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Abstract: We study symmetry properties and the possibility of exact integration of the time-independent
Schrödinger equation in an external electromagnetic field. We present an algorithm for constructing the
first-order symmetry algebra and describe its structure in terms of Lie algebra central extensions. Based
on the well-known classification of the subalgebras of the algebra e(3), we classify all electromagnetic
fields for which the corresponding time-independent Schrödinger equations admit first-order symmetry
algebras. Moreover, we select the integrable cases, and for physically interesting electromagnetic
fields, we reduced the original Schrödinger equation to an ordinary differential equation using the
noncommutative integration method developed by Shapovalov and Shirokov.
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1. Introduction

The main object of our study is the time-independent Schrödinger equation for a
charged particle in an external electromagnetic field. Namely, we investigate the symmetry
of this equation and the possibility of its application to the exact integrability problem.

The symmetry of the Schrödinger equation (both time-independent and time-dependent)
has always attracted the attention of specialists in theoretical and mathematical physics, and
therefore, research in this scientific area has a long history. With a certain degree of confidence,
we can say that the purposeful study of this equation symmetry began with the series of
works by Niederer [1–3], in which he partially recovered and reworked results obtained
for the heat equation as early as the end of the 19th century by Sophus Lie. In particular,
Niederer found the maximal “kinematical” invariance groups of the free Schrödinger
equation [1], and then, the Schrödinger equation with an arbitrary scalar potential [3].
Moreover, he also showed that the invariance group of the Schrödinger equation with the
harmonic oscillator potential is isomorphic to the invariance group of the free equation [2].
Concurrently with the last work by Niederer, Boyer calculated the maximal “kinematical”
invariance groups of two- and three-dimensional Schrödinger equations also with arbitrary
scalar potentials [4]. In parallel with Niederer, a group of Russian specialists (Bagrov
with co-authors) was engaged in similar studies, but from a slightly different position;
searching for symmetries was carried out from the viewpoint of constructing a complete
set of symmetry operators that allows one to separate variables in the corresponding
Schrödinger equation [5,6].

In our opinion, one of the first attempts to systematically study symmetries of the
time-independent Schrödinger equation and classify external electromagnetic fields that
admit these symmetries belongs to Bakers with co-authors. In their work [7], the exhaus-
tive classification of continuous subgroups of the group E(3) was obtained and the most
general forms of vector and scalar potentials that are invariant under these subgroups were
found. However, simple examples show that their classification is quite incomplete; there
are physically interesting examples of electromagnetic fields with geometric symmetries
that are not included in this classification (for example, a magnetic monopole field with
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the SO(3)-symmetry). Therefore, studies focused on finding new classes of electromag-
netic fields that admit certain symmetries of both time-independent and time-dependent
Schrödinger equations continue to remain relevant [8–13].

Despite that the symmetries of the Schrödinger equation play an important role in
solving various problems of quantum mechanics, the fact remains undeniable that they are
most useful in constructing its exact solutions.

We recall that the classical approach to integrating Schrödinger equations is based on
the concept of separation of variables using symmetries associated with first- and second-
order symmetry differential operators [14]. It is known that the first-order symmetry
operators correspond to the explicit geometric symmetries of the problem, whereas the
second-order operators correspond to the so-called “hidden” symmetries. To find such
second-order operators, one requires the use of additional conditions which significantly
complicate the calculations. The application of high order “hidden” symmetries is also
characteristic for the concept of the so-called superintegrability that takes place for quantum
systems with the number of degrees of freedom less than the number of existing integrals
of motion [15]. It is clear that searching for such higher symmetries is associated with even
greater technical difficulties than the construction of the second-order symmetries for the
method of separation of variables.

In the mid-1990s, another approach to integrating linear partial differential equations,
called the noncommutative integration method, was developed. Proposed by Shapovalov and
Shirokov in their works [16,17], this method was then successfully applied to construct
exact solutions of Dirac and Klein–Gordon equations in curved spacetimes [18,19], as well
as to find the semiclassical spectrum of the quantum asymmetric top [20]. Unlike other
approaches, the noncommutative integration method is not limited to considering only
commuting symmetry operators, and therefore uses the whole symmetry algebra of a
differential equation more effectively. In some cases, this method allows one to construct
exact solutions using only the first-order symmetry operators; as a rule, such solutions have
a more simple form compared to ones constructed by the method of separation of variables.

The purpose of our study is to demonstrate the potential of the noncommutative
integration method as applied to the construction of exact solutions for the Schrödinger
equation. Below it will be shown that this method allows one to construct exact solutions
for a quite wide class of such equations. The second aim of our study is to obtain an
exhaustive classification of time-independent electromagnetic fields for which the cor-
responding Schrödinger equations admit first-order symmetry operators. Just like the
authors of [7], we use an approach based on the classification of subgroups of the group
E(3); however, the correspondence “subgroup–electromagnetic field” is more subtle in
our case. In particular, we involve some cohomological considerations that allow one to
describe the structures of the corresponding symmetry algebras for Schrödinger equations
in general. We note that the present classification of electromagnetic fields was partially
obtained in our earlier work [10], in which, however, several cases were missing. In this
work, we eliminate this shortcoming by supplementing the previously obtained results
with several additional classes.

The structure of this paper is as follows. In Section 2, we remind the necessary
information about the symmetry algebra of the time-independent Schrödinger equation
in an external electromagnetic field. Based on the system of determining equations for its
first-order symmetry operators, we propose an algorithm for constructing the symmetry
algebra and describe its structure in terms of Lie algebra central extensions. In Section 3,
we recall the classification of inequivalent subalgebras of the algebra e(3), which is the
Lie algebra of the 3D Euclidean motion group E(3). Using this classification, we obtain
a list of all electromagnetic fields for which the corresponding Schrödinger equations
admit nontrivial first-order symmetry algebras, and also explicitly write out the generating
operators of these algebras. In Section 4, we examine the integrability problem for the
time-independent Schrödinger equation in an external electromagnetic field. We note that
by integrability of this equation, we mean the possibility of solving the equation by reducing
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it to some ordinary differential or algebraic equations, as it is understood in the theory of
separation of variables. Using the condition of noncommutative integrability, we find all
the integrable cases and, for the subalgebras that are interesting from a physical viewpoint,
and we reduce the original Schrödinger equation to an ordinary differential equation.

2. Symmetries of Schrödinger Equations

Let us consider the time-independent Schrödinger equation

Ĥψ = Eψ, (1)

where Ĥ is the Hamiltonian of a spinless particle with mass m and electric charge e
interacting with a constant electromagnetic field with a scalar potential ϕ(x) and a vector
potential Ai(x):

Ĥ =
p̂2

2m
+ eϕ. (2)

Here, p̂2 = p̂2
1 + p̂2

2 + p̂2
3, p̂k = −i∂k − eAk are the components of the kinetic momentum

operator of the particle, ∂k ≡ ∂/∂xk, k = 1, 2, 3. (We use units in which c = h̄ = 1). We note
that the commutation rule for the operators p̂k has the form

[ p̂i, p̂j] = ieFij,

where Fij = ∂i Aj − ∂j Ai are the components of the magnetic field tensor. For our further
purposes, it is more convenient to associate the tensor Fij and the vector potential Ai with
the closed differential 2-form F = 1

2 Fij dxi ∧ dxj and the 1-form A = Ai(x)dxi, respectively.
It is assumed that forms F and A can be defined only in some open set from R3.

The symmetry of the Hamiltonian Ĥ is generated by those operators X̂ that commute
with the operator Ĥ [21]:

[Ĥ, X̂] ≡ ĤX̂− X̂Ĥ = 0. (3)

The set of such operators forms a Lie algebra called the symmetry algebra of the Hamilto-
nian Ĥ. Since the main purpose of our study is to demonstrate the possibilities of the
noncommutative integration method as applied to the exact integration of the Schrödinger
Equation (1), we will focus on first-order symmetries mainly used in this method. In other
words, we will consider the symmetry operators of the form

X̂ = ξk(x) p̂k + eχ(x), (4)

where ξk(x) and χ(x) are some functions of the spatial coordinates x = (x1, x2, x3). (Here
and below, the summation over repeated indices is implied, and the raising and lowering
of indices is performed using the Euclidean metric gij = δij.)

