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Abstract: Gravitational waves are regarded as linear waves in the weak field approximation, which
ignores the spacetime singularity. In this paper, we analyze singularities in exact gravitational wave
solutions. We provide an exact general solution of the gravitational wave with cylindrical symmetry.
The general solution includes some known cylindrical wave solutions as special cases. We show
that there are two kinds of singularities in the cylindrical gravitational wave solution. The first
kind of singularity corresponds to a singular source. The second kind of singularity corresponds
to a resonance between different gravitational waves. When two gravitational waves coexist, the
interference term in the source may vanish in the sense of time averaging.

Keywords: gravitational wave; singularity; source; resonance

1. Introduction

Singularity theorems [1] show that singularities are inevitable in spacetime while
singularities are ignored in the linear approximation. For example, the conclusion that the
dipole of the energy-momentum tensor vanishes in the center-of-mass coordinate [2] only
makes sense in the absence of the singularity. In the linear approximation, we develop the
gravitational wave scattering theory without large-distance asymptotics [3].

There are also research studies of gravitational waves with exact wave solutions of
the Einstein equation. By the Birkhoff theorem, there is no gravitational wave in spher-
ical vacuum spacetime [2,4,5]. The simplest spacetime related to gravitational waves is
the cylindrical spacetime described by the Einstein–Rosen metric. The 1+3-dimensional
cylindrical metric is similar to the 1+2-dimensional metric because of spacetime symmetry.
Nevertheless, they are not the same. The 1+2-dimensional vacuum Einstein equation
only has the Minkowski space solution such that gravitational waves do not exist in 1+2-
dimensional spacetime. The 1+3-dimensional cylindrical vacuum Einstein equation has
infinite solutions. That is, the 1+3-dimensional cylindrical metric may contain gravitational
wave solutions. A source of an infinite length may exist in the cylindrical spacetime so that
a strictly cylindrical spacetime probably cannot exist. Nevertheless, it is convenient to dis-
cuss the theoretical problem about gravitational radiation with the cylindrical gravitational
waves. In a series of works named “Gravitational waves in general relativity”, various
problems involving gravitational waves are discussed. In Reference [6], Marder provides
static cylindrical solutions and superimposes cylindrical wave solutions on the static field.
He also shows that cylindrical gravitational waves propagate energy. In Reference [7],
the reflexion and the transmission of out-going cylindrical gravitational waves by a thin
cylindrical shell of matter is discussed. In Reference [8], the gravitational field of a fast
moving particle is discussed. In Reference [9–11], cylindrical gravitational waves are used
to generate radiation solutions of other forms. There are many other works on gravitational
waves taking advantage of cylindrical gravitational waves, such as the energy loss of the
source by the gravitational radiation [12]; the C-energy, the super-energy, the associated
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dynamic effect of the cylindrical gravitational wave [13]; the energy-momentum of the
gravitational wave [14]; the superenergy flux of the Einstein–Rosen wave [15]; the nonlin-
ear effect such as the Faraday rotation and the time-shift phenomenon of the cylindrical
gravitational solution [16]; the nonlinear evolution of cylindrical gravitational waves [17];
the twisted gravitational wave [18]; the scattering of the gravitational waves [19]; the gravi-
tational collapse of the energy of gravitational waves [20]; the asymptotic structure of the
radiation spacetime [21]; the interaction between the gravitational wave and the cosmic
string [22,23]; the cosmic censorship hypothesis [24]; and the midisuperspace quantiza-
tion [25–27].

In this paper, we discuss gravitational waves with exact cylindrical wave solutions.
This paper is motivated by problems introduced in above paragraphs, which are the be-
havior of singularities in gravitational wave solutions and the new physical effects of
gravitational wave solutions in addition to, e.g., the reflexion and the transmission. Based
on the exact solution, we analyze singularities in gravitational waves. We show that there
are two kinds of singularities in gravitational waves. The first kind of singularities lies at
a fixed spatial position which corresponds to a source. We call it the source singularity.
In Reference [6,7], cylindrical gravitational waves are considered as the exterior solutions
of sources. We take a cylindrical gravitational wave as a complete solution. Our results
shows that singularities in cylindrical gravitational waves carry the information about the
source. The second kind of singularities arise as time proceeds to infinity. We recognize
the singularity as a resonance and we call it the resonance singularity. In the literature,
a resonance between gravitational radiation and the matter (especially the gravitational
radiation detectors) is considered [28–31]. In our paper, however, it seems that a gravi-
tational wave resonates with other gravitational waves. It is worth mentioning that the
resonance singularity only emerges when a gravitational wave with a source singularity
and a gravitational wave without a source singularity possess the same frequency. Two
gravitational waves with source singularities or two gravitational waves without source
singularities do not resonate. The resonance also indicates that the gravitational wave with
sources and the gravitational wave without sources are two of different kinds.

