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Abstract: Multivariate skew-symmetric-normal (MSSN) distributions have been recognized as an
appealing tool for modeling data with non-normal features such as asymmetry and heavy tails,
rendering them suitable for applications in diverse areas. We introduce a richer class of MSSN
distributions based on a scale-shape mixture of (multivariate) flexible skew-symmetric normal
distributions, called the SSMFSSN distributions. This very general class of SSMFSSN distributions
can capture various shapes of multimodality, skewness, and leptokurtic behavior in the data. We
investigate some of its probabilistic characterizations and distributional properties which are useful
for further methodological developments. An efficient EM-type algorithm designed under the
selection mechanism is advocated to compute the maximum likelihood (ML) estimates of parameters.
Simulation studies as well as applications to a real dataset are employed to illustrate the usefulness of
the presented methods. Numerical results show the superiority of our proposed model in comparison
to several existing competitors.

Keywords: ECME algorithm; Hadamard product; scale-shape mixtures; skew-contaminated-normal
distribution; skew-symmetric distribution; truncated normal distribution

1. Introduction

The use of multivariate normal (MN) distribution plays a central role in statistical
modeling. However, there are some situations where the data are not in agreement with
the MN distribution. Departure from normality can take place in different ways, such
as multimodality, lack in central symmetry, and positive or negative excess of kurtosis.
The class of scale mixtures of skew-normal distributions (SMSN) whose general form was
first introduced by Branco and Dey [1] includes many multivariate skew symmetric (MSS)
distributions with only one mode.

More formally, a scale mixture distribution can be constituted by mixing a base density
over a scaling distribution. Its density can be expressed in the form of the integral given by

f (y) =
∫ ∞

0
g
(
y|κ(τ)

)
dH(τ; ν), (1)

where g
(
y|κ(τ)

)
is the conditional density of a p× 1 random vector Y given κ(τ). Herein,

κ(·) is a positive function of a scaling variable τ with cumulative distribution function (cdf)
H(τ; ν), indexed by the parameter vector ν.

Using (1), the family of SMSN distributions can be generated by assuming a multi-
variate skew-normal (MSN) distribution [2] with location ξ, scale covariance matrix κ(τ)Σ,
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and shape parameter λ for g
(
y|κ(τ)

)
. The marginal probability density function (pdf) of Y

can be obtained as follows:

f (y) = 2
∫ ∞

0
φp(y; ξ, κ(τ)Σ)Φ

(
κ(τ)−1/2λ>Σ−1/2(y− ξ)

)
dH(τ; ν), (2)

where φp(·; ξ, Σ) denotes the pdf of the p-variate MN distribution with mean vector ξ and
covariance matrix Σ, and Φ(·) is the cdf of the standard normal distribution. Some simple
scaling functions such as κ(τ) = τ and κ(τ) = 1/τ lead to well-known distributions. As
described by Branco and Dey [1], some remarkable examples are the multivariate skew-
t (MST), multivariate skew-slash (MSSL), and multivariate skew-contaminated-normal
(MSCN) distributions, to name just a few. The SMSN family collapses to the class of
scale mixture of normal distributions when the skewness parameter vanishes. The MSN
distribution [2] with the parameterization given by Arellano-Valle and Genton [3] can be
recovered when H(τ; ν) is degenerated by imposing τ = 1.

The multivariate skew-scale mixtures of normal (MSSMN) distributions [4] is estab-
lished when g

(
y|κ(τ)

)
defined in (1) is given by

g
(
y|κ(τ) = τ−1) = 2φp(y; ξ, τ−1Σ)Φ

(
λ>Σ−1/2(y− ξ)

)
. (3)

Therefore, the pdf of MSSMN distribution is obtained as follows:

f (y) = 2Φ
(
λ>Σ−1/2(y− ξ)

) ∫ ∞

0
φp(y; ξ, τ−1Σ)dH(τ; ν). (4)

Recently, Arellano-Valle et al. [5] proposed a multivariate class of scale-shape mixtures
of skew-normal (MSSMSN) distributions which provides alternative candidates for model-
ing asymmetric data. A convenient hierarchical representation of the MSSMSN distribution
is given by

Y |τ = (τ1, τ2)
> ∼ SNp

(
ξ, κ(τ1)Σ, η(τ1, τ2)λ

)
, (5)

where τ = (τ1, τ2)
> is a mixing vector with a joint cdf H(τ1, τ2; ν), and η(τ1, τ2) : (R+,R+)→

R is a real-valued shape mixing function which is not necessarily symmetric about zero.
The family of MSSMSN distributions encapsulates several renowned unimodal asymmetric
distributions generated by varying the scale and shape functions, κ(τ1) and η(τ1, τ2), for a
given distribution of τ, or alternatively by fixing κ(τ1) and η(τ1, τ2) but varying the dis-
tribution of τ. A convenient setup for the mixing functions is to choose κ(τ1) = 1/τ1 and
η(τ1, τ2) =

√
τ2, leading to a particular form of the shape mixture of SMSN distributions. If

we choose η(τ1, τ2) = (τ1/τ2)
−1/2, it produces another form of shape mixtures of MSSMN

distributions. See [5] for a more comprehensive discussion and detailed investigation.
As shown by Azzalini and Capitanio [6], the pdf of the MSS distribution can be written

as follows:

f (y; ξ, Σ) = 2|Σ|−1/2 f0
(
Σ−1/2(y− ξ)

)
G0
(
w
{

Σ−1/2(y− ξ)
})

, (6)

where ξ and Σ are, respectively, the location vector and scale covariance matrix; f0 : Rp →
R+ is a p-variate centrally symmetric pdf with respect to the origin, i.e., f0(x) = f0(−x);
G0 : R → [0, 1] is a univariate cdf satisfying G0(−x) = 1− G0(x); and w : Rp → R is an
odd real-valued function, namely w{−x} = w{x}. The MSS class is equivalent to the one
studied by Wang et al. [7] for which G0

(
w{x}

)
is replaced by π : Rp → [0, 1] satisfying

π(−x) = 1− π(x).
In light of (6), it is possible to generate a wide range of asymmetric families of unimodal

and multimodal skew distributions depending on the specification of the function w{x}.
This essential property induces greater flexibility in the available shapes. For example,
Ma and Genton [8] proposed a flexible class of skew-symmetric distributions by choosing
w{x} = PK(x), where PK(x) is an odd polynomial function of order K.
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The Hadamard product, also known as the Schur product, is a type of matrix multipli-
cation that is commutative and simpler than the matrix product. See [9] for a comprehensive
review and its applications to multivariate statistical analysis. The Hadamard product
is advantageous in computations and algebraic manipulations because the products are
entry-wise, the multiplication is commutative, and, particularly, the inverse is very easy
to obtain and the computation of power matrices is straightforward. By convention, we
use “�" to denote the Hadamard operations (product and power). Let A = (aij) and
B = (bij) be two p× q matrices of the same dimension but not necessarily square. Then,
the Hadamard product between these two matrices, denoted by A� B, is the element-wise
product of A and B, that is, a p× q matrix whose (i, j) entry is aijbij. Accordingly, the nth
Hadamard power of matrix A is defined as A�n = [an

ij]. More key properties concern-
ing the multiplication and partial derivatives of the Hadamard product are deferred to
Appendix A.