It is clear that the set of all symmetry operators of the form (4) forms a subalgebra in
the symmetry algebra of the Hamiltonian; we will denote this subalgebra by Ĝ throughout
our study. In the sequel, the term “symmetry algebra” will always refer to the Lie algebra Ĝ .

Substituting Equations (2) and (4) into Equation (3), we obtain an operator equation
whose coefficients of p̂i p̂j, p̂i, and 1 must be zero. As a result, after simple algebraic
manipulations, we come to the following system of determining equations for the unknown
functions ξ i(x) and χ(x):

∂ξ j

∂xi +
∂ξi

∂xj = 0, 1 ≤ i ≤ j ≤ 3; (5)

∂χ

∂xi = Fijξ
j, i = 1, 2, 3; (6)

ξ i ∂ϕ

∂xi = 0. (7)
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The system of Equations (5)–(7) is a necessary and sufficient condition that the operator (4)
is the symmetry operator of the Hamiltonian (2).

The vector fields ξ = ξ i(x)∂i whose components satisfy Equation (5) are called Killing
vectors of the Euclidean space R3. It is well known that any Killing vector is a linear
combination of six vector fields, namely three generators of translations P1, P2, P3 and three
generators of rotation J1, J2, J3:

Pi =
∂

∂xi , Ji = εikjxj
∂

∂xk , i = 1, 2, 3. (8)

The vector fields (8) form the basis of a six-dimensional Lie algebra with the
commutation relations

[Pi, Pj] = 0, [Pi, Jj] = εijkPk, [Ji, Jj] = εijk Jk.

This algebra is the Lie algebra e(3) of the isometry group E(3) of the Euclidean space R3.
Let ξ = ξ i(x)∂i be a Killing vector. It is easy to show that the solvability conditions for

the system of Equation (6) takes the form

Lξ Fij ≡ ξk ∂Fij

∂xk + Fkj
∂ξk

∂xi + Fik
∂ξk

∂xj = 0, (9)

where Lξ is the Lie derivative in the ξ-direction. We will call Killing vectors ξ satisfying
the conditions (7) and (9) admissible. It is clear that for any admissible Killing vector ξ there
exists (at least locally) a scalar function χ that is a solution to the system of Equations (6).
In some neighborhood of a point x0 ∈ R3, this solution can be written in the form

χ(x) =
x∫

x0

Fij(y)ξ j(y)dyi, (10)

where the integral is taken along an arbitrary curve connecting a point x0 to x.
Admissible Killing vectors form a subalgebra G in the Lie algebra e(3). This follows

from the fact that the correspondence ξ → Lξ is a Lie algebra homomorphism, that is,
L[ξ1,ξ2]

= [Lξ1 ,Lξ2 ] for any vector fields ξ1 and ξ2. The subalgebra G will be called the
admissible subalgebra. It is easy to see that for Fij = 0 and ϕ = 0, we obtain G = e(3).
Another special case corresponds to the electromagnetic field in general position, when
G = {0}. Further, these two special cases will not be considered.

Let G ⊂ e(3) be a proper admissible subalgebra, 1 ≤ n ≡ dim G < dim e(3) = 6. In
the algebra G , we choose a basis ξa = ξ i

a(x)∂i (a = 1, . . . , n) and associate with each ξa the
differential operator

X̂a = ξ i
a(x) p̂i + eχa(x), a = 1, . . . , dim G , (11)

where χa(x) is some particular solution of the system of Equation (6) corresponding to the
admissible Killing vector ξa. By construction, the operators X̂a commute with the operator
Ĥ, but, in the general case, they do not form the whole symmetry algebra Ĝ . Indeed, if the
basis vector fields of the subalgebra G commute according to the rule [ξa, ξb] = Cc

abξc, then
the commutation relations between the operators (11) take the form

[X̂a, X̂b] = −i
(
Cc

abX̂c + eFab
)
, (12)

where we have introduced the notation

Fab ≡ Fijξ
i
aξ

j
b − Cc

ab χc. (13)
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The quantities Fab do not depend on the spatial coordinates, because, by virtue of the
Jacobi identity, there must be [Ĥ, [X̂a, X̂b]] = 0, that implies the equality [Ĥ,Fab] = 0 or
Fab = const. It follows from the commutation relations (12) that the commutator of any
pair of basis symmetry operators X̂a and X̂b, being a symmetry operator from Ĝ , is a linear
combination of the operators X̂1, . . . , X̂n and the trivial symmetry operator X̂0 ≡ e. Thus,
we can claim that the algebra Ĝ is an (n + 1)-dimensional Lie algebra isomorphic to a
one-dimensional central extension of the admissible subalgebra G . The basis of Ĝ is formed
by n operators of the form (11) and the trivial operator X̂0, which belongs to the center of
the Lie algebra Ĝ .

Remark 1. It should be noted that the above results have a gauge-independent form, that is, they do
not change under transformations of the form A→ A′ = A− d f , ϕ→ ϕ′ = ϕ− C, where f (x)
is an arbitrary function depending only on the spatial coordinates, and C is an arbitrary constant.
It follows from the gauge independence of the kinetic momentum operators:

p̂′k = −i∂k − eA′k = e−ie f p̂keie f = e−ie f (−i∂k − eAk)eie f .

Remark 2. It is obvious that the solution χ of the system of Equations (6) is not uniquely defined;
any other solution can be obtained by adding a constant to χ. Actually, this is the ambiguity in our
choice of a basis in the Lie algebra Ĝ : a new set of functions χ′a = χa + λa leads to a new basis of Ĝ ,
given by the operators X̂′a = X̂a + λaX̂0, a = 1, . . . , n. In general, the commutation relations (12)
change under such a change of basis, since the quantities (13) are transformed as

[X̂′a, X̂′b] = −i
(
Cc

abX̂c + eF′ab
)
, F′ab = Fab − Cc

abλc.

Sometimes, by choosing special values of the parameters λa, one can make all the quantities
Fab vanish. For example, this can always be done for a semisimple admissible subalgebra G [22]. In
this case, the structure of the symmetry algebra is especially simple: the Lie algebra Ĝ is isomorphic
to a direct sum of the admissible subalgebra G and a one-dimensional algebra 〈X̂0〉 ' R. Such
central extensions are called trivial or split extensions.

Remark 3. The above results can be naturally interpreted in terms of Lie algebra cohomologies [23,24].
The set of quantities Fab defined by Formula (13) defines a 2-cocycle of the Lie algebra G that takes its
values in a trivial module R. Indeed, it can be shown that these quantities satisfy the condition

Cd
abFdc + Cd

bcFda + Cd
caFdb = 0, a, b, c = 1, . . . , n.

Thus, to each magnetic field F = 1
2 Fijdxi ∧ dxj and each electric field with a potential ϕ, there

corresponds an admissible subalgebra G and its 2-cocycle Fab defined by Formula (13). In turn, the
pair (G ,Fab) uniquely determines a one-dimensional central extension of the Lie algebra G which
is isomorphic to the algebra Ĝ with the commutation relations (12). We also note that the classes of
isomorphic extensions of the Lie algebra G are in one-to-one correspondence with the classes of their
2-cohomologies H2(G ,R), that is, with the classes of 2-cocycles of the form Fab + Cc

abλc, where λc
are arbitrary constants.

3. Classification of Schrödinger Equations with Symmetry Algebras

In the previous section, we described the structure of the symmetry algebra Ĝ for the
Schrödinger equation and, in fact, gave a recipe for its construction in the case when the
external electromagnetic field is specified. The corresponding construction includes two
stages: calculating the admissible subalgebra G ⊂ e(3) and finding scalar functions χa that
are solutions to the system of Equations (6). However, one can also consider the inverse
problem of classifying all the time-independent Schrödinger equations of the form (1)
admitting nontrivial symmetry algebras Ĝ . This problem was solved in our previous
work [10]. In order to keep the presentation closed, we repeat here the main stages of
this classification.
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It follows from the theory developed in the previous section that the solution of the
classification problem is divided into two steps.

1. Listing all proper subalgebras G of the Lie algebra e(3).
2. Calculating the most general forms of electromagnetic fields for which the subalgebras

G are admissible.