General relativity is a nonlinear theory. The direct summation of two solutions are not
a new solution any more. That results in a nontrivial superposition and interference of two
gravitational waves. We show how the interference terms of two cylindrical gravitational
waves behave. Interference terms arise both in the metric and the energy-momentum
tensor. Specifically, we show that the interference term in the source vanishes in the sense
of time averaging. To the best of our knowledge, the interference term in the source is
rarely considered in other papers.

In Section 2, we provide a general cylindrical gravitational wave solution. In Section 3,
we show the source singularity in a gravitational wave solution. In Section 4, we show the
resonance between different gravitational waves. In Section 5, we show the interference
between two cylindrical gravitational waves. Conclusions and outlooks are provided in
Section 6.

2. Cylindrical Gravitational Wave: General Solution

In this section, we provide a general solution of the cylindrical gravitational wave.
Exact solutions are used to discuss the source of a gravitational wave solution and the
resonance between gravitational waves. They are also used to discuss the interference of
gravitational waves.

The cylindrical gravitational wave is described by the 1+3-dimensional Einstein–Rosen
metric [32].

ds2 = e2γ(t,ρ)−2ψ(t,ρ)
(
−dt2 + dρ2

)
+ e−2ψ(t,ρ)ρ2dφ2 + e2ψ(t,ρ)dz2. (1)
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The Einstein tensor Gµν = Rµν − 1
2 ηµνR with ηµν = diag(−1, 1, 1, 1) in the orthogonal

frame [33] is the following.

G00 = G11 = e2ψ−2γ

[
1
ρ

∂γ

∂ρ
−
(

∂ψ

∂ρ

)2
−
(

∂ψ

∂t

)2
]

, (2)

G01 = G10 = e2ψ−2γ

(
1
ρ

∂γ

∂t
− 2

∂ψ

∂t
∂ψ

∂ρ

)
, (3)

G22 = e2ψ−2γ

[(
∂ψ

∂ρ

)2
−
(

∂ψ

∂t

)2
+

∂2γ

∂ρ2 −
∂2γ

∂t2

]
, (4)

G33 = e2ψ−2γ

[(
∂ψ

∂ρ

)2
−
(

∂ψ

∂t

)2
+

∂2γ

∂ρ2 −
∂2γ

∂t2

]

+ 2e2ψ−2γ

[
∂2ψ

∂t2 −
∂2ψ

∂ρ2 −
1
ρ

∂ψ

∂ρ

]
. (5)

We consider the gravitational field outside the source, i.e., ρ 6= 0, which satisfies
Gµν = 0. For Gµν = 0, Equations (2)–(5) can be simplified as [32] follows.

∂γ

∂ρ
= ρ

(
∂ψ

∂t

)2
+ ρ

(
∂ψ

∂ρ

)2
, (6)

∂γ

∂t
= 2ρ

∂ψ

∂t
∂ψ

∂ρ
. (7)

For gravitational wave solutions, we require ∂ψ
∂t 6= 0. Then, we obtain the equation of ψ

from Equations (6) and (7) [32]

− ∂2ψ

∂t2 +
∂2ψ

∂ρ2 +
1
ρ

∂ψ

∂ρ
= 0. (8)

What is noteworthy is that Equation (8) can be obtain more directly from Equations (4)
and (5). The equation of ψ (8) is a linear equation. The general solution of Equation (8) is
the following:

ψ =
∫ ∞

0
dλAλ J0(λρ) cos(λt + αλ) +

∫ ∞

0
dλBλY0(λρ) cos(λt + βλ) + κ1t + κ2 ln ρ + κ0, (9)

where αλ, βλ, Aλ, and Bλ are arbitrary functions of λ, J0 is the Bessel function of first kind,
Y0 is the Bessel function of second kind, and κ0, κ1, and κ2 are arbitrary constants. Equations
of γ (6) and (7) are also linear equations. Substituting Equation (9) into Equations (6) and (7)
provides the general solution of γ as follows:

γ = 2κ1κ2t +
1
2

κ2
1ρ2 + κ2

2 ln ρ + κ3 −
ρ

2

∫ ∞

0
dλ1

∫ ∞

0
dλ2(F+ + F−)

− 2κ1ρ
∫ ∞

0
dλ[Aλ J1(λρ) sin(λt + αλ) + BλY1(λρ) sin(λt + βλ)]