In the multivariate setup, the odd polynomial of order K has various combinations of
the coefficients. For example, the bivariate case under an odd polynomial of order K = 3 is
given by PK(x1, x2) = α1x1 + α2x2 + α3x3

1 + α4x3
2 + α5x2

1x2 + α6x1x2
2. As an alternative to

that of Ma and Genton [8] in more a general setting, we introduce the multivariate flexible
skew-symmetric-normal (MFSSN) distribution, denoted by MFSSNp(ξ, Σ, α), which has
the following pdf:

fMFSSN(y; ξ, Σ, α) = 2φp(y; ξ, Σ)Φ
(
λ>1 η1 + λ>2 η3 + · · ·+ λ>mη2m−1

)
, (7)

where α = (λ>1 , . . . , λ>m)
> is a pm × 1 multiple-scaled vector of shape parameters and

η2k−1 =
[
Σ−1/2(y− ξ)

]�2k−1 remains a p× 1 vector through an odd Hadamard power
transformation of order 2K− 1, for K = 1, . . . , m. Notably, the MFSSN distribution encom-
passes the flexible generalized skew-normal (FGSN) distribution introduced by Ma and
Genton [8] as the univariate case. Figure 1 illustrates the scatter-contour plots coupled with
their marginal histograms of the bivariate MFSSN distribution under ξ = 0, Σ = I2 and
various specifications of shape parameters arisen from two setups of m. As can be seen,
many different non-elliptically distributional shapes with multiple modes and asymmetric
patterns can be produced. Additional flexibility can be gained by expanding the thickness
of tails. This motivates us to propose a more general class of scale-shape mixtures of
MFSSN (SSMFSSN) distributions.

The class of SSMFSSN distributions can be hierarchically represented by

Y | τ = (τ1, τ2)
> ∼ MFSSNp(ξ, τ−1

1 Σ, ϑ), (8)

where ϑ =
(
λ>1 τ1/2

2 τ−1/2
1 , · · · , λ>mτ1/2

2 τ
−(2m−1)/2
1

)>. Further, we denote the pdf of
τ = (τ1, τ2)

> by hτ(τ1, τ2; ν). From (8), the marginal pdf of Y is given by

fSSMFSSN(y; ξ, Σ, ζ, ν) =
∫

φp(y; ξ, τ−1
1 Σ)Φ

(
τ1/2

2 {λ>1 η1 + λ>2 η3

+ · · ·+ λ>mη2m−1}
)
dH(τ; ν). (9)

Obviously, the MFSSN model is obtained by setting τ1 = τ2 = 1 in (9).
The family of SSMFSSN distributions introduced in (8) is quite vast, containing

several subfamilies of asymmetric and multimodal distributions which have never been
considered in the literature. Notice that the MSSMSN distribution described in (5) is a
simple case of SSMFSSN by taking κ(τ1) = 1/τ1, η(τ1, τ2) = (τ1/τ2)

−1/2, and λj = 0, for
j = 2, . . . , m. More importantly, the scale-shape mixtures of flexible generalized skew-
normal (SSMFGSN) distributions proposed very recently by Mahdavi et al. [10] can be
thought of as a univariate case of SSMFSSN when the dimension p = 1.

The EM algorithm [11] and some of its extraordinary variants such as the expec-
tation conditional maximization (ECM) algorithm [12] and the expectation conditional
maximization either (ECME) algorithm [13] are broadly applicable methods to carry out
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ML estimation for multivariate skew distributions in a complete-data framework. To the
best of our knowledge, previous developments of the EM-type algorithm are based on
the convolution-type representations, see, e.g., [14] for the MSN distribution, [15] for the
MST distribution, [1] for the SMSN distribution, and [5] for the MSSMSN distribution.
Since our proposed SSMFSSN model cannot be explicitly expressed by a convolution-type
representation, we develop a novel EM-based procedure designed under the selection
mechanism to compute the ML estimates.
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Figure 1. Four scatter-contour plots coupled with their marginal histograms of the bivariate MFSSN distribution:
(a) m = 2, λ1 = (0, 2)> and λ2 = (0,−2)> (bimodal); (b) m = 2, λ1 = (−2, 2)> and λ2 = (1,−1)> (trimodal);
(c) m = 3, λ1 = (−2, 2)>, λ2 = (1,−1)> and λ3 = (2,−2)> (trimodal); (d) m = 3, λ1 = (0, 2)>, λ2 = (0,−2)> and
λ3 = (2,−1)> (trimodal).

The rest of the paper is organized as follows. Section 2 presents the formulation of
the general SSMFSSN model and discusses how to deploy the ECME algorithm for ML
estimation based on the selection-type mechanism. Section 3 exemplifies some particular
cases of SSMFSSN distributions constructed by setting different mixing distributions for τ.
The proposed techniques are illustrated by conducting two simulation studies in Section 4
and analyzing a real data example in Section 5. We conclude in Section 6 with a few remaks
and offer directions for future research.

2. Methodology
2.1. The Family of SSMFSSN Distributions

A p-variate random vector Y∼SSMFSSNp(ξ, Σ, α, ν) is asserted to follow the SSMF-
SSN distribution with location vector ξ, scale covariance matrix Σ, shape parameters
α = (λ>1 , . . . , λ>m)

>, and flatness parameters ν if it has the following selection-type repre-
sentation:

Y d
= V | (U > 0), (10)

where V = ξ +Σ1/2τ−1/2
1 Z1, U = λ>1 (τ

−1/2
1 Z1)+ · · ·+λ>m(τ

−(2m−1)/2
1 Z�2m−1

1 )− τ−1/2
2 Z2

and (Z>1 , Z2)
>∼Np+1(0, Ip+1). Herein, ‘ d

=’ stands for equality in distribution, and U is
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obviously a continuous random variable symmetric about zero. Using this characterization,
the random samples for SSMFSSNp(0, Ip, α, ν) can be simulated through the following
scheme

X =

{
τ−1/2

1 Z1, if U > 0,
−τ−1/2

1 Z1, otherwise.
(11)

As a result, the random samples of the general SSMFSSNp(ξ, Σ, α, ν) can be obtained
by the affine transformation Y = ξ + Σ1/2X.

For fitting the SSMFSSN model (10) within the complete-data framework via the EM-

type algorithm, we introduce two latent variables W d
= U | (U > 0) and γ = (γ1, γ2)

> d
=

(τ1, τ2)
> | (U > 0). Then, (Y>, W, γ>)>

d
= (V>, U, τ>)>|(U > 0) has the following joint

pdf:

fY ,W,γ(y, W, γ) =
1

Pr(U > 0)
fV ,U,τ(y, W, γ)

= 2 fτ(γ) fV |τ(y) fU|V ,τ(W)

= 2γ1/2
2 hτ(γ1, γ2; ν)φp

(
y; ξ, γ−1

1 Σ
)
φ
(
γ1/2

2 {W − ζ}
)
, (12)

where ζ = λ>1 η1 + · · ·+ λ>mη2m−1, hτ(γ1, γ2; ν) is the pdf of τ = (τ1, τ2)
> evaluated at

point γ = (γ1, γ2)
>.

Integrating out W from (12) gives the following joint pdf

fY ,γ(y, γ1, γ2) = 2hτ(γ1, γ2; ν)φp
(
y; ξ, γ−1

1 Σ
)
Φ
(
γ1/2

2 ζ
)
. (13)

Therefore, the marginal pdf of Y is given by

fY (y) =
∫ ∞

0

∫ ∞

0
fY ,γ(y, γ1, γ2)dγ1dγ2

τ1⊥τ2= 2
∫

φp(y; ξ, γ−1
1 Σ)dHτ1(γ1; ν1)

∫
Φ
(
γ1/2

2 ζ
)
dHτ2(τ2; ν2), (14)

where the second equality holds if we further assume τ1 and τ2 are mutually independent.
It is noteworthy that the shape mixtures of MSSMN distribution established by Arellano-
Valle et al. [5] also belongs to the family of our proposed SSMFSSN model by imposing
λ2 = · · · = λm = 0.