The second step, in fact, is reduced to finding the general solution (F, ϕ) of the linear
system of equations:

Lξa F = 0, ξa ϕ = 0, a = 1, . . . , dim G .

Finally, the classification is completed by constructing bases of symmetry algebras Ĝ in
accordance with Formula (11).

It is convenient to introduce the following equivalence relation, to effectively im-
plement the above classification program. Two electromagnetic fields (F, ϕ) and (F, ϕ′)
are equivalent if, up to adding some constant to the potential ϕ, they are connected by a
transformation from the isometry group E(3):

Fij(x) = Λk
i Λl

jF
′
kl(Ox + a), ϕ(x) = ϕ′(Ox + a) + C. (14)

Here, O ∈ O(3), a ∈ R2, C ∈ R. It immediately follows from Equations (6) and (7)
that the admissible subalgebras of equivalent electromagnetic fields are conjugate under
the group E(3) and, vice versa, conjugate subalgebras in E(3) correspond to the classes
of electromagnetic fields related by the transformation (14). Thus, we do not need to
list all subalgebras of e(3); instead, we can restrict ourselves to representatives of the
corresponding conjugacy classes in e(3).

At present time, the classification of all subalgebras of the algebra e(3) up to conjugacy
classes of E(3) is well known (see, for example, [7]); the corresponding Hasse diagram is
shown in Figure 1. The diagram is the graph whose vertices correspond to the inequivalent
subalgebras in e(3), and the edges indicate the presence of the inclusion relation between
the subalgebras.

Let us give some comments on the subalgebras indicated in Figure 1.

e(3) : P1, P2, P3, J1, J2, J3

e(2)⊕R : P1, P2, P3, J3

e(2)a : P1, P2, J3 + aP3 R3 : P1, P2, P3 e(2) : P1, P2, J3 so(3) : J1, J2, J3

so(2)⊕R : J3, P3 R2 : P1, P2

so(2)a : J3 + aP3 R : P3 so(2) : J3

Figure 1. Hasse diagram of inequivalent subalgebras of the Lie algebra e(3).
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The subalgebra 〈J3〉 ' so(2) generates the group SO(2) of rotations about the x3-axis,
while the subalgebra 〈P3〉 ' R corresponds to the subgroup T1 of translations along the
same axis. The set of subalgebras 〈J3 + aP3〉 ' so(2)a parameterized by the real parameter
a > 0 generates the family of one-dimensional subgroups SO(2)a which are the universal
covering groups of SO(2). The orbits of these subgroups are helices of pitch 2πa.

The subalgebra 〈P1, P2〉 ' R2 generates the two-dimensional group T2 of transla-
tions in the x1x2-plane. The subalgebra 〈J3, P3〉 ' so(2)⊕R is associated with the two-
dimensional Abelian subgroup in E(3) whose transformations are rotations about the
x3-axis, translations along the same axis, and their combinations.

The three-dimensional algebra 〈J1, J2, J3〉 ' so(3) is the Lie algebra of the rota-
tion group SO(3), while the Abelian algebra 〈P1, P2, P3〉 ' R3 is the Lie algebra of the
translation group T3. The subalgebra 〈P1, P2, J3〉 ' e(2) generates a three-dimensional
subgroup in E(3) which is isomorphic to the isometry group E(2) of the Euclidean
plane. The three-dimensional subgroups E(2)a generated by the family of subalgebras
〈P1, P2, J3 + aP3〉 ' e(2)a are the universal covering groups of E(2); all these subgroups act
transitively in R3 due to the requirement a > 0.

The single four-dimensional subalgebra 〈P1, P2, P3, J3〉 ' e(2)⊕R is associated with
the subgroup in E(3) which is the direct product of the translation group T3 and the
rotation group SO(2) about the x3-axis.

There are no five-dimensional subalgebras of the Lie algebra e(3).
For our further purposes, it is necessary to specify a local coordinate system in the

Euclidean space R3 and rewrite, in these coordinates, basis Killing vectors ξa for each
subalgebra G in Figure 1. Due to the fact that we are interested in finding closed 2-forms F
such that

Lξa F = 0, a = 1, . . . , dim G , (15)

it is natural to use a coordinate system in which ξa have the simplest form. Next, we use
four types of local coordinate systems:

(1) the Cartesian coordinates (x1, x2, x3) for the subalgebras R, R2, R3, e(2), e(2)a, e(2)⊕R;
(2) the cylindrical coordinates (ρ, φ, z) for the subalgebras so(2) and so(2)⊕R:

ρ =
(

x2
1 + x2

2

)1/2
, φ = arctan

(
x2

x1

)
, z = x3;

(3) the spherical coordinates (r, φ, θ) for the subalgebra so(3):

r =
(

x2
1 + x2

2 + x2
3

)1/2
, θ = arccos

(
x3(

x2
1 + x2

2 + x2
3
)1/2

)
, φ = arctan

(
x2

x1

)
; (16)

(4) the helical coordinates (ρ, φ, ζ) for the subalgebra so(2)a:

ρ =
(

x2
1 + x2

2

)1/2
, φ = arctan

(
x2

x1

)
, ζ = x3 + a arctan

(
x2

x1

)
. (17)

In Table 1, we write out the basis Killing vectors ξa for each subalgebra G in the
chosen local coordinates (see Figure 1). We also specify the most general forms of closed
2-forms F and scalar potentials ϕ (up to addition of an arbitrary constant) satisfying the
conditions (15) and (7), respectively. Here, f , f1, f2, f3 denote arbitrary smooth functions of
their arguments, and µ, µ1, µ2, µ3 are arbitrary constants.
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Table 1. Inequivalent subalgebras G of the Lie algebra e(3) and the corresponding electromagnetic fields (F, ϕ).

Subalg. Infinitesimal
Generators Xa

Closed 2-Form F
Satisfying Equation (15)

Scalar
Pot. ϕ

R X1 = ∂3 f1(x1, x2)dx1 ∧ dx2 + dx3 ∧ d f2(x1, x2) f3(x1, x2)

so(2) X1 = −∂φ f1(ρ, z)dρ ∧ dz + dφ ∧ d f2(ρ, z) f3(ρ, z)

so(2)a X1 = −∂φ f1(ρ, ζ)dρ ∧ dζ + dφ ∧ d f2(ρ, ζ) f3(ρ, ζ)

R2 X1 = ∂1, X2 = ∂2
f1(x3)dx1 ∧ dx3 + f2(x3)dx2 ∧ dx3 f3(x3)+µ dx1 ∧ dx2

so(2)⊕R X1 = −∂φ, X2 = ∂z
f1(ρ)dρ ∧ dφ + f2(ρ)dρ ∧ dz f3(ρ)+µ dφ ∧ dz

R3 X1 = ∂1, X2 = ∂2, X3 = ∂3
µ1 dx1 ∧ dx2 + µ2 dx1 ∧ dx3 0

+µ3 dx2 ∧ dx3

e(2) X1 = ∂1, X2 = ∂2,
µ dx1 ∧ dx2 f (x3)X3 = x2∂1 − x1∂2

e(2)a
X1 = ∂1, X2 = ∂2,

[
µ2 cos

( x3
a
)
+ µ3 sin

( x3
a
)]

dx1 ∧ dx3
0−

[
µ2 sin

( x3
a
)
− µ3 cos

( x3
a
)]

dx2 ∧ dx3
X3 = x2∂1 − x1∂2 + a∂3 +µ1 dx1 ∧ dx2

so(3)

X1 =
cos(φ) cot(θ)∂φ + sin(φ)∂θ µ sin(θ)dφ ∧ dθ f (r)X2 =
sin(φ) cot(θ)∂φ − cos(φ)∂θ

X3 = −∂φ

e(2)⊕R X1 = ∂1, X2 = ∂2, X3 = ∂3,
µ dx1 ∧ dx2 0X4 = x2∂1 − x1∂2

Remark 4. As already noted, if two admissible subalgebras G and G ′ belong to the same conjugacy
class in the algebra e(3), then the corresponding classes of electromagnetic fields {(F, ϕ)} and
{(F′, ϕ′)} are uniquely transformed into each other by a transformation of the form (14). However,
it will be incorrect to say that the electromagnetic fields corresponding to non-conjugate admissible
subalgebras are inequivalent. As an example, we point out the electromagnetic fields corresponding to
the admissible subalgebras R3 and e(2)⊕R in Table 1. These subalgebras are not conjugate in e(3)
(since they have different dimensions), but lead to equivalent families of constant electromagnetic
fields. This follows from the fact that any constant 2-form in R3 can be reduced to the form
F = µdx1 ∧ dx2, µ ∈ R, by an orthogonal transformation from O(3).

