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Abstract: The charging time of Li-ion batteries connected in series (LBCSs) power supply is the main
concern in an electromagnetic propulsion system. However, the capacity loss of a Li-ion battery is
inevitable due to the repetitive operation of LBCSs power supply, which leads to the decrease in the
average current. Thus, the voltages of symmetrically distributed pulse capacitors of LBCSs power
supply will not reach the setting value in the specified time. This paper proposes a novel closed-loop
control method to solve the problem. By collecting the pulse capacitor voltage and the circuit current,
the time sequences of Li-ion batteries are recalculated in real time in a closed-loop to increase the
average current. The time-domain model of the circuit topology of the LBCSs power supply and
an innovative closed-loop control method based on the time sequences recalculation algorithm are
described first. Then, the circuit model is built in PSIM for simulation analyses. Finally, a series of
experiments are conducted to confirm the effectiveness of the method on the megawatt LBCSs power
supply platform. Both the simulation and experimental results validate that the proposed method not
only shortens the charging time, but also increases the average current. In practical experiments, the
charging time is shortened by 4.5% and the average current is increased by 4.8% using the proposed
method at the capacity loss of 50 V.

Keywords: Li-ion batteries; time sequences recalculation; closed-loop control; average current

1. Introduction

With the rapid development of laser emission technology, electromagnetic propulsion
and plasma science, the high-voltage power supply (HPS) has attracted a great deal of
attention [1–4]. At present, the commonly used circuits of HPS in the electromagnetic
propulsion system include the series resonant circuit, the buck circuit and the batteries
connected in series (BCSs) circuit, as shown in Figure 1. Though the series resonant circuit
is mature in technology, it still needs to be used in parallel to increase the power in the
electromagnetic propulsion system, resulting in a large volume. The buck circuit is small in
size, but it is difficult to satisfy the requirements of high frequency, high voltage and large
current at the same time. The BCSs circuit was first proposed by the Naval University of
Engineering, which had the advantages of high power density and high energy density.
In recent years, the BCSs circuit has developed towards miniaturization, lightweight and
repetitive operation. As a result, its research has great potential in the electromagnetic
propulsion system.

The BCSs power supply usually consists of the battery, the power electronic device,
the resistor, the inductor, and the pulse capacitor [5–7]. As a primary energy storage
unit, the battery reduces the demand from the grid power greatly and provides the energy
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continuously in the meantime. Due to the various advantages, such as high-power densities,
no memory effects, and long service lives, Li-ion batteries are widely used in the repetitive
operation of LBCSs power supply. At present, the research focus of cathode materials of
Li-ion batteries is still mainly on the layered lithium transition metal oxide LiMO2 (M = Co,
Ni, Mn, etc.), spinel LiMn2O4 and olivary LiMPO4 (M = Fe, Mn), while the research about
anode materials of Li-ion batteries mainly includes coke, graphite, mesophase carbon
microspheres, pyrolytic carbon materials, tin-based materials, lithium transition metal
oxides and some other transition metal oxides. However, the performance of the Li-ion
battery declines with time due to the degradation of its electrochemical components, which
leads to capacity loss. Compared with the state of charge (SOC) estimation and the state of
health (SOH) estimation in the Li-ion battery management system (BMS), the closed-loop
control method is also a key research of LBCSs power supply after the capacity loss of the
Li-ion battery.
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Figure 1. The circuits of HPS. (a) Series resonant circuit; (b) buck converter circuit (c), BCSs circuit.

Wu et al. [8] studied the reasons for restricting the charging time in BCSs power
supply. By optimizing the impedance and inductance, the charging time was effectively
shortened. Li et al. [9] proposed a scheduling series strategy to improve the efficiency
of BCSs power supply. The circuit of parallel structure was used to charge the capacitor
first. When the capacitor voltage reached the voltage of series batteries, the structure of the
circuit was changed from a parallel connection to a series connection. This method reduced
the volume, the weight and the cost of the system. Liu et al. [10,11] carried out research
on BCSs power supply with ten batteries, and set the same intervals for the batteries to
charge the pulse capacitor. The results showed that the power supply can work effectively.
Based on the analysis of the problem of charge with low accuracy caused by distribution
parameters in the circuit, Long et al. [12,13] put forward the sequential reconstruction
strategy to satisfy the demand of a quick and accurate charge. However, the above studies
did not consider the capacity loss of the battery. In this paper, Li-ion batteries are used
as the primary energy source, and a novel closed-loop control method for LBCSs power
supply based on the time sequences recalculation algorithm is proposed. Considering the
Li-ion battery capacity loss of LBCSs power supply in the repetitive operation, the problem
that the voltages of symmetrically distributed pulse capacitors cannot reach the setting
value in the specified time is mainly studied and analyzed. Finally, it is clear that the
proposed method can shorten the charging time and increase the average current, which
makes the voltages of symmetrically distributed pulse capacitors of LBCSs power supply
reach the setting value in the specified time in the repetitive operation.