− 2κ2

∫ ∞

0
dλ[Aλ J1(λρ) cos(λt + αλ) + BλY1(λρ) cos(λt + βλ)] (10)

with

F+ =
λ1λ2

λ1 + λ2
{Aλ1 Aλ2 [J0(λ1ρ)J1(λ2ρ) + J0(λ2ρ)J1(λ1ρ)] cos

(
λ1t + λ2t + αλ1 + αλ2

)
+ Aλ1 Bλ2 [J0(λ1ρ)Y1(λ2ρ) + Y0(λ2ρ)J1(λ1ρ)] cos

(
λ1t + λ2t + αλ1 + βλ2

)
+ Bλ1 Aλ2 [Y0(λ1ρ)J1(λ2ρ) + J0(λ2ρ)Y1(λ1ρ)] cos

(
λ1t + λ2t + βλ1 + αλ2

)
+ Bλ1 Bλ2 [Y0(λ1ρ)Y1(λ2ρ) + Y0(λ2ρ)Y1(λ1ρ)] cos

(
λ1t + λ2t + βλ1 + βλ2

)
}
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and also the following.

F− =
λ1λ2

λ1 − λ2
{Aλ1 Aλ2

[
J0(λ1ρ)J1(λ2ρ)− J0(λ2ρ)J1(λ1ρ) cos

(
λ1t− λ2t + αλ1 − αλ2

)]
+ Aλ1 Bλ2 [J0(λ1ρ)Y1(λ2ρ)−Y0(λ2ρ)J1(λ1ρ)] cos

(
λ1t− λ2t + αλ1 − βλ2

)
+ Bλ1 Aλ2 [Y0(λ1ρ)J1(λ2ρ)− J0(λ2ρ)Y1(λ1ρ)] cos

(
λ1t− λ2t + βλ1 − αλ2

)
+ Bλ1 Bλ2 [Y0(λ1ρ)Y1(λ2ρ)−Y0(λ2ρ)Y1(λ1ρ)] cos

(
λ1t− λ2t + βλ1 − βλ2

)
}.

Here κ3 in Equation (10) can be eliminated by a coordinate transformation and, with-
out loss of generality, we set κ3 = 0.

The solutions (9) and (10) are the general solution of the cylindrical gravitational wave.
Other solutions given in Reference [32] and solutions mentioned below are particular cases
of the solutions (9) and (10).

3. Source in Gravitational Wave

In this section, we show that some gravitational waves possess a source while others
do not.

By taking the following:

Bλ = Bδ(ω− λ),

Aλ = κ0 = κ1 = κ2 = 0 (11)

in Equations (9) and (10), where ω 6= 0 is a constant and α, β are arbitrary constants, we
obtain the following particular solution:

ψs = BY0(ωρ) cos(ωt + β), (12)

γs =
B2

4
ω2ρ2

[
Y2

0 (ωρ) + 2Y2
1 (ωρ)−Y0(ωρ)Y2(ωρ)

]
− B2

2
ωρY0(ωρ)Y1(ωρ) cos(2ωt + 2β) (13)

with α = αω and β = βω.
By taking the following:

Aλ = Aδ(ω− λ),

Bλ = κ0 = κ1 = κ2 = 0 (14)

in Equations (9) and (10), where ω 6= 0 is a constant and α, β are arbitrary constants, we
obtain another particular solution:

ψsf = AJ0(ωρ) cos(ωt + α), (15)

γsf =
A2

4
ω2ρ2

[
J2
0 (ωρ) + 2J2

1 (ωρ)− J0(ωρ)J2(ωρ)
]

− A2

2
ωρJ0(ωρ)J1(ωρ) cos(2ωt + 2α), (16)

with α = αω and β = βω.
These two solutions, ψs (γs) and ψsf (γsf), have been provided as gravitational wave

solutions in Reference [32]. Here, the subscript “s” means “source” and the subscript “sf”
means “source-free”. We remind the reader that ψs (γs) and ψsf (γsf) cannot be expressed
as static solutions with coordinates transformations. More details about the static solution
can be found in Reference [6].

Gravitational waves solutions ψs (γs) and ψsf (γsf) are vacuum solutions for ρ > 0.
Nevertheless, they may possess a source along the z axis at ρ = 0 [32]. In this paper, we
show that the solution ψs (γs) possesses a source while the solution ψsf (γsf) does not.
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The above solutions are vacuum solutions for ρ > 0 and sources can only locate at
ρ = 0. We take the electrostatic field as an example to illustrate the viewpoint. By solving
the following source free electrostatic field equation:

−∇2φ = 0, (17)

we obtain the following solution.