Dividing (12) by (13) yields the following relation

f (W | y, γ1, γ2) =
γ1/2

2 φ
(
γ1/2

2 (W − ζ)
)

Φ
(
γ1/2

2 ζ
) ≡ f (W | y, γ2), (15)

for which ‘≡’ in (15) means that W and γ1 are conditionally independent. Moreover, it is
straightforward to show that

W | (y>, γ2)
> ∼ TN

(
ζ, γ−1

2
)

I(0,∞), (16)

where TN(µ, σ2)IA represents a doubly truncated normal distribution confined within the
interval A = {a1 < x < a2}, and IA is an indicator function of set A. Using Lemma 2 of
Lin et al. [16], we have the following conditional expectation:

E(W | y, γ2) = ζ + γ−1/2
2

φ(γ1/2ζ)

Φ(γ1/2ζ)
. (17)
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By Bayes’ rule, the conditional pdf of γ = (γ1, γ2)
> given Y = y is

f (γ1, γ2 | y) =
2hτ(γ1, γ2; ν)φp

(
y; ξ, γ−1

1 Σ
)
Φ(γ1/2

2 ζ)

fY (y)
. (18)

2.2. Parameter Estimation via the ECME Algorithm

The EM algorithm [11] is a widely used iterative technique to deal with ML estimation
in models that involve incomplete data or latent variables. One primary virtue of EM lies
in the fact of attractive monotone convergence properties and the preservation of simplicity
and stability. In practice, a major limitation of EM is often that some estimators in the
M-step cannot be solved in terms of closed-form expressions. To overcome this obstacle,
the ECM algorithm proposed by Meng and Rubin [12] recommends replacing the E-step of
EM with a sequence of simpler conditional maximization (CM) steps, yet it also enjoys the
same convergence properties as EM. However, in certain problems, some of the CM-steps
of ECM may become analytically intractable or suffer from slow convergence. As a further
flexible extension, the ECME algorithm [13] divides the CM-steps of ECM to maximize
either the Q-function, called the CMQ-step, or the corresponding constrained actual log-
likelihood function, named as the CML-step. In what follows, we describe in greater detail
how the proposed SSMFSSN model can be fitted by using the ECME algorithm.

Suppose that y = (y>1 , . . . , y>n )> constitutes a set of p-dimensional observed samples
of size n arising from the SSMFSSN model. Under the EM framework, the latent variables
W = (W1, . . . , Wn)> and γ = (γ>1 , . . . , γ>n )> introduced in the preceding subsection are
treated as missing data. Then, the complete data are given by yc = (y>, W>, γ>)>. Further,
we let θ = (ξ>, vech(Σ)>, α>, ν>)> denote the entire unknown parameters to be estimated
in the SSMFSSN model, where vech(·) is the half-vectorization operator that stacks the
lower triangular elements of a p× p symmetric matrix into a single p(p + 1)/2 vector.

According to (12), the log-likelihood function of θ corresponding to the complete-data
yc, excluding additive constants and terms that do not involve parameters of the model, is
given by

`c(θ | yc) = −n
2

ln |Σ| − 1
2

n

∑
i=1

{
γ1i(yi − ξ)>Σ−1(yi − ξ) + γ2i(Wi − ζi)

2

−2 ln h(γ1i, γ2i; ν)

}
, (19)

with

ζi = λ>1 ηi,1 + λ>2 ηi,3 + · · ·+ λ>mηi,2m−1,

= λ>1 [Σ
−1/2(yi − ξ)]�1 + λ>2 [Σ

−1/2(yi − ξ)]�3 + · · ·+ λ>m [Σ
−1/2(yi − ξ)]�2m−1

= 1>p Λ1[Σ
−1/2(yi − ξ)]�1 + 1>p Λ2[Σ

−1/2(yi − ξ)]�3 + · · ·+ 1>p Λm[Σ
−1/2(yi − ξ)]�2m−1

= 1>p [∆1(yi − ξ)]�1 + 1>p [∆2(yi − ξ)]�3 + · · ·+ 1>p [∆m(yi − ξ)]�2m−1

= 1>p
m

∑
j=1

[∆j(yi − ξ)]�2j−1,

where 1p is a p × 1 vector of ones, ηi,2j−1 =
[
Σ−1/2(yi − ξ)

]�2j−1, Λj = Diag{λj} is a
p × p diagonal matrix containing the elements of λj on the main diagonal, and

∆j = Λ
1/(2j−1)
j Σ−1/2 is a p× p reparameterized matrix.

On the kth iteration, the E-step requires the calculation of the so-called Q-function,
which is the conditional expectation of (19) given the observed data y and the current
estimate θ̂(k), where the superscript (k) denote the updated estimates at iteration k. To
evaluate the Q-function, we require the following conditional expectations:

ŝ(k)1i = E(γ1i | yi, θ̂(k)), ŝ(k)2i = E(γ2i | yi, θ̂(k)), ŝ(k)3i = E(Wiγ2i | yi, θ̂(k)), (20)
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which have explicit expressions that are discussed in detail in a subsequent section along
with

ŝ(k)4i (ν) = E(ln h(γ1i, γ2i; ν) | yi, θ̂(k)), (21)

which may not have standard form for some subfamilies. Substituting (20) and (21) into
(19) yields the following Q-function:

Q(θ | θ̂(k)) = −n
2

ln |Σ| − 1
2

n

∑
i=1

{
ŝ(k)1i (yi − ξ)>Σ−1(yi − ξ) + ŝ(k)2i ζ2

i − 2ŝ(k)3i ζi

−2ŝ(k)4i (ν)

}
. (22)

The CM-steps are implemented to update estimates of θ in the order of ξ, Σ, α and ν
by maximizing, one by one, the Q-function obtained in the E-step. After some algebraic
manipulations, they are summarized by the following CMQ and CML steps:
CMQ-Step 1: Fixing Σ = Σ̂(k) and α = α̂(k), we update ξ̂(k) via Proposition A2 by taking
the partial derivative of (22) with respect to ξ. Since the derivation cannot get a closed-form
expression for its maximizer, the solution of ξ̂(k+1) is validated by numerically solving the
root of the following equation:

n

∑
i=1

{
ŝ(k)1i Σ̂(k)−1

(yi − ξ) + ŝ(k)2i ζ
(k)
i âi − s(k)3i âi

}
= 0, (23)

where the two terms ζ
(k)
i = 1>p ∑m

j=1[∆̂
(k)
j (yi − ξ)]�2j−1 and âi =

∑m
j=1(2j − 1)∆̂(k)>

j [∆̂
(k)
j (yi − ξ)]�2j−2 are nonlinear functions of ξ with ∆̂

(k)
j =

Diag{λ̂(k)
j }

1/(2j−1)Σ̂(k)−1/2
.