The paper is organized as follows. In Section 2, the circuit topology and operation
principles of LBCSs power supply are introduced. Then, the time-domain model of the
circuit topology is established, and a novel closed-loop control method based on the time
sequences recalculation algorithm is derived. In Sections 3 and 4, the performance of
the proposed method is validated with simulations and experiments. The results and
discussion are given. Finally, Section 5 concludes this paper.

2. Modeling and Closed-Loop Control Method

The module of LBCSs, the loads, and the controller are the main parts of LBCSs
power supply. In the module of LBCSs, a group of the module is composed of a battery,
an insulated gate bipolar transistor (IGBT), and a flywheel diode. By connecting several
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groups in series, the module of LBCSs is built [14,15]. Figure 2 shows the circuit topology of
LBCSs power supply, here E1~En represent the Li-ion batteries (E1~En = e), R0 represents the
resistor of batteries, L0 represents the inductor of batteries, D1~Dn represent the flywheel
diodes, L represents the inductor of the loads, R represents the resistor of the loads, and
C1~Cn represent the symmetric pulse capacitors of the loads (C1~Cn = C).
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Figure 2. Circuit topology of LBCSs power supply.

Figure 2 is taken as an example to explain the operation principles of LBCSs power
supply. The IGBT S1 in the first group of the module was first switched on. Then, the
Li-ion battery E1 started charging one of the symmetrically distributed pulse capacitors
C1. When the pulse capacitor voltage reached the proper value, the Li-ion battery E2 was
connected in series to the circuit according to time sequences by switching on S2. As the
rest of the Li-ion batteries were connected in series, the pulse capacitor voltage increased
rapidly. When the voltage reached the voltage setting value, the IGBTs were switched off
to end the charging process [8], as shown in Figure 3. In the next charging process, the
pulse capacitor C2 also works alone. The entire charging process was not over until the last
pulse capacitor voltage reached the setting value.
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2.1. Modeling of the Circuit

The circuit topology can be simplified to the equivalent circuit, as shown in Figure 4.
Referring to the circuit analysis and considering the saturation voltage of the IGBT (UIGBT)
and the forward voltage of the diode (UD), the voltage balance equation of the equivalent
circuit can be expressed if the next Li-ion battery is connected at tn−1:

LnC
d2UC

dt2 + CRn
dUC

dt
+ UC = E (1)
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where
Rn = nR0 + R (2)

Ln = nL0 + L (3)

E = n · e− n ·UIGBT − (N − n) ·UD (4)

where N indicates the total number of Li-ion batteries, and n represents the number of
LBCSs. The characteristic equation of homogeneous linear differential equation with
constant coefficients is expressed by the following:

LnCP2 + CRnP + 1 = 0 (5)
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If the circuit parameters satisfy the requirement of the over-damped condition
(Rn > 2

√
Ln/C), the pulse capacitor voltage and the circuit current can be expressed as:

UC(t) = A1eP1(t−tn−1) + A2eP2(t−tn−1) + E (6)

I(t) = C(A1P1eP1(t−tn−1) + A2P2eP2(t−tn−1)) (7)

where

P1 = − Rn

2Ln
+

√
(

Rn

2Ln
)

2
− 1

LnC
(8)

P2 = − Rn

2Ln
−

√
(

Rn

2Ln
)

2
− 1

LnC
(9)

A1 =
P2U(tn−1)− EP2 − I(tn−1)/C

P2 − P1
(10)

A2 =
P1U(tn−1)− EP1 − I(tn−1)/C

P1 − P2
(11)

U(tn−1) represents the pulse capacitor voltage at tn−1 and I(tn−1) represents the circuit
current at tn−1. If the circuit parameters satisfy the requirement of the under-damped
condition (Rn < 2

√
Ln/C), the pulse capacitor voltage and the circuit current can be

expressed as:

UC(t) = 2e−δ(t−tn−1)[k1 cos ω(t− tn−1)− k2 sin ω(t− tn−1)] + E (12)