Now, we are able to list the possible symmetry algebras Ĝ of time-independent
Schrödinger equations in constant electromagnetic fields. To do this, we need to calculate
scalar functions χa for each Killing vector ξa in Table 1 (see Equation (10)) and write out
the corresponding operators X̂a according to Formula (11). Below, we list the results of
these calculations. For each symmetry algebra Ĝ , we also present the matrix ‖Fab‖ of the
corresponding 2-cocycle (13) and nonzero commutation relations between the constructed
symmetry operators. It should be noted that the operators X̂a have been written out in a
gauge-independent form.

3.1. One-Dimensional Subalgebras
3.1.1. Subalgebra R ' 〈P3〉

X̂0 = e, X̂1 = p̂3 + e f2(x1, x2).

3.1.2. Subalgebra so(2) ' 〈J3〉

X̂0 = e, X̂1 = − p̂φ − e f2(ρ, z).
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3.1.3. Subalgebra so(2)a ' 〈J3 + aP3〉

X̂0 = e, X̂1 = − p̂φ − e f2(ρ, ζ).

In all these cases, the symmetry algebra Ĝ = 〈X̂0, X̂1〉 is isomorphic to a trivial
one-dimensional extension of the one-dimensional Abelian Lie algebra R.

3.2. Two-Dimensional Subalgebras

3.2.1. Subalgebra R2 ' 〈P1, P2〉

X̂0 = e,

X̂1 = p̂1 − eµx2 − e
∫

f1(x3)dx3, X̂2 = p̂2 + eµx1 − e
∫

f2(x3)dx3,

‖Fab‖ =
(

0 µ
−µ 0

)
;

[X̂1, X̂2] = −iµX̂0.

The symmetry algebra Ĝ = 〈X̂0, X̂1, X̂2〉 is a one-dimensional central extension of the
two-dimensional Abelian Lie algebra R2. This extension is nontrivial for µ 6= 0.

3.2.2. Subalgebra so(2)⊕R ' 〈J3, P3〉

X̂0 = e,

X̂1 = − p̂φ + eµz− e
∫

f1(ρ)dρ, X̂2 = p̂z + eµφ + e
∫

f2(ρ)dρ,

‖Fab‖ =
(

0 −µ
µ 0

)
;

[X̂1, X̂2] = iµX̂0.

The symmetry algebra Ĝ = 〈X̂0, X̂1, X̂2〉 is a one-dimensional central extension of the
two-dimensional Abelian Lie algebra so(2)⊕R. This extension is nontrivial for µ 6= 0.

3.3. Three-Dimensional Subalgebras

3.3.1. Subalgebra R3 ' 〈P1, P2, P3〉

X̂0 = e,

X̂1 = p̂1 − e(µ1x2 + µ2x3), X̂2 = p̂2 + e(µ1x1 − µ3x3), X̂3 = p̂3 + e(µ2x1 + µ3x2),

‖Fab‖ =

 0 µ1 µ2
−µ1 0 µ3
−µ2 −µ3 0

;

[X̂1, X̂2] = −iµ1X̂0, [X̂1, X̂3] = −iµ2X̂0, [X̂2, X̂3] = −iµ3X̂0.

The symmetry algebra Ĝ = 〈X̂0, X̂1, X̂2, X̂3〉 is a one-dimensional central exten-
sion of the three-dimensional Abelian Lie algebra R3. This extension is nontrivial for
µ2

1 + µ2
2 + µ2

3 6= 0.

3.3.2. Subalgebra e(2) ' 〈P1, P2, J3〉

X̂0 = e, (18)

X̂1 = p̂1 − eµx2, X̂2 = p̂2 + eµx1, X̂3 = x2 p̂1 − x1 p̂2 −
1
2

eµ
(

x2
1 + x2

2

)
, (19)
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‖Fab‖ =

 0 µ 0
−µ 0 0
0 0 0

;

[X̂1, X̂2] = −iµX̂0, [X̂1, X̂3] = iX̂2, [X̂2, X̂3] = −iX̂1.

The symmetry algebra Ĝ = 〈X̂0, X̂1, X̂2, X̂3〉 is a one-dimensional central extension of
the three-dimensional Lie algebra e(2). This extension is nontrivial for µ 6= 0.

3.3.3. Subalgebra e(2)a ' 〈P1, P2, J3 + aP3〉

X̂0 = e, (20)

X̂1 = p̂1 + ea
[
µ3 cos

( x3

a

)
− µ2 sin

( x3

a

)]
− eµ1x2, (21)

X̂2 = p̂2 − ea
[
µ2 cos

( x3

a

)
+ µ3 sin

( x3

a

)]
+ eµ1x1, (22)

X̂3 = x2 p̂1 − x1 p̂2 + ap̂3+

ea
[
(µ2x1 + µ3x2) cos

( x3

a

)
+ (µ3x1 − µ2x2) sin

( x3

a

)]
− 1

2
eµ1

(
x2

1 + x2
2

)
, (23)

‖Fab‖ =

 0 µ1 0
−µ1 0 0

0 0 0

;

[X̂1, X̂2] = −iµ1X̂0, [X̂1, X̂3] = iX̂2, [X̂2, X̂3] = −iX̂1.

The symmetry algebra Ĝ = 〈X̂0, X̂1, X̂2, X̂3〉 is a one-dimensional central extension of
the three-dimensional Lie algebra e(2)a. This extension is nontrivial for µ1 6= 0.

3.3.4. Subalgebra so(3) ' 〈J1, J2, J3〉

X̂0 = e, (24)

X̂1 = cos(φ) cot(θ) p̂φ + sin(φ) p̂θ − eµ sin(θ) cos(φ), (25)

X̂2 = sin(φ) cot(θ) p̂φ − cos(φ) p̂θ − eµ sin(θ) sin(φ), (26)

X̂3 = − p̂φ − eµ cos(θ), (27)

‖Fab‖ =

 0 0 0
0 0 0
0 0 0

;

[X̂1, X̂2] = −iX̂3, [X̂1, X̂3] = iX̂2, [X̂2, X̂3] = −iX̂1.

The symmetry algebra Ĝ = 〈X̂0, X̂1, X̂2, X̂3〉 is a trivial one-dimensional central exten-
sion of the three-dimensional Lie algebra so(3) for any values of the constant µ.

3.4. Four-Dimensional Subalgebras
Subalgebra e(2)⊕R ' 〈P1, P2, P3, J3〉

X̂0 = e, (28)

X̂1 = p̂1− eµx2, X̂2 = p̂2 + eµx1, X̂3 = p̂3, X̂4 = x2 p̂1− x1 p̂2−
1
2

eµ
(

x2
1 + x2

2

)
. (29)
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‖Fab‖ =


0 µ 0 0
−µ 0 0 0
0 0 0 0
0 0 0 0

;

[X̂1, X̂2] = −iµX̂0, [X̂1, X̂4] = iX̂2, [X̂2, X̂4] = −iX̂1.

The symmetry algebra Ĝ = 〈X̂0, X̂1, X̂2, X̂3, X̂4〉 is a one-dimensional central extension
of the four-dimensional Lie algebra e(2)⊕R. This extension is nontrivial for µ 6= 0.

4. Noncommutative Integration of the Schrödinger Equation

Let us show how to make use of the symmetry algebra Ĝ to construct exact solutions
of the Schrödinger equation (1).