CMQ-Step 2: Fixing ξ = ξ̂(k+1) and then updating Σ̂(k) by maximizing (22) over Σ gives

Σ̂(k+1) =
1
n

n

∑
i=1

ŝ(k)1i (yi − ξ̂(k+1))(yi − ξ̂(k+1))>. (24)

CMQ-Step 3: Fixing ξ = ξ̂(k+1), we update ∆̂
(k)
j via Proposition A3 by taking the partial

derivative of (22) with respect to ∆j each, j = 1, . . . , m. Since their solutions cannot be
isolated and set equal to zeros, we have the following equation for finding the nonlinear
roots of ∆j:

n

∑
i=1

(
ŝ(k)3i − ŝ(k)2i ζ

(k+1)
i (∆j)

)(
∆j(yi − ξ̂(k+1))

)�2j−2
(yi − ξ̂(k+1))> = 0, (25)

where ζ
(k+1)
i (∆j) = 1>p ∑m

j=1[∆j(yi − ξ(k+1))]�2j−1 is a nonlinear function of ∆j. After

simplification, we can transform ∆̂
(k+1)
j back to

λ̂
(k+1)
j =

(
∆
(k+1)
j Σ1/2(k+1))�2j−11p, j = 1, . . . , m. (26)

Collecting the above solutions turn out to be α̂(k+1) = (λ̂
(k+1)>

1 , . . . , λ̂
(k+1)>
m )>.

For some members of SSMFSSN, the calculation of ŝ(k)4i (ν) is not straightforward. An
update of ν̂(k) can be achieved by directly maximizing the constrained actual log-likelihood
function. This gives rise to the following CML-step:
CML-Step: ν̂(k) is updated by optimizing the following constrained log-likelihood func-
tion:

ν̂(k+1) = arg max
ν

n

∑
i=1

ln fSSMFSSN(yi, ξ̂(k+1), Σ̂(k+1), ζ̂(k+1), ν). (27)
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Note that the maximization in the above CML-step requires p-dimensional search of
the objective function (constrained log-likelihood), which can be easily accomplished by
using, for example, the optim routine in R Development Core Team [17]. The iterations of
the above algorithms are alternately repeated until a suitable convergence rule is satisfied,
e.g., the relative difference |`(θ̂(k+1))/`(θ̂(k))− 1| is sufficiently small, e.g. less than 10−6,
which we consider in the numerical experiments, where `(θ) = ∑n

i=1 ln fSSMFSSN(yi; θ). To
prevent infinite loop from adopting this criterion, the maximum number of iterations is set
to 5000.

On the initialization of parameters for starting the algorithm, the location vector ξ̂(0)

and the scale covariance matrix Σ̂(0) are specified as the sample mean vector and sample
covariance matrix, respectively. The initial values for the shape parameters λ̂

(0)
1 are taken

as the sample skewness of p variables, while the remaining λ̂
(0)
2 , . . . , λ̂

(0)
m are fixed around

0. As for ν̂(0) = (ν̂
(0)
1 , ν̂

(0)
2 )>, their initial values are chosen as relatively small values

depending on the settings of parameter domain. To avoid getting stuck in one of the many
local maxima of the likelihood function, a convenient method is to try a variety different
of initial values with perturbations or using the bootstrap resampling method [14]. The
solution with the highest log-likelihood value is treated as the ML estimates, denoted by

θ̂ = (ξ̂>, vech ˆ(Σ)
>

, α̂>, ν̂>)>.

3. Examples of SSMFSSN Distributions

We present some special cases of SSMFSSN distributions which are induced by setting
different mixing distributions for τ. For each case, additional conditional expectations are
also derived for the implementation of ECME.

3.1. The Multivariate Flexible Skew-Symmetric-t-Normal Distribution

The multivariate flexible skew-symmetric-t-normal (MFSSTN) distribution, denoted
by Y∼MFSSTNp(ξ, Σ, α, ν), is produced by taking τ1 ∼ Γ(ν/2, ν/2) and τ2 = 1 in (10). In
this case, hτ(γ1, γ2; ν) = g(γ1; ν/2, ν/2), where g(·; α, β) represents the pdf of the gamma
distribution with mean α/β. The pdf of the MFSSTN distribution can be expressed as

fMFSSTN(y; ξ, Σ, α, ν) = 2tp(y; ξ, Σ, ν)Φ(ζ), (28)

where tp(·; ξ, Σ, ν) stands for the pdf of p-dimensional multivariate t distribution with
location vector ξ, scale covariance matrix Σ, and degree of freedom (DOF) equal to ν.
One special case of the MFSSTN distribution is the multivariate skew-t-normal (MSTN)
distribution of Lin et al. [18], obtained by letting λj = 0 for j = 2, . . . , m. In addition, the
MFSSTN distribution reduces to MFSSN as ν→ ∞.

According to (18), it is easy to observe that γ1|Y = y∼Γ((ν + p)/2, (ν + δ2)/2), where
δ2 = (y− ξ)>Σ−1(y− ξ) denotes the squared Mahalanobis distance. Therefore,

E(γ1 | Y = y) =
ν + p
ν + δ2 andE(ln γ1 | Y = y) = ψ

(
ν + p

2

)
− ln

(
ν + δ2

2

)
, (29)

where ψ(x) = Γ′(x)/Γ(x) is the digamma function.
From (20) and (21), the E-step involves the calculation of ŝ(k)1i = E(γ1i | yi, θ̂(k)),

ŝ(k)2i = 1, ŝ(k)3i = E(Wi | yi, θ̂(k)) and ŝ(k)4i = E(ln γ1i | yi, θ̂(k)), which can be easily evaluated
via the results of (17) and (29). As an alternative way of estimating ν, the CML-Step for the
MFSSTN distribution can be altered to the following CMQ-Step.
CMQ-Step 4: ν̂(k+1) is obtained by solving the root of the following equation:

1 + ln
(

ν

2

)
− ψ

(
ν

2

)
+

1
n

n

∑
i=1

(
ŝ(k)4i − ŝ(k)1i

)
= 0. (30)

3.2. The Multivariate Flexible Skew-Symmetric-Slash-Normal Distribution

Let Y be a p-dimensional random vector with the following representation
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Y = ξ + τ−1/2Σ1/2Z, (31)

where Z∼Np(0, Ip) and is independent of τ
d
= U1/ν∼Beta(ν, 1), where U is the uniform

distribution on the interval (0, 1). From (31), the conditional distribution Y given τ is
Np(ξ, τ−1Σ). Then, Y has a multivariate slash distribution with pdf given by

fSL(y; ξ, Σ, ν) = ν
∫ 1

0
τν−1φp(y; ξ, τ−1Σ)dτ

=


2νν|Σ|−1/2Γ(ν+p/2)G(δ2/2;ν+p/2)

πp/2δ2ν+p , y 6= ξ

ν

(ν+p/2)(2π)p/2 |Σ|−1/2, y = ξ

(32)

where G(·; r) denotes the cdf of the gamma distribution with scale parameter 1 and
shape parameter r. Using the law of iterated expectations, the mean vector and variance-
covariance matrix of Y are

E(Y) = ξandcov(Y) =
ν

ν− 1
Σ. (33)

If we select τ1∼Beta(ν, 1) and τ2 = 1 for (10), this generates the multi-
variate flexible skew-symmetric-slash-normal (MFSSSLN) distribution, denoted by
Y∼MFSSSLNp(ξ, Σ, α, ν), with the pdf taking the form of

fMFSSSLN(y; ξ, Σ, α, ν) = 2 fSL(y; ξ, Σ, ν)Φ(ζ). (34)

Note that the MFSSSLN distribution contains the MFSSN distribution as a limiting
case for ν→ ∞ and encloses the multivariate skew-slash distribution considered by Wang
and Genton [19] as a reduced case when λ2 = · · · = λm = 0.