I(t) = 2Ce−δ(t−tn−1)[(−δk1 − k2ω) cos ω(t− tn−1) + (δk2 − k1ω) sin ω(t− tn−1)] (13)

where
δ =

Rn

2Ln
(14)

ω =

√
1

LnC
− (

Rn

2Ln
)

2
(15)
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k1 =
U(tn−1)− E

2
(16)

k2 =
−I(tn−1)/C + δ(−U(tn−1) + E)

2ω
(17)

2.2. Closed-Loop Control Method Based on the Time Sequences Recalculation Algorithm

The principle of the closed-loop control method based on the time sequences recal-
culation algorithm was to shorten the charging time and increase the average current by
recalculating the time sequences, which are closely related to the current Li-ion battery
voltage and the next Li-ion battery voltage. The load voltage E, the pulse capacitor voltage
U(tn−1) and the circuit current I(tn−1) were collected and used to calculate the current
Li-ion battery voltage e to reduce the error caused by the capacity loss, while the reference
voltage eref was still used by the next Li-ion battery. According to the equivalent circuit in
Figure 4, the load voltage E was calculated in (18). Therefore, the proposed method can be
realized by collecting and using the pulse capacitor voltage and the circuit current.

E = L
dI(t)

dt
+ I(t)Rn + UC(t) (18)

The proposed method was applied to the LBCSs power supply. Moreover, the maxi-
mum current generated by each Li-ion battery could not exceed the current setting value.
Hence, the time to reach the maximum current needed to be calculated. The solution can
be simplified by finding the derivative of t in Formulas (7) and (13). Then, the times were
given as follows:

tm =
ln A1P2

1
−A2P2

2

P2 − P1
+ tn+1 (19)

tm =
1
ω

arctan
(δ2 −ω2)k1 + 2δωk2

(δ2 −ω2)k2 − 2δωk1
+ tn+1 (20)

Figure 5 shows the flowchart of time sequences recalculation algorithm. Firstly,
the over-damped model or under-damped model was selected according to the circuit
parameters. Meanwhile, the maximum current (Imax) that was caused by the first Li-ion
battery and the time of reaching Imax were calculated. Then, a new Li-ion battery was
connected in series at t. The pulse capacitor voltage and the circuit current were collected to
calculate an accurate Li-ion battery voltage e. Finally, the maximum current that was caused
by the next Li-ion battery was calculated at the time t. If the maximum current is greater
than the current setting value, the process should be repeated after the time t. However,
time will be saved as a time sequence for the new Li-ion battery and the algorithm will go
to the next cycle if the maximum current is exactly equal to the current setting value.
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3. Simulation

According to the time-domain model of the circuit topology and the closed-loop
control method based on the time sequences recalculation algorithm of Section 2, the
simulation model was established in the simulation software PSIM. The simulation analyses
of the constant voltage mode, the capacity loss mode and the time sequences recalculation
mode are carried out.

3.1. Simulation Model

Figure 6 shows the block diagrams of the proposed method. The time sequences of
the Li-ion batteries were calculated by using the reference voltage eref of each Li-ion battery.
Then, the pulse capacitor voltage and the circuit current were used to recalculate the time
sequences in a closed-loop in the simulation. Meanwhile, the time sequences were sent to
the driver of IGBTs to control the series connection of Li-ion batteries, providing that the
reference voltage eref is 550 V in the simulation. The constant voltage mode represents that
the voltages (e = 550 V) were constant when the Li-ion batteries charged the pulse capacitor,
while the capacity loss mode means that the voltages decreased (e = 500 V) in the state of
charging the last pulse capacitor Cn. Neither the constant voltage mode nor the capacity
loss mode adopted the proposed method. The time sequences recalculation mode was
used to adjust the time sequences of the Li-ion batteries in real time by using the proposed
method after the voltages were decreased (e = 500 V). Values of the circuit parameters in
the simulation are given in Table 1. The simulation started at t = 0, and its step was 100 µs.
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Table 1. Circuit parameter of simulation model.