Traditionally, to solve this problem, one uses the well-known method of separation of
variables. For the applicability of this method, one assumes that the Hamiltonian Ĥ belongs
to a three-dimensional commutative algebra of first- or second-order symmetry operators
Ŷα [14]. In this case, a basis of solutions to the Schrödinger equation can be found from the
eigenvalue problem

Ŷαψ = Jαψ, α = 1, 2, 3, (30)

where Ŷ1 = Ĥ, J1 = E and [Ŷα, Ŷβ] = 0 for all α, β = 1, 2, 3. The basic difficulty here is that
the algebra Ĝ is, in general, noncommutative, and there is no guarantee that it contains
two-dimensional commutative subalgebras, which, together with the Hamiltonian, can be
used to solve the eigenvalue problem (30). In practice, this difficulty is overcome by the
extension of the symmetry algebra Ĝ to the universal enveloping algebra U(Ĝ ), in which a
pair of second-order commuting operators is sought.

There is, however, an alternative way to construct exact solutions of the Schrödinger
Equation (1), which does not involve the use of higher-order symmetry operators and
deals only with the original noncommutative symmetry algebra Ĝ . This is the so-called
noncommutative integration method of linear PDEs [16–18] developed by Shapovalov and
Shirokov by analogy with the noncommutative integration method of finite-dimensional
Hamiltonian systems [25]. This section aims to demonstrate this method as a basis for
a unified and effective approach to constructing exact solutions of time-independent
Schrödinger equations with nontrivial symmetry algebras.

Before proceeding further, let us clarify what we mean by the “integrability” of the
Schrödinger equation.

Definition 1. The Schrödinger equation (Equation (1)) is called integrable if constructing a
basis of its solution space is reduced to solving systems of ordinary differential equations and
using quadratures.

Remark 5. In quantum mechanics, the term “basis” commonly refers to a certain Hilbert space of
global solutions of the Schrödinger equation. The construction of such global solutions proceeds
by “gluing” local ones and requires an analysis of the additional topological properties of the
corresponding underlying manifold. However, within the framework of our approach, we will not
consider the global aspect and the term “basis” will be used only in the following local sense. By
a basis of the solution space of the Schrödinger Equation (1), we will mean a parametric family
of particular solutions ψJ(x, q) with the property of local completeness in the sense that a formal
expansion of the general solution can be constructed using ψJ(x, q).

Let us suppose that Equation (1) admits an (n + 1)-dimensional symmetry algebra Ĝ
with the basis

X̂0 = e, X̂1 = ξ i
1(x) p̂i + eχ1(x), . . . , X̂n = ξ i

n(x) p̂i + eχn(x). (31)
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We have shown in Section 2 that this algebra is isomorphic to a one-dimensional central
extension of an n-dimensional Lie algebra G of admissible Killing vectors ξa = ξ i

a(x)∂i.
We consider a family of operator-irreducible representations of the Lie algebra Ĝ

parameterized by real parameters J = (J1, . . . , Js) and realized by the first-order differential
operators ˆ̀a(q, ∂q; J) acting on a space of functions on variables q = (q1, . . . , qm) [26]:

ˆ̀0 = −e, ˆ̀a(q, ∂q; J) = ζ
γ
a (q)

∂

∂qγ
+ ϑa(q; J), a = 1, . . . , dim G , (32)

[ ˆ̀a, ˆ̀b] = −i
(

Cc
ab

ˆ̀c − eFab

)
.

Here, Cc
ab are the structure constants of the admissible Lie subalgebra G , Fab are components

of its 2-cocycle, which is defined by an electromagnetic field from Formula (13). Moreover,
s = indF G and m = 1

2 (dim G − indF G ), where the nonnegative integer indF G is called
the cohomological index of the admissible Lie algebra G [19,27]:

indF G ≡ dim G − sup
f∈G ∗

rank ‖Fab + Cc
ab fc‖. (33)

Due to the operator-irreducibility of the representation (32), any Casimir operator of Ĝ is a
multiple of the unit operator:

K( ˆ̀(q, ∂q; J)) = κ(J) · id. (34)

The quantities Jµ, which parameterize the operators ˆ̀a(q, ∂q; J), can take both continuous
and discrete values. It follows from the equality (34) that they, in fact, parameterize a
spectrum of Casimir operators of the algebra Ĝ .

The operator-irreducible representation of the Lie algebra Ĝ satisfying the above
conditions is called the λ-representation of the algebra Ĝ . As we will see, it plays a key
role in the noncommutative integration method of the Schrödinger Equation (1). It is
important to note that the problem of constructing λ-representations of Lie algebras is
directly related to the structure of coadjoint orbits of the corresponding Lie groups and, in
each particular case, can be constructively solved by methods of linear algebra (see, for
example, [18,20,26]).

Let us now describe a method for reducing the number of independent variables in
Schrödinger equations by using symmetry algebras Ĝ . We consider the linear system of
first-order equations

X̂a(x, ∂x)ψJ(x, q) = − ˆ̀a(q, ∂q; J)ψJ(x, q), a = 1, . . . , dim G , (35)

where X̂a(x, ∂x) are the basis non-trivial operators from Ĝ and ˆ̀a(q, ∂q; J) are the corre-
sponding operators of λ-representation for this algebra. The unknown complex-valued
function ψJ(x, q) is a function of the variables x and q, which depends on the quantities J
as on parameters.

It is not difficult to verify that the system (35) is compatible since the sets of operators
{X̂a} and { ˆ̀a} form representations of the same Lie algebra. Because (35) is the first-order
system of partial differential equations, it can be easily integrated using quadratures, for
example, by the method of characteristics. The corresponding general solution can always
be written in the form

ψJ(x, q) = ΦJ(u(x, q)) eiRJ(x,q), (36)

where RJ(x, q) is a function determined by the system of Equation (35), ΦJ is an arbitrary
function, u(x, q) = (u1(x, q), . . . , uk(x, q)) are functionally independent first integrals of
the corresponding homogeneous system.
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We substitute the general solution (36) into the Schrödinger equation (1):

ĤψJ(x, q) = EψJ(x, q). (37)

Since the operators X̂a commute with Ĥ, the solution space of the system (35) is invariant
under the Hamiltonian. This means that the action of Ĥ on ψJ(x, q) can be written as

ĤψJ(x, q) = Ĥ
(

ΦJ(u(x, q))eiRJ(x,q)
)
= Φ̃J(u(x, q))eiRJ(x,q), (38)

where Φ̃J is a new function on the characteristics u(x, q). Defining a linear operator ĥJ by

ĥJΦJ ≡ e−iRJ ĤΦJeiRJ ,

we have Φ̃J = ĥJΦJ and hence Equation (37) is reduced to the linear partial
differential equation

ĥJΦJ = EΦJ , (39)

which is called the reduced Schrödinger equation.
It is easy to see that the operator ĥJ , as well as the Hamiltonian Ĥ, is the second-order

differential operator; it acts on functions of k variables u(x, q) = (u1(x, q), . . . , uk(x, q))
considered now as independent. Thus, we have shown that the function (36) satisfies
the Schrödinger Equation (1) if and only if the function ΦJ is a solution of the reduced
Schrödinger Equation (39). The quantities q and J can be regarded as a set of “quantum
numbers”, which together with E parameterize the constructed family of solutions.

Let us calculate the number k of the functionally independent first integrals of the sys-
tem (35), which is equal to the number of independent variables in the reduced Schrödinger
equation. For this, we note that the first integrals are functions u(x, q) satisfying the homo-
geneous system of differential equations

ξ i
a(x)

∂u(x, q)
∂xi + ζ

γ
a (q)

∂u(x, q)
∂qγ

= 0, a = 1, . . . , n = dim G , (40)

where ξ i
a(x) are the components of basis admissible Killing vectors, ζ

γ
a (q) are the coeffi-

cients of derivatives ∂/∂qγ in λ-representation operators of the symmetry algebra Ĝ (see
Equation (32)). In order to avoid several technical complications, we assume that there
are no identities for Killing vectors ξa from the admissible subalgebra, that is, nontriv-
ial relations of the form ca1a2 ...al ξ i1

a1(x)ξ i2
a2(x) . . . ξ

il
al (x) ≡ 0, where ca1a2 ...al are constants.

(Only such cases arise in this study.) Then, we can claim that the number of functionally
independent solutions of the homogeneous system (40) is equal to

k = 3 +
1
2
(dim G − indF G )− dim G = 3− 1

2
(dim G + indF G ).