φ1 =
Q
r

. (18)

However, the solution only makes sense for r > 0. The solution is singular at r = 0.
By analyzing the singularity at r = 0, we will find the following.

−∇2φ1 = 4πQδ(r). (19)

That is, there is a Dirac delta source (charge) Q at the singularity r = 0 [34]. In Refer-
ence [35], we show that there is a Dirac delta source at r = 0 in the Schwarzschild spacetime.

We use the standard mathematical analysis to calculate the energy-momentum tensor
at ρ = 0. More details of this method can be found in our previous work [35]. By replacing ρ
by
√

ρ2 + ε2 in Equations (12) and (13) and substituting the metric (1) into Equations (2)–(5)
by the Einstein equation Gµν = 8πTµν, we obtain the following.

T00(ε) = T11(ε) = e2ψ−2γ B2

8π

ω2ε2

ρ2 + ε2 Y2
1

(
ω
√

ρ2 + ε2
)

cos2(ωt + β), (20)

T01(ε) = e2ψ−2γ B2

8π

ω2ε2

ρ
√

ρ2 + ε2
Y0

(
ω
√

ρ2 + ε2
)

Y1

(
ω
√

ρ2 + ε2
)

sin(2ωt + 2β), (21)

T22(ε) = e2ψ−2γ B2

8π

ω2ε2

ρ2 + ε2 Y2
1

(
ω
√

ρ2 + ε2
)

cos2(ωt + β)

− e2ψ−2γ B2

8π

2ω3ε2√
ρ2 + ε2

Y0

(
ω
√

ρ2 + ε2
)

Y1

(
ω
√

ρ2 + ε2
)

cos(2ωt + 2β) (22)

T33(ε) = e2ψ−2γ B2

8π

ω2ε2

ρ2 + ε2 Y2
1

(
ω
√

ρ2 + ε2
)

cos2(ωt + β)

− e2ψ−2γ B2

8π

2ω3ε2√
ρ2 + ε2

Y0

(
ω
√

ρ2 + ε2
)

Y1

(
ω
√

ρ2 + ε2
)

cos(2ωt + 2β) (23)

+ e2ψ−2γ B2

8π

2ω2ε2

ρ2 + ε2 Y2

(
ω
√

ρ2 + ε2
)

cos(ωt + β).

The energy-momentum tensor is given by the following.

Tµν = lim
ε→0

Tµν(ε). (24)

When ρ 6= 0, we have the following.

Tµν = lim
ε→0

Tµν(ε) = 0. (25)

When ρ = 0, with the following:

lim
z→0

Y0(z) =
2
π

ln z +
2
π

γ,

lim
z→0

Yν(z) = −
Γ(ν)

π

( z
2

)−ν
, ν 6= 0, (26)
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where γ is the Euler constant, we obtain the following.

T00 = T11 = e2ψ−2γ B2

2π3 cos2(ωt + β) lim
ε→0

ε2

(ρ2 + ε2)
2 ,

T01 = −e2ψ−2γ B2

2π3 sin(2ωt + 2β) lim
ε→0

ωε2

ρ(ρ2 + ε2)
ln
(

ω
√

ρ2 + ε2
)

, (27)

T22 = e2ψ−2γ B2

2π3 cos2(ωt + β) lim
ε→0

ε2

(ρ2 + ε2)
2 ,

T33 = e2ψ−2γ B2

2π3

[
cos2(ωt + β)− 2π

B
cos(ωt + β)

]
lim
ε→0

ε2

(ρ2 + ε2)
2 .

By use of [36]:

lim
ε→0

ε2

(x2 + y2 + ε2)
2 = πδ(x)δ(y),

we have the following.

T00 = T11 = e2ψ−2γ B2

2π2 δ(x)δ(y) cos2(ωt + β), (28)

T22 = e2ψ−2γ B2

2π2 δ(x)δ(y) cos2(ωt + β), (29)

T33 = e2ψ−2γ B2

2π2 δ(x)δ(y)
[

cos2(ωt + β)− 2π

B
cos(ωt + β)

]
. (30)

This is due to the following.

lim
ε→0

T01(ω, ε)

T00(ω, ε)
= 0,

T01(ω) should be regraded as zero.

T01(ω) = 0. (31)

We show T01(ω) = 0 with another method in the Appendix A.
The energy-momentum tensor in the solution ψs (γs) is then shown as follows:

Tµν = e2ψ−2γ B2

2π2 δ(x)δ(y)diag(cos2(ωt + β),

cos2(ωt + β), cos2(ωt + β), cos2(ωt + β)− 2π

B
cos(ωt + β)) (32)

with x = ρ cos φ and y = ρ sin φ. Equation (32) is a time-varying source. That is, the gravi-
tational wave solution ψs (γs) possesses a source (32) at ρ = 0.