According to (18), the conditional distribution γ1 | y is given by

f (γ1 | y) =


|δ|2ν+pγ

ν+p/2−1
1 exp(−γ1δ2/2)

2ν+p/2Γ(ν+p/2)G(δ2/2;ν+p/2)
, y 6= ξ

(ν + p
2 )γ

ν+p/2−1
1 , y = ξ.

(35)

In addition, some algebraic manipulations yield

E(γ1 | Y = y) =


( 2ν+p

δ2

)G(δ2/2;ν+p/2+1)
G(δ2/2;ν+p/2) , y 6= ξ

2ν+p
2ν+p+2 , y = ξ.

(36)

and

E(ln γ1 | Y = y) =


ln
(

2
δ2

)
+
∫ δ2/2

0 ln(x)xν+p/2−1e−xdx
Γ(ν+p/2)G(δ2/2;ν+p/2) , y 6= ξ

−2
2ν+p , y = ξ.

(37)

To implement the ECME procedure for fitting MFSSSLN, the conditional expectations
involved in (20) and (21) can be easily evaluated via the results of (17), (36), and (37).
Besides, the DOF ν̂(k) can be alternatively updated by maximizing the Q-function over ν,
leading to the following CMQ-Step:
CMQ-Step 4:
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ν̂(k+1) = − n

∑n
i=1 ŝ(k)4i

. (38)

3.3. The Multivariate Flexible Skew-Symmetric-Contaminated-Normal Distribution

The multivariate flexible skew-symmetric-contaminated-normal (MFSSCN) distribu-
tion, denoted by Y∼MFSSCNp(ξ, Σ, α, ν1, ν2), arises when τ2 = 1, while τ1 has a discrete
distribution taking value ν2 ∈ (0, 1) with probability ν1 and value 1 with probability 1− ν1.
More precisely,

h(τ1, ν) = ν1I(τ1=ν2)
+ (1− ν1)I(τ1=1), 0 < ν1 < 1and0 < ν2 < 1, (39)

where ν1 is the proportion of outliers and ν2 is an inflation parameter denoting the degree
of contamination.

Using (14), the pdf of Y is given by

fMFSSCN(y; ξ, Σ, ζ, ν1, ν2) = 2
{

ν1φp(y; ξ, ν−1
2 Σ) + (1− ν1)φp(y; ξ, Σ)

}
Φ(ζ). (40)

Obviously, the MFSSCN distribution reduces to the MFSSN distribution when ν2 = 1,
to the multivariate skew-contaminated-normal distribution [4] when λ2 = · · · = λm = 0,
and is said to follows the “MFSSCNe" distribution if ν1 and ν2 are restricted to be equal,
namely ν1 = ν2 = ν.

To obtain ŝ(k)4i , we require the following conditional expectation

E(γ1 | Y = y) =
1− ν1 + ν1ν

1+p/2
2 exp{(1− ν2)δ

2/2}
1− ν1 + ν1ν

p/2
2 exp{(1− ν2)δ2/2}

. (41)

The resulting Q-function can be easily evaluated through (17) and (41) since ŝ(k)2i = 1.

To estimate ν1 and ν2, we perform the CML-Step, so the calculation of ŝ(k)4i can be omitted.

3.4. The Multivariate Flexible Skew-Symmetric-t Distribution

The multivariate flexible skew-symmetric-t (MFSST) distribution, denoted by
Y∼MFSSTp(ξ, Σ, α, ν), is created by setting τ1 = τ2 = τ with τ ∼ Γ(ν/2, ν/2). Utiliz-
ing (8), the hierarchical representation for Y can be simplified as

Y | τ ∼ MFSSNp(ξ, τ−1
1 Σ, ϑ), (42)

where ϑ =
(
λ>1 , τ−1λ>2 · · · , τ−m+1λ>m

)>. Therefore, it can be verified that the MFSST
distribution has the following pdf

fMFSST(y; ξ, Σ, ζ, ν) = 2tp(y; ξ, Σ, ν)T

(
ζ

√
ν + p
ν + δ2 ; ν + p

)
, (43)

where T(·, ν) denotes the cdf of the t distribution with DOF ν. The detailed proof of
(43) is sketched in Appendix B. It is notable that the MFSST distribution includes the
multivariate skew-t distribution of Azzalini and Capitanio [6] as a particular member by
letting λ2 = · · · = λm = 0 and the MFSSN distribution as a limiting case when ν grows
to infity.

Using (18) subject to γ1 = γ2 = γ, it suffices to show that

f (γ | y) =
1

T(M; ν + p)
g
(

γ;
ν + p

2
,

ν + δ2

2

)
Φ
(
γ1/2ζ

)
, (44)
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where M = ζ
√

ν+p
δ2+ν

.
With arguments similar to those of Lin et al. [20], it is straightforward to derive

E(γ | Y = y) =
(

ν + p
δ2 + ν

)T
(

M
√

ν+p+2
ν+p ; ν + p + 2

)
T
(

M; ν + p
) (45)

and

E(ln γ | Y = y) = ψ

(
ν + p

2

)
− ln

(
δ2 + ν

2

)

+
ν + p
δ2 + ν

{T(M
√

ν+p+2
ν+p ; ν + p + 2)

T(M; ν + p)
− 1
}

+
ζ(δ2 − 1)√

(ν + p)(ν + δ2)3

t(M; ν + p)
T(M; ν + p)

+
1

T(M; ν + p)

∫ M

−∞
κν(x)t(x; ν + p)dx, (46)

where

κν(x) = ψ

(
ν + p + 1

2

)
− ψ

(
ν + p

2

)
− ln

(
1 +

x2

ν + p

)
+

(ν + p)x2 − ν− p
(ν + p)(ν + p + x2)

.

Additionally, using the law of iterated expectations, we can deduce that

E(Wγ | Y = y) =
1

T(M; ν + p)

{
M
√

ν + p
δ2 + ν

T
(

M

√
ν + p + 2

ν + p
; ν + p + 2

)

+(δ2 + ν)−1/2 Γ
(
(ν + p + 1)/2)

)
√

πΓ
(
(ν + p)/2

) (1 +
ζ2

δ2 + ν

)− ν+p+1
2
}

. (47)

As a consequence, the E-step in (20) and (21) requires the calculation of ŝ(k)1i = ŝ(k)2i =

E(γi | yi, θ(k)), ŝ(k)3i = E(Wiγi | yi, θ̂(k)), and ŝ(k)4i = E(ln γi | yi, θ̂(k)), which can be directly
evaluated via (45), (46), and (47). Moreover, the procedure of updating ν̂(k) is the same as
(30).