(Recall that the number of variables q is equal to m = 1
2 (dim G − indF G ).) In particular,

the reduced Schrödinger equation is an ordinary differential (or algebraic) equation in the
case of k ≤ 1 that leads to the condition

dim G + indF G ≥ 4. (41)

Thus, if the corresponding admissible subalgebra G and its 2-cocycle (13) satisfy the
condition (41), then the Schrödinger equation (1) is integrable in the sense of Definition 1.

In Section 3, we have listed all time-independent electromagnetic fields for which
the corresponding Schrödinger equations admit nontrivial symmetry algebras. As shown
above, the equivalence classes of such fields are given by inequivalent subalgebras of the
Lie algebra e(3); the latter are just the possible admissible subalgebras. Now, using the
condition (41), we can select among the admissible subalgebras G ⊂ e(3) those for which
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the Schrödinger equation can be solved by the noncommutative integration method. The
results of this classification are shown in Table 2, where for each subalgebra G , we indicate
its dimension dim G , cohomological index indF G , number of independent variables q in
a reduced equation which is equal to k = 3− (dim G + indF G )/2 and, finally, indicate
whether the Schrödinger equation with the corresponding symmetry algebra Ĝ is integrable
or not.

Table 2. Integrable cases of the Schrödinger equation.

Subalgebra dim G indF G k Integrability

R 1 1 2 No

so(2) 1 1 2 No

so(2)a, a > 0 1 1 2 No

R2 2 0, if µ 6= 0 2 No
2, if µ = 0 1 Yes

so(2)⊕R 2 0, if µ 6= 0 2 No
2, if µ = 0 1 Yes

R3 3 1, if ∑ µ2
i 6= 0 1 Yes

3, if ∑ µ2
i = 0 0

e(2) 3 1 1 Yes

e(2)a 3 1 1 Yes

so(3) 3 1 1 Yes

e(2)⊕R 4 1 0 Yes

Remark 6. Of course, there exist integrable cases of the time-independent Schrödinger equation
that are not covered by condition (41). In particular, this happens in the case when there are the
so-called “hidden” symmetries of Equation (1) associated with higher-order symmetry operators,
which do not belong to the universal enveloping algebra U(Ĝ ). However, we are not considering
such cases here.

4.1. Reduction of Schrödinger Equations to Ordinary Differential Equations

Let us demonstrate how the noncommutative integration method allows one to reduce
Schrödinger equations in electromagnetic fields with the admissible subalgebras e(2),
e(2)a, so(3), and e(2)⊕R to ordinary differential equations. We do not consider here the
integrable cases with the subalgebras R2 and so(2)⊕R (µ = 0) as trivial; for both of these
situations, it is easy to reduce the original Schrödinger equation to an ordinary differential
equation using a pair of commuting first-order symmetry operators. Below, we also do
not discuss the case of the admissible subalgebra R3 because the corresponding class of
electromagnetic fields is equivalent to a class of fields with the admissible subalgebra
e(2)⊕R (see Remark 4).

4.1.1. Case e(2)

In the Cartesian coordinates, the basis vector fields of the admissible subalgebra e(2)
are written as

ξ1 =
∂

∂x1
, ξ2 =

∂

∂x2
, ξ3 = x2

∂

∂x1
− x1

∂

∂x2
.

The class of electromagnetic fields determined by this subalgebra is given by the magnetic
2-form F and the scalar potential ϕ of the form (see Table 1):

F = µ dx1 ∧ dx2, ϕ = f (x3),
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where µ is a constant, f (x3) is an arbitrary function depending only on the x3-coordinate.
Thus, the electric and magnetic components of this field are directed along the Ox3-axis;
the magnetic field is uniform, but the electric field generally depends on the x3-coordinate.

Choosing the magnetic field potential in the form A = µ(−x2dx1 + x1dx2)/2, we
obtain the corresponding Schrödinger equation

− 1
2m

∆ψ +
ieµ

2m

(
x1

∂ψ

∂x2
− x2

∂ψ

∂x1

)
+

e2µ2

8m

(
x2

1 + x2
2

)
ψ + e f (x3)ψ = Eψ, (42)

where ∆ = ∂2
1 + ∂2

2 + ∂2
3 is the Laplace operator. The symmetry algebra Ĝ of this equation is

generated by the operators (18) and (19); for the chosen gauge, these are written in the form

X̂0 = e, X̂1 = −i
∂

∂x1
− 1

2
eµx2, X̂2 = −i

∂

∂x2
+

1
2

eµx1, X̂3 = −i
(

x2
∂

∂x1
− x1

∂

∂x2

)
. (43)

Let us realize the Lie algebra Ĝ by the λ-representation operators ˆ̀a(q, ∂q; J) acting in the space
of holomorphic functions of complex variable q ∈ C and parameterized by the continuous real
parameter J ∈ (−∞,+∞):

ˆ̀0 = −e, ˆ̀1 =
1
2

∂

∂q
− eµq, ˆ̀2 =

i
2

∂

∂q
+ ieµq, ˆ̀3 = −q

∂

∂q
+ J; (44)

[ ˆ̀1, ˆ̀2] = −iµ ˆ̀0, [ ˆ̀1, ˆ̀2] = i ˆ̀2, [ ˆ̀2, ˆ̀3] = −i ˆ̀3,

The corresponding Casimir operator is

K( ˆ̀) = ˆ̀2
1 +

ˆ̀2
2 − 2µe ˆ̀3 = −eµ(2J + 1).

Solving the first-order linear system (35), we easily find its general solution

ψJ(x1, x2, x3; q) = ΦJ(u)[x1 + i(x2 + 2q)]J exp

[
eµ(x2

1 + x2
2)

4
+ eµq(ix1 + x2)

]
, (45)

where u = x3, ΦJ(u) is an arbitrary function of its argument. This solution is not a single-valued
function of coordinates. Indeed, if we let q = 0 and x + iy = ρeiϕ, we obtain the expression

ψJ(ρ cos ϕ, ρ sin ϕ, x3, 0) = ΦJ(x3)ρ
Jei Jϕ exp

(
eµρ2

4

)
,

which, generally speaking, is not a single-valued function due to the multiplier ei Jϕ. The require-
ment that this function is single-valued leads to the “quantization condition” according to that the
parameter J must be an integer.

Substituting the function (45) into Equation (42), we come, after simple transformations, to the
reduced Schrödinger equation (Equation (39)):

ĥJΦJ(u) ≡
[
− 1

2m
d2

du2 −
eµ

2m
(2J + 1) + e f (u)

]
ΦJ(u) = EΦJ(u), (46)

Thus, the original Equation (42) is reduced to a one-dimensional Schrödinger equation with the
effective potential:

VJ(u) = e
[

f (u)− eµ

2m
(2J + 1)

]
.

Due to the arbitrariness of the function f (u), the solutions of the ordinary differential equation (46)
are not expressed in terms of known special functions in the general case.

4.1.2. Case e(2)a
Let us transform the Cartesian coordinates (x1, x2, x3) to the helical coordinates (ρ, φ, ζ) (see

Equation (17)). The basis vector fields ξa ∈ e(2)a in these coordinates have the form

ξ1 = cos(φ)
∂

∂ρ
− sin(φ)

ρ

(
∂

∂φ
+ a

∂

∂ζ

)
, ξ2 = sin(φ)

∂

∂ρ
+

cos(φ)
ρ

(
∂

∂φ
+ a

∂

∂ζ

)
, ξ3 = − ∂

∂φ
.
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The corresponding class of electromagnetic fields is determined by the closed 2-form

F = µ1ρ dρ ∧ dφ + a
[

µ2 cos
(

ζ

a

)
− µ3 sin

(
ζ

a

)]
dρ ∧ dφ+

+

[
µ2 cos

(
ζ

a

)
+ µ3 sin

(
ζ

a

)]
dρ ∧ dζ − ρ

[
µ2 sin

(
ζ

a

)
− µ3 cos

(
ζ

a

)]
dφ ∧ dζ,

and the scalar potential ϕ = 0 (see Table 1), where µ1, µ2, µ3 are arbitrary constants, a > 0. We
introduce the notation

µ1 = µ, µ2 = B0 cos θ, µ3 = B0 sin θ,

where µ, B0 and θ are new constants; moreover, B0 > 0, 0 ≤ θ < 2π. By rotations in the x1x2-plane,
we can achieve that θ = 0 (we recall that hlthe electromagnetic fields up to the equivalence relation
(14) are considered). Thus, we will actually study a class of magnetic fields of the form

F = µρ dρ ∧ dφ + B0

[
cos
(

ζ

a

)
dρ ∧ (dζ − adφ)− ρ sin

(
ζ

a

)
dφ ∧ dζ

]
.