Replacing ρ by
√

ρ2 + ε2 in Equations (15) and (16) and substituting the metric (1)
into Equations (2)–(5) by the Einstein equation Gµν = 8πTµν, we obtain the following.
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T00(ε) = T11(ε) = e2ψ−2γ A2

8π

ω2ε2

ρ2 + ε2 J2
1

(
ω
√

ρ2 + ε2
)

cos2(ωt + α), (33)

T01(ε) = e2ψ−2γ A2

8π

ω2ε2

ρ
√

ρ2 + ε2
J0

(
ω
√

ρ2 + ε2
)

J1

(
ω
√

ρ2 + ε2
)

sin(2ωt + 2α), (34)

T22(ε) = e2ψ−2γ A2

8π

ω2ε2

ρ2 + ε2 J2
1

(
ω
√

ρ2 + ε2
)

cos2(ωt + α)

− e2ψ−2γ A2

8π

2ω3ε2√
ρ2 + ε2

J0

(
ω
√

ρ2 + ε2
)

J1

(
ω
√

ρ2 + ε2
)

cos(2ωt + 2α), (35)

T33(ε) = e2ψ−2γ A2

8π

ω2ε2

ρ2 + ε2 J2
1

(
ω
√

ρ2 + ε2
)

cos2(ωt + α)

− e2ψ−2γ A2

8π

2ω3ε2√
ρ2 + ε2

J0

(
ω
√

ρ2 + ε2
)

J1

(
ω
√

ρ2 + ε2
)

cos(2ωt + 2α) (36)

+ e2ψ−2γ A
8π

2ω2ε2

ρ2 + ε2 J2

(
ω
√

ρ2 + ε2
)

cos(ωt + α).

When ρ 6= 0, we have what follows.

Tµν(ω) = lim
ε→0

Tµν(ω, ε) = 0. (37)

When ρ = 0, with the following:

lim
z→0

J0(z) = 1,

lim
z→0

Jν(z) =
1

Γ(ν + 1)

( z
2

)ν
, ν 6= 0,

we obtain what is shown below.

Tµν(ω) = lim
ε→0

Tµν(ω, ε) = 0. (38)

The solution ψsf (γsf) is a source free solution. ψsf (γsf) is source free such that the
amplitude can only be determined by the initial conditions.

Actually, one can analyze the Riemann curvature of spacetime described by ψsf (γsf)
and ψs (γs). In the spacetime described by ψs (γs), the Riemann curvature blows up at
ρ = 0. In the spacetime described by ψsf (γsf), the Riemann curvature is finite at ρ = 0.
The singularity of the Riemann curvature implies that the gravitational wave solution
possess has a singular source.

4. Resonance of Gravitational Wave

In this section, we recognize a resonance in the gravitational wave. A resonance is a
particular singular property of vibration.

By taking the following into account:

Aλ = Aδ(ω1 − λ),

Bλ = Bδ(ω2 − λ),

κ1 = κ2 = κ3 = 0 (39)

in the general solutions (9) and (10), we obtain a particular solution:
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ψ
(1)
re = AJ0(ω1ρ) cos(ω1t + α1) + BY0(ω2ρ) cos(ω2t + β2), (40)

γ
(1)
re = −A2

2
ω1ρJ0(ω1ρ)J1(ω1ρ) cos(2ω1t + 2α2)−

B2

2
ω2ρY0(ω2ρ)Y1(ω2ρ) cos(2ω2t + 2β2)

+
A2

4
ω2

1ρ2
[

J2
0 (ω1ρ) + 2J2

1 (ω1ρ)− J0(ω1ρ)J2(ω1ρ)
]

+
B2

4
ω2

2ρ2
[
Y2

0 (ω2ρ) + 2Y2
1 (ω2ρ)−Y0(ω2ρ)Y2(ω2ρ)

]
(41)

− AB
ω1ω2

ω1 + ω2
ρ[J0(ω1ρ)Y1(ω2ρ) + Y0(ω2ρ)J1(ω1ρ)] cos(ω1t + ω2t + α2 + β2)

− AB
ω1ω2

ω1 −ω2
ρ[J0(ω1ρ)Y1(ω2ρ)−Y0(ω2ρ)J1(ω1ρ)] cos(ω1t−ω2t + α1 − β2),

where α1 = αω1 and β2 = βω2 are arbitrary constants. The subscript “re” means “reso-
nance”.

