) = u(z) forz € [0,1].
By assuming m(z) = Z)gfu(z), the equivalent integral equation of the problem (36) is given in the
following form
167~0.3 N I(19) t 03
m(z) = Jy2 [Tgim(z) + m(z) + ¢(2)] + T(16) (8/0 Jom(s)ds

20'6
z=1

8r(1.9) [z
= 94Em(z) + 3m(=) + 30p(z) + /O 303m(s)ds

1
454 /O * 303 (s)ds — 3L [03m(z) + m(z) + ¢(2)]

541(1.9) /3 r(19)z%°
,0694L(L9) /3 393m(s)ds — i(jgfm(z)‘zzl)

I(Le6) I(1.6)
0.6 0.6
- r(ﬁ(?); (37m(2)|,,) — F(rl('?g)(ﬁéf $(2)],_,)- (37)

By decomposing the right-hand side of (37), we get

where

N(m(z)) = r(i.é) Jo+ r(1.6)
0.6
e @) - e e,

0(2) = 3589(2) = g (79(2) )

Then, the sequence of approximate solutions are obtained by means of two DGJIM and ADM
methods illustrated as:

ee Approximate solutions via DGJIM method for 0 = 1.9:

wo(z) = 1.29482'7 — 0.2259z33 — 0.1495z3° — 0.81142%°,

w1 (z) = 1.29482'7 — 1.87262% — 0.02362>2 — 0.0069z>>
—0.2182z%° — 0.0198z*9 — 0.2991222,

wy(z) = 1.29482'7 4 0.04272%° + 0.00172°2 — 0.50082%°
4 0.48662z%% — 0.0009z”! — 0.0001z"4 — 0.0163z**

—0.0017z%% — 0.0520z*! — 0.00112°%° — 0.0406238,
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and
up(z) = 2% — 0.14952%° — 0.09682z>° — 0.75382%°,
uy(z) = 2% — 1.73972%9 — 0.0139z>° — 0.0040z°8
—0.15452%% — 0.01182>2 — 0.21822%%,
up(z) = 22 4 0.0397z%% 4 0.0010z°>° — 0.35462*8
+ 0.3549z% — 0.0004z7* — 0.0005z77 — 0.0118z*7
—0.0009z”! — 0.0326z** — 0.0006z%8 — 0.0025z*".
oo Approximate solutions via ADM method for 0 = 1.9:
wo(z) = 12948217 — 0.2259z33 — 0.1495z%° — 0.81142°°,
w1 (z) = 12948217 — 1.86262"° — 0.02362>% — 0.0069z>>
—0.2182z%° — 0.0198z*9 — 0.29912%2,
wy(z) = 12948217 — 0.0126z"° + 0.0017z>2 — 0.5008z*°
+ 0.48662z%% — 0.0009z7! — 0.0001z"4 — 0.0163z**
—0.00172%8 — 0.0520z*! — 0.00112%° — 0.04062°3,
and

up(z) = 2% — 0.14952>° — 0.09682z%° — 0.75282%°,

u1(z) = 2% — 1.7304z%9 — 0.0139z>° — 0.0040z°8
—0.15452%% — 0.01182%2 — 0.21822%%,

us(z) = 22 — 0.0117z%% 4-0.0010z>° — 0.35462>8
+ 0.3549z%° — 0.0004z”4! — 0.0005z”7 — 0.0100z*7

—0.0009z71 — 0.0626z** — 0.0006z8 — 0.0259z*1.

In consequence, the graphs of the three-term approximate solutions obtained by the DGJIM
and ADM algorithm for the suggested RLFBVP (36) and the integral Equation (37) are plotted in
Figure 3.
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Exact solution of int. eq compared with third-DGJIM and third-ADM-solutions

1 ........................................................... ........ / l .........
—E}(act sol. uflntegral equation : I :

0ar Third-DGJIM-sal. of integral equation |77 vy e
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045
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= mmmm Thjrd-ADM- 20l of our BYWF

0.8

07

06

045

0.4

03

0z

0.1

(b)

Figure 3. Graphs of the exact solutions of (a) the integral Equation (37) and (b) RLFBVP (36) compared
with their third-DGJIM and third-ADM approximate solutions for ¢ = 1.9.

6. Conclusions

In this paper, we study the existence of solutions for a multi-term multi-order RLF-
BVP with integral boundary conditions in the first step. Next, we apply two numerical
methods (i.e., DGJIM and ADM algorithms) for solving the suggested multi-term fractional
differential equation based on the decomposition technique. We show by an example that
the approximate solutions obtained by these methods are in excellent agreement with the
exact solutions. These give the solution as a series that quickly converges to the exact one
if it exists. Therefore, this paper states that these two numerical methods can be utilized in
many other multi-term FBVPs with different boundary value conditions by terms of some
symmetric and asymmetric operators.
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