It is easy to see that this magnetic field is a superposition of a uniform magnetic field directed along
the x3-axis and a magnetic field whose direction is everywhere parallel to the current density vector
(the so-called force-free field).

Let us choose the magnetic field potential in the following form

A =
µρ2

2
dφ + B0ρ cos

(
ζ

a

)
(dζ − adφ). (47)

In this gauge fixing, the Schrödinger Equation (1) is written as

− 1
2m

∆ψ +
ieµ

2m
∂ψ

∂φ
+

ie
2m

[
aµ + 2B0ρ cos

(
ζ

a

)]
∂ψ

∂ζ

+
eρ

2ma

[
eaB2

0ρ cos2
(

ζ

a

)
− iB0 sin

(
ζ

a

)
+

eaµ2ρ

4

]
ψ = Eψ, (48)

where ∆ is the Laplace operator in the helical coordinates (17):

∆ =
1
ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+

1
ρ2

[
∂2

∂φ2 + 2a
∂2

∂φ∂ζ
+ (a2 + ρ2)

∂2

∂ζ2

]
.

The symmetry algebra Ĝ for Equation (48) is given by the operators (20)–(23) whose explicit
form in the coordinates ρ, φ and ζ is as follows:

X̂1 = −i
[

cos(φ)
∂

∂ρ
− sin(φ)

ρ

(
∂

∂φ
+ a

∂

∂ζ

)]
− e
[

µρ

2
sin(φ) + aB0 sin

(
ζ

a
− φ

)]
,

X̂2 = −i
[

sin(φ)
∂

∂ρ
+

cos(φ)
ρ

(
∂

∂φ
+ a

∂

∂ζ

)]
+ e
[

µρ

2
cos(φ)− aB0 cos

(
ζ

a
− φ

)]
,

X̂3 = i
∂

∂φ
, X̂0 = e.

Because these operators satisfy the same commutation relations as the operators (43), we can choose
the representation by the operators (44) as a λ-representation of the algebra Ĝ again.

Solving the system of equations (35), we obtain the expression for a function ψJ(ρ, φ, ζ, q)

ψJ(ρ, φ, ζ, q) = ΦJ(u) · exp
[

i J
(

φ− ζ

a

)
+ ieµρ

(
qe−iφ − iρ

4

)
+ ieB0aρ sin

(
ζ

a

)]
.
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where u = e
iζ
a

(
ρ + 2iqe−iφ

)
, ΦJ is an arbitrary function of its argument. Substituting this expression

into the original Equation (48), after simple algebraic manipulations, we come to the reduced
Schrödinger equation:

ĥJΦJ(u) =
{

u2

2ma2
d2

du2 +

[
eB0a

m
− 2J − 1 + 2eµa2

2ma2 u
]

d
du

− e2B0µa
2m

u +
e2B2

0a4 − eµa2 + J2

2ma2

}
ΦJ(u) = EΦJ(u).

In the general case, solutions of this ordinary differential equation are not expressed in terms of
known special functions.

4.1.3. Case so(3)
In the spherical coordinates (16), the basis vector fields of the subalgebra so(3) are written

as follows

ξ1 = cos(φ) cot(θ)
∂

∂φ
+ sin(φ)

∂

∂θ
, ξ2 = sin(φ) cot(θ)

∂

∂φ
− cos(φ)

∂

∂θ
, ξ3 = − ∂

∂φ
.

The class of electromagnetic fields determined by this admissible subalgebra is given by the magnetic
2-form

F = µ sin(θ)dφ ∧ dθ, (49)

and the electric potential ϕ = f (r). Here, µ is an arbitrary constant, f (r) is an arbitrary function
depending on r. This electromagnetic field can be interpreted as the superposition of a magnetic
monopole field with the magnetic charge µ and a spherically symmetric electric field with the
potential f (r).

Let us choose a gauge for which the magnetic potential has the form

A = µ cos(θ)dφ. (50)

Then, the Schrödinger equation in the considered electromagnetic field is written as

Ĥψ =

[
− 1

2m
∆ +

ieµ

mr2
cot θ

sin θ

∂

∂φ
+

e2µ2

2mr2 cot2 θ + e f (r)
]

ψ = Eψ, (51)

where ∆ is the Laplace operator in the spherical coordinates:

∆ =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin2(θ)

∂2

∂φ2 +
1

r2 sin(θ)
∂

∂θ

(
sin(θ)

∂

∂θ

)
.

The symmetry algebra Ĝ of Equation (51) is given by the operators (24)–(27). Taking into account
Equation (50), we write out these operators in the explicit form:

X̂1 = −i
[

cos(φ) cot(θ)
∂

∂φ
+ sin(φ)

∂

∂θ

]
− eµ cos(φ)

sin(θ)
,

X̂2 = −i
[

sin(φ) cot(θ)
∂

∂φ
− cos(φ)

∂

∂θ

]
− eµ sin(φ)

sin(θ)
, X̂3 = i

∂

∂φ
, X̂0 = e.

Let us realize the λ-representation of the Lie algebra so(3) by the family of operators

ˆ̀0 = −e, ˆ̀1 = − sin q
∂

∂q
+ J cos q, ˆ̀2 = − cos q

∂

∂q
− J sin q, ˆ̀3 = −i

∂

∂q
.

K( ˆ̀) = ˆ̀2
1 +

ˆ̀2
2 +

ˆ̀2
3 = J(J + 1).

Here, q ∈ C is a 2π-periodic complex variable, J > 0. In this case, the general solution for the system
of Equation (35) has the form

ψJ(r, φ, θ; q) = ΦJ(r)[cos(θ)− i sin(θ) sin(q + φ)]J

 sin
(

θ
2

)
+ ei(q+φ) cos

(
θ
2

)
cos
(

θ
2

)
− ei(q+φ) sin

(
θ
2

)
eµ

, (52)
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where ΦJ(r) is an arbitrary function of its argument.
Substituting the function (52) into the Schrödinger Equation (51), we obtain the ordinary

differential equation for the unknown function ΦJ(r):

ĥJΦJ(r) =
1

2mr2
d
dr

(
r2 dΦJ(r)

dr

)
− J(J + 1)− e2µ2

2mr2 ΦJ(r)− e f (r)ΦJ(r) = EΦJ(r).

It is clear that solutions of this reduced Schrödinger equation cannot be expressed in terms of
known special functions without specifying the function f (r). Up to the redefinition of the potential

ϕ(r)→ ϕ(r) + e2µ2

r2 , this equation is given in the book [28], where some of its general properties are
also discussed in detail.

Remark 7. An important remark is that the chosen vector potential (50) has a singularity on the x3-axis,
which reflects the well-known fact that a magnetic monopole field does not have a globally defined magnetic
potential. As we have already emphasized, we restrict ourselves here to considering the local aspect of the
integrability problem demonstrating only the possibility of constructing exact solutions for the Schrödinger
equation in a neighborhood of some point. On the other hand, the key nontrivial property of the field (49) is just
global in nature; to a more careful consideration of this case, it is required to cover the space R3 by two local
charts in each of that the monopole magnetic potential is well-defined. The subsequent “gluing” of solutions
for the Schrödinger equation in these charts leads to quantization conditions for the parameter J and electric
charge e. A more detailed discussion of this problem can be found in the well-known works [29,30].

4.1.4. Case e(2)⊕R
In the Cartesian coordinates, the basis vector fields ξa of the subalgebra e(2)⊕R have the form

ξ1 =
∂

∂x1
, ξ2 =

∂

∂x1
, ξ3 =

∂

∂x1
, ξ4 = x2

∂

∂x1
− x1

∂

∂x1
.

The corresponding class of electromagnetic fields is given by zero scalar potential and the 2-form (see
Table 1)

F = µ dx1 ∧ dx2, (53)

where µ is an arbitrary constant. In this case, the electromagnetic field has only the constant and
uniform magnetic component whose direction coincides with the x3-axis.