The resonance occurs when ω1 = ω2. When ω1 → ω2, γ
(1)
re diverges due to the

existence of the factor 1
ω1−ω2

, this is the typical behavior of a resonance. Taking ε =
ω1 −ω2 → 0, we have the following.

lim
ω2→ω1

γ
(1)
re = lim

ε→0
γ
(1)
re ∼ −

2AB
π

ω1 cos(α1 − β2) lim
ε→0

1
ε

. (42)

The resonance effect can be recognized in another method. Taking ω1 = ω2 = ω
directly in what follows:

Aλ = Aδ(ω1 − λ),

Bλ = Bδ(ω1 − λ), (43)

κ1 = κ2 = κ3 = 0

and substituting them into the general solutions (9) and (10), we obtain the following solution:

ψ
(2)
re = AJ0(ωρ) cos(ωt + α) + BY0(ωρ) cos(ωt + β), (44)

γ
(2)
re = f (ρ)− 2AB

π
ωt sin(α− β)− A2

2
ωρJ0(ωρ)J1(ωρ) cos(2ωt + 2α)

− B2

2
ωρY0(ωρ)Y1(ωρ) cos(2ωt + 2β) (45)

− AB
2

ωρ[J1(ωρ)Y0(ωρ) + J0(ωρ)Y1(ωρ)] cos(2ωt + α + β)

with α = αω, β = βω and the following is the case.

f (ρ) =
A2

4
ω2ρ2

[
J2
0 (ωρ) + 2J2

1 (ωρ)− J0(ωρ)J2(ωρ)
]

+
B2

4
ω2ρ2

[
Y2

0 (ωρ) + 2Y2
1 (ωρ)−Y0(ωρ)Y2(ωρ)

]
(46)

+
AB
4

ω2ρ2 cos(α− β)

× [2J0(ωρ)Y0(ωρ) + 4J1(ωρ)Y1(ωρ)− J0(ωρ)Y2(ωρ)− J2(ωρ)Y0(ωρ)].

When A 6= 0 and B 6= 0, γ in Equation (4) has an aperiodic term proportional to t.
γ
(2)
re diverges as t proceeds to infinity. This is also a typical behavior of a resonance, which

means the impact of the external force stores up and increases with time t. The resonance
is indicated by a divergence in γre. When we solve ψre (γre) with different methods, the di-
vergence appears in different ways. γ

(1)
re and γ

(2)
re are just two different normalization
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methods when dealing with a divergence. We can solve a forced harmonic oscillator
d2

dt2 x(t) + ω2
0x(t) = sin(ω0t) directly or with the Green function method to find the diver-

gence as t→ ∞ or limω→ω0
1

ω−ω0
.

Here, we provide a physical picture of the resonance above. ψ
(1)
re (40) or ψ

(2)
re (44) is

the combination of ψs (12) and ψsf (15), which means that gravitational waves ψs (γs) and
ψsf (γsf) coexist. When ψs (γs) and ψsf (γsf) have the same frequency ω, they resonate with
one another.

What is noteworthy is that the two gravitational wave solutions with sources do
not resonate with one another. Two gravitational wave solutions without sources do not
resonate with one another either. A resonance only occurs between a gravitational wave
with a source and a gravitational wave without source. The calculation will be shown in
the later section. In this sense, the gravitational wave with a source and the gravitational
wave without a source shall be considered as two different kinds of gravitational waves.

5. Interference of Gravitational Wave

General relativity is a nonlinear theory and, thus, the interference of gravitational
waves is nontrivial in principle. In this section, we consider the interference of gravitational
waves. The interference term will appear both in the metric and in the source.

5.1. Interference Term in Metric

The factor ψ in the metric (1) satisfies a linear Equation (8). Thus, the following:

ψ = ψ1 + ψ2 (47)

is also a solution when ψ1 and ψ2 are solutions of Equation (8). For convenience, we take
ψ1 and ψ2 given by Equation (12) as an example.

ψ1 = B1Y0(ω1ρ) cos(ω1t + β1),

ψ2 = B2Y0(ω2ρ) cos(ω2t + β2). (48)

These two radiations have frequencies ω1 and ω2, respectively. Substituting Equation (47)
into Equations (6) and (7), we have the following:

γ = γ1 + γ2 − γint, (49)

where γ1 and γ2 are given by Equation (13) with frequencies ω1 and ω2:

γ1 =
B2

1
4

ω2
1ρ2
[
Y2

0 (ω1ρ) + 2Y2
1 (ω1ρ)−Y0(ω1ρ)Y2(ω1ρ)

]
−

B2
1

2
ω1ρY0(ω1ρ)Y1(ω1ρ) cos(2ω1t + 2β1),

γ2 =
B2

2
4

ω2
2ρ2
[
Y2

0 (ω2ρ) + 2Y2
1 (ω2ρ)−Y0(ω2ρ)Y2(ω2ρ)

]
−

B2
2

2
ω2ρY0(ω2ρ)Y1(ω2ρ) cos(2ω2t + 2β2)

and the following is the case.