3.5. The Multivariate Flexible Skew-Symmetric-t-t Distribution

Consider two independent random variables τ1∼Γ(ν1/2, ν1/2) and τ2∼Γ(ν2/2, ν2/2)
with joint pdf given by

hτ(γ1, γ2; ν1, ν2) = g(γ1; ν1/2, ν1/2)g(γ2; ν2/2, ν2/2). (48)

Using (14), we thus generate the multivariate flexible skew-symmetric-t-t (MFSSTT)
distribution, denoted by Y∼MFSSTTp(ξ, Σ, α, ν1, ν2), whose pdf is of the form

fMFSSTT(y; ξ, Σ, α, ν) = 2tp(y; ξ, Σ, ν1)T(ζ; ν2). (49)

When the two DOFs are restricted to be equal, namely ν1 = ν2 = ν, Y is said to
follow the ‘MFSSTTe’ distribution. One thing worth noting is that the MFSSTT distribution
reduces to the MFSSN distribution when (ν1, ν2)→ (∞, ∞), to the MFSSTN distribution
by letting ν1 = ν and ν2 = ∞, and embeds the multivariate skew-t-t (MSTT) distribution
introduced by Wang et al. [21] as a special case under the setting of λ2 = · · · = λm = 0.
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According to (18), it is easy to see γ1 | Y = y∼Γ
(
(ν1 + p)/2, (ν1 + δ2)/2

)
. The

conditional pdf of γ2 given Y = y is

f (γ2 | y) =
g
(
γ2; ν2/2, ν2/2

)
Φ
(
γ1/2

2 ζ
)

T(ζ; ν2)
. (50)

Further, we have the following conditional expectations:

E(γ2 | Y = y) =
T
(
ζ
√

ν2+2
ν2

; ν2 + 2
)

T(ζ; ν2)
(51)

and

E(ln γ2 | Y = y) = ψ

(
ν2 + 1

2

)
− ln

(
ν2

2

)
+

T
(
ζ
√

ν2+2
ν2

; ν2 + 2
)

T(ζ; ν2)
− 1

−
(

ζ

ν2

)
t(ζ; ν2)

T(ζ; ν2)
− 1

T(ζ; ν2)

∫ ζ

−∞
ln
(

1 +
x2

ν2

)
t(x; ν2)dx. (52)

Applying the law of iterated expectations to (15) and (50) gives

E(Wγ2 | Y = y) =
1

T(ζ; ν2)

{
ζT

(
ζ

√
ν2 + 2

ν2
; ν2 + 2

)
+ t(ζ; ν2)

}
. (53)

With slight modifications as defined in (20) and (21), the necessary conditional
expectations in the E-step include ŝ(k)1i = E(γ1i | yi, θ̂(k)), ŝ(k)2i = E(γ2i | yi, θ̂(k)),

ŝ(k)3i = E(Wiγ2i | yi, θ̂(k)), ŝ(k)4i = E(ln γ1i | yi, θ̂(k)), and ŝ(k)5i = E(ln γ2i | yi, θ̂(k)), which
can be easily evaluated via the results given in (29), (51), (52) and (53), respectively. To
numerically estimate ν1 and ν2 for the MFSSTT distribution, we resort to the following two
root-finding equations:

CMQ-Step 4: ν̂
(k+1)
1 and ν̂

(k+1)
2 are obtained by solving the roots of the following

two equations:

1 + ln
(

ν1

2

)
− ψ

(
ν1

2

)
+

1
n

n

∑
i=1

(
ŝ(k)4i − ŝ(k)1i

)
= 0 (54)

and

1 + ln
(

ν2

2

)
− ψ

(
ν2

2

)
+

1
n

n

∑
i=1

(
ŝ(k)5i − ŝ(k)2i

)
= 0. (55)

4. Simulation Studies
4.1. Recovery of the True Underlying Parameters

The first experiment intends to investigate the ability of the proposed ECME algorithm
to recover the true underlying parameters. Monte Carlo samples of different sample sizes
n = 100, 250, 500, and 1000 were generated from the MFSSN distributions specified in (7)
and five examples of SSMFSSN distributions studied in Section 3. For ease of exposition,
we considered the Hadamard power transformation of order three (K = 3) that allows
two shape parameters in the skewing function Φ(·). Moreover, the flatness parameters
for MFSSCN and MFSSTT were assumed to be equal, say ν1 = ν2 = ν, referred to as the
MFSSCNe and MFSSTTe distributions. The presumed true parameters were ξ = (1,−1)>,
σ = vech(Σ) = (1, 0.5, 4)>, λ1 = (−2, 2)>, and λ2 = (1,−1)>. Furthermore, ν = 3 was
taken for the MFSSTN, MFSSSLN, MFSST, and MFSSTTe distributions, while ν = 0.7 was
adopted for the MFSSCNe distribution since its support lies within the interval (0, 1). As
an illustration, Figure 2 displays the scatter plots superimposed on the fitted contours for
each type of data simulated from one trail.
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Figure 2. Scatter-contour plots of one simulation case with 500 random samples generated from six
subfamilies of the proposed model.

For all scenarios, the accuracies of the parameter estimates are assessed by computing
the mean absolute bias (MAB) and the root mean square error (RMSE) over R = 100
replications. For a vector of parameters θ = (θ1, . . . , θp)>, these measures are, respectively,
defined as

MAB =
1

pR

p

∑
k=1

R

∑
r=1
|θ̂kr − θA

k |andRMSE =

√√√√ 1
pR

p

∑
k=1

R

∑
r=1

(θ̂kr − θA
k )

2, (56)
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where θ̂kr denotes the ML estimate of the kth parameter at the rth replication and θA
k

represents the actual value of θk.
The experimental results are summarized in Table 1. It is readily seen both MAB and

RMSE values tend to approach zero with increasing the sample size. While this study
is limited to the simplest case (p = 2; m = 2), our developed ECME algorithm shows
favorable ability to recover the true parameter values with data generated exactly according
to model assumptions. Similar experiments have also been undertaken on more complex
scenarios (p = 3; m = 3). The extensive results would not necessarily be excessively
reported since the conclusions are in accordance with those already presented.

Table 1. Simulation results based on 100 replications with different sample sizes.

Model Parameter n = 100 n = 250 n = 500 n = 1000

MAB RMSE MAB RMSE MAB RMSE MAB RMSE

MFSSN ξ 0.090 0.122 0.057 0.074 0.037 0.048 0.027 0.033
σ 0.257 0.382 0.143 0.209 0.115 0.168 0.081 0.123
λ1 0.476 0.625 0.203 0.270 0.111 0.155 0.079 0.112
λ2 0.339 0.489 0.160 0.209 0.104 0.131 0.064 0.082

MFSSTN ξ 0.095 0.127 0.062 0.086 0.040 0.053 0.028 0.036
σ 0.419 0.673 0.244 0.383 0.158 0.241 0.121 0.179
λ1 0.382 0.469 0.349 0.426 0.317 0.382 0.306 0.355
λ2 0.335 0.439 0.194 0.244 0.177 0.216 0.151 0.181
ν 2.495 10.745 0.458 0.651 0.319 0.413 0.203 0.258

MFSSSLN ξ 0.091 0.121 0.052 0.069 0.036 0.047 0.025 0.035
σ 0.424 0.641 0.306 0.489 0.190 0.314 0.127 0.200
λ1 0.458 0.588 0.267 0.347 0.216 0.269 0.174 0.206
λ2 0.470 0.614 0.259 0.378 0.174 0.227 0.114 0.138
ν 6.530 11.849 3.425 8.206 1.191 3.251 0.481 0.721

MFSSCNe ξ 0.087 0.117 0.048 0.064 0.036 0.047 0.026 0.034
σ 0.363 0.546 0.285 0.440 0.223 0.339 0.133 0.202
λ1 0.446 0.595 0.288 0.353 0.202 0.247 0.138 0.174
λ2 0.426 0.586 0.265 0.347 0.178 0.219 0.131 0.160
ν 0.199 0.216 0.162 0.176 0.116 0.137 0.083 0.098

MFSST ξ 0.114 0.152 0.069 0.091 0.042 0.055 0.032 0.040
σ 0.393 0.586 0.250 0.386 0.160 0.238 0.132 0.216
λ1 0.453 0.559 0.265 0.329 0.207 0.253 0.194 0.228
λ2 0.355 0.468 0.215 0.273 0.137 0.175 0.110 0.139
ν 1.152 2.210 0.430 0.621 0.266 0.366 0.207 0.265