Parameter Value

Total number of Li-ion batteries N 10
Voltage of each Li-ion battery e 550 V

Resistance of each Li-ion battery R0 0.06 Ω
Inductance of each Li-ion battery L0 30 µH

Saturation voltage of IGBT UIGBT 2.25 V
Forward voltage of diode UD 2.1 V

Current setting value Ipeak 1000 A
Voltage setting value Vpeak 2000 V
Inductance of the circuit L 40 mH
Resistance of the circuit R 0.42 Ω

Capacitance of the circuit C 0.765 F

3.2. Simulation Analyses

Simulation waveforms of the pulse capacitor voltage and the circuit current are shown
in Figure 7. From the comparison results of Table 2, the conclusion can be drawn that the
proposed method shortened the charging time and increased the average current after the
Li-ion battery capacity loss in LBCSs power supply. Compared with the capacity loss mode,
the charging time of the time sequences recalculation mode was shortened by 5.1% and the
average current was increased by 5.4% at the capacity loss of 50 V. With the addition of the
method, the voltages of symmetrically distributed pulse capacitors of LBCSs power supply
reached the voltage setting value in the specified time, which can satisfy the requirement
of quick charge in the electromagnetic propulsion system. In addition, the conclusion is
also valid when the capacity loss was less than 50 V.
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Figure 7. The pulse capacitor voltage and the circuit current for simulation waveforms at the capacity loss of 50 V.
(a)—constant voltage mode; (b)—capacity loss mode; (c)—time sequences recalculation mode; (d)—circuit currents comparison.

Table 2. Simulation results at the capacity loss of 50 V.

Parameter Constant Voltage
Mode Capacity Loss Mode Time Sequences

Recalculation Mode

Time sequences 0 s~0.479 s~0.971 s
~1.453 s~1.926 s

0 s~0.479 s~0.971 s
~1.453 s~1.926 s

0 s~0.443 s~0.905 s
~1.355 s~1.796 s

The charging time 2.035 s 2.202 s 2.089 s
Maximum current 1000 A 909 A 947 A
Average current 751.9 A 694.9 A 732.6 A
Average power 739.0 kW 631.2 kW 701.4 kW

It can be seen in Figure 7 that the maximum current generated by each Li-ion battery
did not reach the setting value by using the proposed method. Meanwhile, the time
sequences recalculation model did not outperform the constant voltage mode as shown in
Table 2. The reason is that the reference voltage eref of the Li-ion battery was inconsistent
with the actual value e. However, the Li-ion battery voltage could not be predicted in
real time, as it was necessary to set the eref for the closed-loop control before charging.
Providing that eref was 500 V in the simulation, waveforms of the pulse capacitor voltage
and the circuit current under this condition by using the proposed method can be shown
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in Figure 8. It can be discerned from Figure 8 that the time sequences of Li-ion batteries
were 0 s~0.378 s~0.794 s~1.204 s~1.609 s, the pulse capacitor voltage reached the voltage
setting value at t = 1.924 s, and the average current was 795.1 A. In addition, the maximum
current generated by each Li-ion battery reached the current setting value. Compared
with the simulation results of the constant voltage mode in Table 2, the charging time was
shortened and the average current was increased in the time sequences recalculation model
in Figure 8. However, the eref could only be estimated based on the battery state and set in
advance for the time sequences calculation; the simulation results shown in Figure 8 are
currently not available. The proposed method did not make the maximum current reach
the current setting value and the time sequences recalculation model did not outperform
the constant voltage mode, but it still adjusted the time sequences under the condition of
the Li-ion battery capacity loss, which validates the effectiveness of LBCSs power supply
in the repetitive operation.
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Figure 8. The pulse capacitor voltage and the circuit current for simulation waveforms.

The rated voltage of the Li-ion battery was 550 V, and the discharge cut-off voltage
was 400 V. When the capacity loss of the Li-ion battery is 150 V (e = 550 V), the proposed
method can be added. Simulation waveforms of the pulse capacitor voltage and the circuit
current are shown in Figure 9. It can be seen in Table 3 that the charging time was shortened
by 17.2% and the average current was increased by 20.8% using the proposed method.
As is well known, that over-discharge may bring catastrophic consequences to the Li-ion
battery, especially a large current over-discharge or a repeated over-discharge will have a
greater impact on the battery. Generally speaking, over-discharge will increase the internal
pressure of the battery, destroy the reversibility of the cathode and anode active materials
and increase the battery resistance. Even if the Li-ion battery is recharged, it can only
partially recover, and its life will be greatly shortened. Therefore, the Li-ion battery capacity
loss was set to 50 V in the experiment.
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Table 3. Simulation results at the capacity loss of 150 V.