γint = B1B2
ω1ω2

ω1+ω2
ρ[Y0(ω1ρ)Y1(ω2ρ) + Y0(ω2ρ)Y1(ω1ρ)] cos(ω1t + ω2t + β1 + β2)

+B1B2
ω1ω2

ω1−ω2
ρ[Y0(ω1ρ)Y1(ω2ρ)−Y0(ω2ρ)Y1(ω1ρ)] cos(ω1t−ω2t + β1 − β2).

(50)

γint is the interference term between two gravitational waves. ψ1 (γ1) and ψ2 (γ2) are
two gravitational wave solutions with sources.
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We emphasize that in this case when ω1 = ω2 = ω, then the following is the case:

γint = B1B2ωρY0(ωρ)Y(ωρ) cos(2ωt + β1 + β2)

− B1B2
2 ω2ρ2[Y2

0 (ωρ) + 2Y2
1 (ωρ)−Y0(ωρ)Y2(ωρ)

]
cos(β1 − β2)

(51)

and the above does not diverge; that is, two gravitational wave solutions with sources do
not resonate with each other. What is noteworthy is that two gravitational wave solutions
without sources do not resonate with one another either. We repeat that a resonance only
occurs between a gravitational wave with a source and a gravitational wave without source.

5.2. Interference Term in Energy-Momentum Tensor

Now we calculate the energy-momentum tensor of the solutions (47) and (49).
By the same procedure in Section 2, we obtain the energy-momentum tensor in the

spacetime described by the metric (47) and (49):

T00(ω1, ω2) = T11(ω1, ω2) = T00(ω1) + T00(ω2) + Tint(ω1, ω2),

T01(ω1, ω2) = T10(ω1, ω2) = 0, (52)

T22(ω1, ω2) = T22(ω1) + T22(ω2) + Tint(ω1, ω2),

T33(ω1, ω2) = T33(ω1) + T33(ω2) + Tint(ω1, ω2)

with ψ and γ given in Equations (47) and (49), Tµν(ωi) (i = 1, 2) given in Equations (28)–(30):

T00(ωi) = e2ψ−2γ B2
i

2π2 δ(x)δ(y) cos2(ωit + βi),

T22(ωi) = e2ψ−2γ B2
i

2π2 δ(x)δ(y) cos2(ωit + βi), (53)

T33(ωi) = e2ψ−2γ B2
i

2π2 δ(x)δ(y)
[

cos2(ωit + βi)−
2π

Bi
cos(ωit + βi)

]
.

and the interference term of the following is given.

Tint(ω1, ω2) = e2ψ−2γ B1B2

π2 δ(x)δ(y) cos(ω1t + β1) cos(ω2t + β2). (54)

Tµν(ω1, ω2) involves both ω1 and ω2 and can be written in three parts: Tµν(ω1),
which involves only ω1; Tµν(ω2), which involves only ω2; and Tint(ω1, ω2), which in-
volves both ω1 and ω2. Tint(ω1, ω2) is an interference term due to the superposition of
gravitational waves.

Nevertheless, although the interference term Tint(ω1, ω2) exists, the time average of
Tint vanishes.

〈Tint〉 =
∫ ∞

0
dtTint(ω1, ω2) = 0. (55)

The behavior of the interference term implies that the result of a long-time measure-
ment should superpose linearly. That is, when the typical time of a detector is larger
than the period of a gravitational wave, the source of gravitational waves observed may
be linear.

As an analogy, we consider the energy superposition of two plane electromagnetic
waves. The electromagnetic energy density can serve as the source of gravitational waves.
When two plane electromagnetic waves E1 = A1 cos(ω1t + α) and E2 = A2 cos(ω2t + β)
superpose together, the electric field is the following:

E = E1 + E2 = A1 cos(ω1t + α) + A2 cos(ω2t + β),
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where E is the electric field and A is the amplitude. The energy density of the electric field
is the following:

ε = E2 = (E1 + E2)
2 = ε1 + ε2 + εint, (56)

where ε1 = A2
1 cos2(ω1t + α), ε2 = A2

2 cos2(ω2t + β) and the interference term is as follows.