MFSSTTe ξ 0.114 0.146 0.070 0.094 0.047 0.061 0.029 0.038
σ 0.400 0.654 0.213 0.323 0.165 0.255 0.115 0.188
λ1 0.437 0.546 0.411 0.476 0.406 0.453 0.414 0.438
λ2 0.313 0.409 0.216 0.260 0.183 0.217 0.167 0.193
ν 1.332 2.733 0.424 0.573 0.300 0.408 0.210 0.279

4.2. Comparing the Proposed Procedure with Convolution-Type EM Algorithms

The second experiment aims to compare the performance of the proposed selection-
type ECME procedure outlined in Section 2.2 with the traditional EM-based algorithms
derived based on convolution-type representations. As an illustration, we consider the
fitting of MSN, MST, and MSCN distributions arisen from the multivariate skew-normal
independent (SNI) family studied by Cabral et al. [22]. As discussed above, they are
special cases of our proposed MFSSN, MFSST, and MFSSCN distributions by setting
λ2 = · · · = λm = 0. Accordingly, the CMQ-Step 1 in Section 2 can be simplified as follows:
CMQ-Step 1: Fixing Σ = Σ̂(k) and λ1 = λ̂

(k)
1 , we obtain ξ̂(k+1) by

ξ̂(k+1) =

[
Ip

n

∑
i=1

ŝ(k)1i + Σ̂(k)∆̂
>(k)
1 1p1>p ∆̂

(k)
1

n

∑
i=1

ŝ(k)2i

]−1{ n

∑
i=1

ŝ(k)1i yi

+ Σ̂(k)∆̂
>(k)
1 1p1>p ∆̂

(k)
1

n

∑
i=1

ŝ(k)2i yi − Σ̂(k)∆̂
>(k)
1 1p

n

∑
i=1

ŝ(k)3i

}
. (57)
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In total, 100 Monte Carlo (MC) samples of sizes n = 100, 500, and 1000 were generated
from each of the three distributions. The true parameters were the same as those given
in the previous experiment except for λ2 = 0. Each simulated sample was fitted twice
with the proposed selection-type ECME procedure and the EM-type algorithm based on
convolution-type representations, as implemented by the mixsmsn R package [23]. For a
fair comparison, we started the two algorithms using the same initial values as described
at the end of Section 2. All computations were carried out by Microsoft R package 3.5.1 in
win64 environment of a desktop computer with 2.80-GHz/Intel Core(TM) i7-7700HQ CPU
Processor and 16.0 GB RAM. Performance evaluation was assessed by the execution CPU
time and the converged log-likelihood maxima.

The box plots depicted in Figure 3 reveal the selection-type algorithm demands much
lower computational cost than those required for the convolution-type algorithm. The
phenomenon is more apparent for the MST and MSCN distributions, particularly for larger
n. The high efficiency of the selection-type algorithm can be ascribed to the fact that its
E-step is designed by virtue of simplification. Finally, it is worth mentioning that both
algorithms can achieve the same final log-likelihood, as demonstrated by violin plots in
Figure 4.
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Figure 3. Box plots of CPU time for convergence of selection-type and convolution-type algorithms for fitting MSN, MST,
and MSCN distributions under various sample sizes.
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Figure 4. Violin plots of converged log-likelihood obtained by selection and convolution EM-type algorithms for fitting
MSN, MST, and MSCN distributions under various sample sizes.

5. An Illustrative Example: The Wind Speed Data

We considered a trivariate dataset analyzed by Azzalini and Genton [24] for the
study of spatial distribution of wind speed by means of the MST and various MSSMSN
distributions proposed by Azzalini and Capitanio [6] and Arellano-Valle et al. [5], respec-
tively. This dataset contains 278 hourly average speed assembled at three meteorological
towers: Goodnoe Hills (gh), Kennewick (kw), and Vansycle (vs) from 23 February to
30 November 2003 recorded at midnight when wind speeds tend to peak. The positive and
negative signs of wind speed measurements represent a westerly wind direction and an
easterly wind direction, respectively. The Ljung–Box test indicates weak serial correlation
for observations measured at the three stations. For modeling these data, we followed
Azzalini and Genton [24] to treat the observations as being independent and identically
distributed. Figure 5 presents histograms overlaid with kernel density curves obtained by
using R density() function for measurements collected at each tower.

Six SSMFSSN models of order 3 were considered to fit the wind speed data. For the
sake of comparison, the MST, MSTN, and MSTC distributions belonging to the MSSMSN
family [5] were also fitted as sub-models of SSMFSSN subject to the constraint of λ2 = 0.
To select an appropriate model from the candidates, we adopted the Akaike information
criterion (AIC) [25] and the Bayesian information criterion (BIC) [26], which are the two
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most widely used model selection indices based on penalized likelihood and applicable for
both nested and non-nested models. The two criteria are defined as

AIC = 2d− 2`max and BIC = d log n− 2`max, (58)

where d is the number of free parameters in the model and `max is the maximized log-
likelihood value. A lower AIC or BIC value indicates that a closer fit of the model to the
data.

Table 2 compares the ML estimation results for nine candidate models. As can be seen,
our proposed SSMFSSN models perform favorably as compared to three MSSMSN analogs
because they suffer from a lack of ability to capture the possibly bimodal behavior of the
wind speed data (Figure 5). Accordingly, the MFSSTT distribution provides the best fit in
terms of the lowest value of AIC as well as BIC, followed by the MFSST distribution. The
MSTC and MST are the top two MSSMSN models with smaller AIC and BIC values.

Table 2. Summary results from fitting various models to the wind speed data. The model with the
smallest value of AIC and BIC is displayed in bold.

Family Model `max d AIC BIC

MSTC –3178.7 13 6383.4 6430.5
MSSMSN MST –3180.7 13 6387.5 6434.6

MSTN –3180.9 13 6387.8 6434.9

MFSSN –3171.7 15 6373.4 6427.8
MFSSTN –3145.6 16 6323.1 6381.2

SSMFSSN MFSSSLN –3147.1 16 6326.2 6384.2
MFSSCN –3145.6 16 6323.3 6381.3
MFSST –3143.0 16 6318.1 6376.1

MFSSTT –3138.2 17 6310.4 6372.1
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Figure 5. Histograms of univariate measurements overlaid with kernel density curves for the hourly average wind speed
collected at three meteorological towers.

Table 3 summarizes the resulting ML estimates of 6 considered SSMFFSN models
together with their asymptotic standard errors obtained by performing the parametric
bootstrap method [27]. Notably, the estimates of the shape and flat parameters indicate the
presence of skewed and leptokurtic characteristics toward different directions among the
three variables. As an illustration, the fitted 3D contour densities of MSTC, MST, MFSST,
and MFSSTT distributions are depicted in Figure 6. It is interesting to see that the MFSSTT
model having the smallest AIC and BIC can adapt the shape of the wind speed data more
closely than the other three competitors.
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Table 3. ML estimates of key parameters for six SSMFSSN models. The associated standard errors
are shown in parentheses.