Parameter Constant Voltage Mode Capacity Loss Mode Time Sequences
Recalculation Mode

Time sequences
0 s~0.479 s~0.971 s

~1.453 s~1.926 s
~2.392 s~2.853 s

0 s~0.479 s~0.971 s
~1.453 s~1.926 s
~2.392 s~2.853 s

0 s~0.356 s~0.751 s
~1.130 s~1.499 s
~1.860 s~2.213 s

The charging time 2.035 s 2.727 s 2.258 s
Maximum current 1000 A 727 A 852 A
Average current 751.9 A 561.1 A 677.8 A
Average power 739.0 kW 411.5 kW 600.4 kW



Symmetry 2021, 13, 1463 9 of 11

4. Experiment
4.1. Experimental Design Introduction

To further validate the effectiveness of the closed-loop control method based on the
time sequences recalculation algorithm, a series of experiments were carried out on the
megawatt LBCSs power supply platform. As shown in Figure 10, the high voltage divider
converted the pulse capacitor voltage into a low-voltage signal. Meanwhile, the hall
element collected the circuit current and converted it into an electrical signal. Then, these
two signals were uploaded to the controller. The controller received the time sequences of
Li-ion batteries that were calculated by the circuit parameters in the upper computer before
the experiments, as shown in Figure 11. Additionally, it recalculated the time sequences by
using the pulse capacitor voltage and the circuit current collected in real time during the
experiments. Finally, the time sequences were given to the driver of IGBTs to control the
series connection of the Li-ion batteries to the circuit.
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4.2. Experimental Analyses

The experiments started at t = 0. Figure 12 shows the experimental waveforms of
the pulse capacitor voltage and the circuit current. It can be seen in Table 4 that the
charging time was shortened by 4.5% and the average current was increased by 4.8% using
the proposed method at the Li-ion battery capacity loss of 50 V. Concluding from the
experimental results, the maximum current did not reach 1000 A when the Li-ion batteries
were connected to the circuit. One of the reasons was the capacity loss of the next Li-ion
battery in the charging process. Another reason comes from the inductor, which is made of
copper. In the large current experiments, the heat and temperature of the inductor gradually
increased with time, resulting in the increase in the resistance. Hence, the average current
decreased. Additionally, the equivalent resistance of each Li-ion battery changed with the
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different discharge rates of the Li-ion battery. All these were the factors why the maximum
current of the experimental circuit was less than 1000 A. However, it can be discerned
from Table 4 that these factors had little effect on the charging time. The experimental time
sequences were 0 s~0.398 s~0.892 s~1.303 s~1.720 s, while the simulation time sequences
were 0 s~0.443 s~0.905 s~1.355 s~1.796 s of the proposed method. Compared with the
simulation results, the charging time error was 0.6% and the average current error was 4.4%
for the experimental results. This is due to the fact that the pulse capacitor voltage and the
circuit current collected were relatively small in the experiments, which was caused by the
above factors. However, the experimental waveforms basically met the expectation, which
made the voltages of symmetrically distributed pulse capacitors LBCSs power supply
reach the setting value in the specified time in the repetitive operation. The practicability
of the proposed method was verified again, which is worthy of popularization in the
electromagnetic propulsion system.
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Table 4. Experimental results at the capacity loss of 50 V.

Parameter Constant Voltage
Mode Capacity Loss Mode Time Sequences

Recalculation Mode

Time sequences 0 s~0.479 s~0.971 s
~1.453 s~1.926 s

0 s~0.479 s~0.971 s
~1.453 s~1.926 s

0 s~0.398 s~0.892 s
~1.303 s~1.720 s

The charging time 2.112 s 2.200 s 2.102 s
Maximum current 880 A 832 A 872 A
Average current 692.1 A 668.0 A 700.0 A
Average power 655.4 kW 607.3 kW 660.0 kW

5. Conclusions

In this paper, a novel closed-loop control method for LBCSs power supply based
on the time sequences recalculation algorithm was proposed, which was used to solve
the problem that the voltages of symmetrically distributed pulse capacitors cannot reach
the set value due to the capacity loss of the Li-ion battery in the repetitive operation of
electromagnetic propulsion. The proposed method adjusted the time sequences of Li-
ion batteries in the closed-loop and shortened the charging time of LBCSs power supply.
Meanwhile, the average current was increased by collecting and using the pulse capacitor
voltage and the circuit current in real time, which can satisfy the requirement that the
voltages of symmetrically distributed pulse capacitors reached the current setting value
in the specified time. In addition, the simulation results and experimental results both
exhibited the advantages of the proposed method, which has already been applied to
project practice. The results provide a solid foundation for the future development of
electromagnetic propulsion devices, especially in the national defense construction.
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