εint = 2A1 A2 cos(ω1t + α) cos(ω2t + β). (57)

The time average of εint vanishes:

〈εint〉 =
∫ ∞

0
dtεint = 0. (58)

The behavior of the interference in the energy-momentum tensor (52) is similar to the
interference behavior of the energy density (56) in electromagnetic waves.

6. Conclusions and Outlook

Most results about gravitational waves are deduced in a linear approximation, such
as the gravitational quadrupole radiation, the resonance between the gravitational wave
and the detector, and the linear superposition of two gravitational waves. When we take
the strict nonlinear theory—exact wave solutions of the Einstein equation—some new
properties of gravitational waves come into sight.

In this paper, we discussed gravitational waves based on the exact cylindrical gravita-
tional wave solutions rather than gravitational wave solutions in the linear approximation.
Gravitational waves are vacuum solutions outside singularities. Nevertheless, curvature
singularities imply that the gravitational wave solution possesses a source at the singularity.
We show that the gravitational wave solution ψs (γs) possesses a source, while ψsf (γsf)
is source-free. We could make an analogy with electromagnetic waves. The electromag-
netic radiation is a special kind of electromagnetic wave produced by the variation of the
dipole. Nevertheless, not all electromagnetic waves are electromagnetic radiations. A plane
electromagnetic wave, as an exact solution, is not an electromagnetic radiation, and an
electromagnetic wave produced by the antenna is an electromagnetic radiation. In this
sense, ψs (γs) is a gravitational radiation wave, while ψsf (γsf) is a pure gravitational wave.
At the very least, they are two kinds of gravitational waves. We recognize a resonance
between the gravitational waves. It is worth mentioning that the resonance only occurs
between a gravitational wave with a source and a gravitational wave without a source.
Two gravitational waves with sources and two gravitational waves without sources do
not resonate with one another. The resonance also indicates that the gravitational wave
with sources and the gravitational wave without sources are two different kinds of gravita-
tional waves. We suppose that the resonance between gravitational waves is irrelevant to
the symmetry of the system. In recent years, gravitational wave detection has produced
rapid progress. We expect that the resonance between gravitational waves will be found
in the future. We investigated the interference of gravitational waves. The interference
appears in both the metric and the energy-momentum tensor. Nevertheless, the time
average of the interference term in the energy-momentum tensor vanishes, which indicates
that the energy-momentum tensor of two gravitational waves superpose linearly at the
time-averaging level.

As mentioned above, a gravitational wave with a source should be regarded as a
gravitational radiation. Gravitational radiations will result in the energy loss of the source.
With the conservation law of the energy, we may define the energy of the cylindrical
gravitational radiation in our framework. We can also consider the resonance between
matter waves and gravitational waves based on our previous works on scattering [37–39].
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Appendix A

We show T01(ω) = 0 in the solution ψs (γs) with another method below.
Integrating T00(ω, ε) over the entire space of the following:

E(ω, ε) ≡
∫ √

gdρdθdφT00(ω, ε) =
ω2ε2Lz

8
[B2
(

Y2
0 (ωε) + Y2

1 (ωε)
)

cos2(ωt + β)]

and by taking the limit ε→ 0, we have the following

E(ω) ≡ lim
ε→0

E(ω, ε) =
B2Lz

2π2 cos2(ωt + β) (A1)

with Lz ≡
∫ ∞
−∞ dz. Again, integrating T01(ε) over the entire space, we obtain:

Pρ(ω, ε) =
∫ √

gdρdθdφT01(ω, ε)

=
ω2ε2Lz

2
{A2

[
ωεJ2

0 (ωε) + ωεJ2
1 (ωε)− J0(ωε)J1(ωε)

]
× sin(ωt + α) cos(ωt + α)

+ B2
[
ωεY2

0 (ωε) + ωεY2
1 (ωε)−Y0(ωε)Y1(ωε)

]
× sin(ωt + β) cos(ωt + β)

+ AB[ωεJ0(ωε)Y0(ωε) + ωεJ1(ωε)Y1(ωε)− J1(ωε)Y0(ωε)]

× cos(ωt + α) sin(ωt + β)

+ AB[ωεJ0(ωε)Y0(ωε) + ωεJ1(ωε)Y1(ωε)− J0(ωε)Y1(ωε)]

× sin(ωt + α) cos(ωt + β)}

and taking the limit ε→ 0, we have the following.

Pρ(ω) ≡ lim
ε→0

Pρ(ω, ε) = lim
ε→0

2B2Lzω2

π2 ε ln ε = 0. (A2)

The integration of T01 over the entire space is vanishing; thus, we have T01(ω) = 0.
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