Parameter MFSSN MFSSTN MFSSSLN MFSSCN MFSST MFSSTT

ξ1 23.0(0.05) 21.3 (0.09) 21.1 (0.04) 21.5 (0.07) 19.9 (0.06) 18.6 (0.08)
ξ2 14.8 (0.04) 15.6 (0.08) 15.2 (0.04) 15.0 (0.07) 15.1 (0.04) 15.0 (0.06)
ξ3 14.6 (0.04) 14.9 (0.06) 14.8 (0.02) 15.4 (0.04) 13.4 (0.08) 12.6 (0.09)
σ11 221.2 (0.26) 122.9 (0.49) 80.6 (0.24) 115.8 (0.31) 115.6 (0.21) 115.6 (0.25)
σ21 138.8 (0.16) 96.4 (0.36) 64.6 (0.18) 91.5 (0.24) 92.8 (0.15) 93.2 (0.17)
σ31 151.0 (0.13) 104.8 (0.26) 69.5 (0.13) 99.1 (0.16) 102.9 (0.18) 106.0 (0.19)
σ22 181.3 (0.10) 134.5 (0.27) 90.3 (0.16) 128.0 (0.18) 131.2 (0.18) 132.1 (0.20)
σ32 111.4 (0.07) 80.8 (0.18) 54.4 (0.09) 79.6 (0.12) 78.8 (0.15) 79.1 (0.15)
σ33 296.4 (0.07) 203.4 (0.19) 134.0 (0.13) 187.2 (0.09) 204.4 (0.24) 206.7 (0.27)
λ11 –1.7 (0.01) –0.4 (0.04) –0.2 (0.01) –0.3 (0.02) 0.1 (0.02) 1.0 (0.02)
λ12 1.6 (0.04) 1.1 (0.04) 1.0 (0.03) 1.3 (0.04) 1.3 (0.01) 3.2 (0.01)
λ13 1.9 (0.04) 1.4 (0.04) 1.1 (0.02) 1.3 (0.02) 1.4 (0.01) 2.8 (0.02)
λ21 –0.7 (1.99) –0.1 (2.36) 0.0 (1.03) –0.1 (1.53) –0.2 (0.04) 1.2 (0.32)
λ22 –0.7 (0.05) –0.4 (0.25) –0.2 (0.05) –0.4 (0.19) –0.5 (0.01) –1.6 (0.21)
λ23 –0.1 (1.52) –0.2 (1.98) –0.1 (0.78) –0.2 (1.18) –0.1 (0.02) –2.3 (0.17)
ν1 – 5.0 (0.18) 1.5 (0.03) 0.2 (0.04) 4.7 (0.06) 4.7 (0.08)
ν2 – – – 0.2 (0.54) – 1.0 (0.16)

Figure 6. The 3-D contour densities for MSTC, MST, MFSST, and MFSSTT distributions fitted to the
wind speed data.

6. Conclusions

We introduce a novel family of SSMFSSN distributions as a generalization of the work
of Mahdavi et al. [10] that can capture simultaneously the dependency among multivariate
responses, skewness, heavy-tailedness, and, in particular, multimodal density shapes
without resorting to the use of finite mixtures [14,15,21]. Since the SSMFSSN model cannot
be represented by a convolution-type form, this stimulates us to devise a feasible ECME
algorithm for ML estimation under the selection-type mechanism. The effectiveness and
efficiency of the algorithm are evaluated by conducting two simulation studies. Numerical
analysis of a real dataset highlights the potential and capability of our proposed approach as
a promising alternative tool for modeling multimodal multivariate data with asymmetrical
behavior. Computer programs for implementation of our methods can be installed as
a R package from Github devtools::install_github("a-mahdavi/SSMFSSN.EM"). Further
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developments of the current approach could be exploited for powerful extensions of the
factor analysis model or finite mixtures thereof with censored or possibly missing values
that were considered recently by the authors of [28–35]. One limitation of the SSMFSSN
model is that it may not be suited to the data with modes having too far distances. Another
worthwhile extension of this work is to pursue a mixture modeling framework of the
current approach that would be an effective way to resolve this problem.
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Appendix A. The Hadamard Product

Below, we present three propositions concerning the multiplication and partial deriva-
tives of the Hadamard product which are useful for our methodological developments.

Proposition A1. Let A be a p× q matrix and D be a p× p diagonal matrix. Then, (DA)�n =
D�n A�n, where n ∈ N.

Proof. Multiplication of a Hadamard product by diagonal matrix D satisfies the following
equation:

D(A� B) = (DA)� B = A� (DB). (A1)

By taking B = A in (A1), we obtain

D(A� A) = (DA)� A = A� (DA). (A2)

Now, consider n = 2; using (A2), we have

D�2 A�2 = D[(DA)� A] = (DA)� (DA) = (DA)�2.

Similarly, for n = 3,we have

D�3 A�3 = D[(DA)�2 � A] = (DA)�2 � (DA) = (DA)�3.

Clearly, the desired statement can be established by mathematical induction on n.

Proposition A2. Let A be a p× q matrix and b ∈ Rp and x ∈ Rq be two column vector. Then,

∂

∂x
b>(Ax)�n = nA>((Ax)�n−1 � b),

Proof. Let f = b>(Ax)�n. It is easy to show

f = Trace(b>(Ax)�n) = b : (Ax)�n,

where “ : ” denotes Frobenius products defined as A : B = Trace(A>B).
Making use of the following facts
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(A� B) : C = A : (B� C),

A : BC = B>A : C = AC> : B,
∂

∂x
(A� B) = (

∂A
∂x

)� B + A� (
∂B
∂x

),

the differential of the scalar function f yields

d f = b : n(Ax)�n−1 � A(dx) = n((Ax)�n−1 � b) : A(dx)

= nA>((Ax)�n−1 � b) : dx.

This completes the proof.

Proposition A3. Let X be a p× q matrix and a ∈ Rp and b ∈ Rq be two column vector then,

∂

∂X
a>(Xb)�n = n

(
(Xb)�n−1 � a

)
b>.

Proof. Similar to the proof of Proposition A2, we define f = a : (Xb)�n and obtain its
differential as below

d f = a : n(Xb)�n−1 � (dX)b = n((Xb)�n−1 � a) : (dX)b

= n((Xb)�n−1 � a)b> : dX,

which completes the proof.

Appendix B. Proof of Equation (43)

Proof. Without loss of generality, we assume that ξ = 0 and Σ = Ip. Let Y d
=

(τ−1/2)Z1|(τ−1/2Z2 < λ>1 (τ
−1/2Z1) + · · · + λ>m(τ

−1/2Z1)
�2m−1), where Z1∼Np(0, Ip)

and Z2∼N(0, 1) are two independent random variables and τ ∼ Γ(ν/2, ν/2). Clearly,

(X1, X2)
> d

= τ−1/2(Z1, Z2)
>∼tp+1(0, Ip+1, ν). Therefore, it is easy to verify that

X1∼tp(0, Ip, ν), X2∼t(0, 1, ν) and√
ν + p

ν + x>1 x1
X2|(X1 = x1) ∼ t(0, 1, ν + p).

By Bayes’ theorem, the pdf of Y d
= X1|(X2 < λ>1 X1 + · · ·+ λ>m X�2m−1

1 ) is

fY (y) =
fX1(y)Pr(X2 < λ>1 X1 + · · ·+ λ>m X�2m−1

1 |X1 = y)

Pr(X2 < λ>1 X1 + · · ·+ λ>m X�2m−1
1 )

= 2 fX1(y)Pr
(√

ν + p
ν + y>y

X2 <

√
ν + p

ν + y>y
(λ>1 y + · · ·+ λ>my�2m−1)|X1 = y

)

= 2tp(y; 0, Ip, ν)T
(√

ν + p
ν + y>y

(λ>1 y + · · ·+ λ>my�2m−1); ν + p
)

.

This completes the proof.
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