Let us choose the electromagnetic potential corresponding to the 2-form (53) in the
symmetric gauge:

A =
µ

2
(−x2 dx1 + x1 dx2). (54)

The time-independent Schrödinger equation (1) for the vector potential (54) has the following
explicit form:

Ĥψ =

[
− 1

2m
∆ +

ieµ

2m

(
x1

∂

∂x2
− x2

∂

∂x1

)
+

e2µ2

8m

(
x2

1 + x2
2

)]
ψ = Eψ. (55)

The symmetry algebra Ĝ for Equation (55) is defined by the operators (28)–(29). Taking into account
Equation (54), these operators can be written as

X̂1 = −i
∂

∂x1
− 1

2
eµ x2, X̂2 = −i

∂

∂x2
+

1
2

eµ x1, X̂3 = −i
∂

∂x3
,

X̂4 = −i
(

x2
∂

∂x1
− x1

∂

∂x2

)
, X̂0 = e.

The operators of the λ-representation for the algebra e(2)⊕R act in the space of holomorphic
functions in the complex plane C:

ˆ̀1 = −i
∂

∂q
− 1

2
ieµq, ˆ̀2 =

∂

∂q
− 1

2
eµq, ˆ̀3 = J2, ˆ̀4 = −q

∂

∂q
+ J1, ˆ̀0 = −e.

K1( ˆ̀) = ˆ̀3 = J1, K2( ˆ̀) = ˆ̀2
1 +

ˆ̀2
2 − 2eµ ˆ̀4 = −eµ(2J1 + 1).

Here, q ∈ C, J1 ∈ (0,+∞), J2 ∈ R.
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Solving the system of Equation (35), we obtain

ψJ1,J2 (x1, x2, x3, q) = C (x1 + ix2 − q)J1 exp
[ eµ

4

(
x2

1 + x2
2 + 2q(ix2 − x1)

)
+ i J1x3

]
, (56)

where C is a constant. Note that for q = 0, x1 = ρ cos φ, x2 = ρ sin φ, we have

ψJ,p3 (x1, x2, x3, 0) = CρJ1 exp
[

i J1φ + i J2x3 +
eµρ2

4

]
.

Obviously, this function is single-valued if the real parameter J1 is an integer.
Substituting the function (56) into Equation (55), we arrive at the condition for the parameter E:

E =
J2
2

2m
− eµ

m

(
J1 +

1
2

)
. (57)

Because the parameter E is the energy of the particle, it must be nonnegative and, therefore, we have the
additional restriction on the possible integer values of the parameter J1:

• if eµ > 0, then J1 = −n− 1, where n = 0, 1, 2, . . . ;
• if eµ < 0, then J1 = n, where n = 0, 1, 2, . . . .

Thus, we have the condition

E =
J2
2

2m
+
|eµ|
m

(
n +

1
2

)
, n = 0, 1, 2, . . . .

We note that this expression for the energy spectrum of a charged particle in the uniform magnetic
field is well-known (see, for example, [28]). However, it should be emphasized that the eigenfunctions
of this problem are expressed in terms of Hermite polynomials usually, but, in the framework of our
approach, they are expressed in terms of elementary functions (see Formula (56)).

5. Discussion
Let us discuss the results obtained in this study. Using the system of determining equations

for the first-order symmetry operators of the time-independent Schrödinger equation in an external
electromagnetic field (Equations (5)–(7)), we have given an algorithm for constructing these operators
and described the structure of the corresponding symmetry algebra in terms of Lie algebra central
extensions. These results allowed us to suggest a symmetry-based approach to the classification
of time-independent electromagnetic fields for which the corresponding Schrödinger equations
admit nontrivial first-order symmetry algebras. As a result, we have obtained the complete list of
all such electromagnetic fields (see Table 1) based on the well-known classification of inequivalent
subalgebras of the Lie algebra e(3). Moreover, we have explicitly constructed the corresponding
first-order symmetry algebras.

We note that these study results were partially published earlier in our work [10], but then, we
missed two cases corresponding to the subalgebras R3 and e(2). In addition, the results in [10] were
presented in a gauge-dependent form, which is inconvenient when comparing with the results of
other authors. These are the reasons why we revise the results obtained earlier by adding the cases of
missing subalgebras to the original classification and rewriting all the results in a gauge-independent
form. Nevertheless, the presence of these shortcomings in the preliminary version of our classification
does not diminish its significance in any way, because it contained some classes of electromagnetic
fields that, as far as the authors know, have not been found in the articles of other researchers at the
time of publication.

For instance, Beckers with co-authors [7] obtained a classification of time-independent electro-
magnetic fields for that the Hamiltonian Ĥ of the Schrödinger equation commutes with operators of
the form X̂a = −iξa, where ξa are Killing vectors forming an arbitrary subalgebra G ⊂ e(3). In our
terminology, this case corresponds to the situation when

Lξa Ak = 0, ξa ϕ = 0, a = 1, . . . , dim G ,

that is, the field potentials are (locally) invariant under a connected subgroup G ⊂ E(3) with the
algebra G . It is easy to see that the restriction imposed by these authors on a magnetic field is stronger
than the condition (15) assumed by us. Therefore, the classes of electromagnetic fields given in Table 1
are wider than those obtained by Beckers with co-authors. For example, the class of electromagnetic
fields associated with the subalgebra so(3) = 〈J1, J2, J3〉 in [7] is specified by an arbitrary spherically
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symmetric scalar potential ϕ(r) and a magnetic potential of the form A = a(r)r, where a(r) is an

arbitrary function on r =
√

x2
1 + x2

2 + x2
3, r = (x1, x2, x3). Obviously, the magnetic field is vanishing

in this case, while, in our case, the subalgebra so(3) corresponds to the electromagnetic field whose
magnetic part describes the magnetic monopole field:

F = µ sin(θ)dφ ∧ dθ, µ ∈ R.

Another classification of time-independent electromagnetic fields was obtained by Marchesiello
with co-authors [9] from a somewhat different viewpoint. The authors of this article researched
the cases when the symmetry algebra Ĝ contains the subalgebras 〈−iP1,−iP2〉, 〈−iP3,−i J3〉, and
〈−i J1,−i J2,−i J3〉, and searched for classes of fields that admit additional first- or second-order
symmetry operators for each of these cases. However, their requirement is not satisfied by the
physically interesting magnetic field obtained by us (see the case of subalgebra e(2)a in Table 1):

F =
[
µ2 cos

( x3
a

)
+ µ3 sin

( x3
a

)]
dx1 ∧ dx3

−
[
µ2 sin

( x3
a

)
− µ3 cos

( x3
a

)]
dx2 ∧ dx3 + µ1 dx1 ∧ dx2, (58)

which is the superposition of a force-free magnetic field (µ1 = 0) and the constant and uniform
magnetic field directed along the x3-axis (µ2 = µ3 = 0).

When working on this study, we became aware of one more recent article written by Nikitin [13].
In this work, an exhaustive classification of time-independent electromagnetic fields for which
time-dependent Schrödinger equations admit Lie point symmetries was obtained. Actually, this
classification problem is reduced to the classification of time-independent electromagnetic potentials
for which the Schrödinger operator Ŝ = i∂t − Ĥ admits first-order symmetry operators of the form

X̂ = η(x, t)
∂

∂t
+ ξa(x, t)

∂

∂xa
+ χ(x, t).

Since we were only interested in time-independent first-order symmetry operators, our classi-
fication must be included in Nikitin’s one as a particular case, and this is true in fact. The electro-
magnetic fields in [13], however, were obtained in a special gauge, whereas we presented results in a
gauge-independent form. Moreover, Nikitin does not investigate the integrability of Schrödinger
equations using the symmetry algebras which were found.

The second part of this study is devoted to the noncommutative integration method for linear
partial differential equations [16,17] and its application to the problem of constructing exact solutions
for the time-independent Schrödinger equation in an external electromagnetic field. The main
motivation for writing this section was to describe a unified approach to construct exact solutions
for a wide class of Schrödinger equations using only first-order symmetry algebras. Applying
the integrability condition (41), we selected the classes of electromagnetic fields for which the
corresponding Schrödinger equations are integrable (see Table 2). All such electromagnetic fields
correspond to the following subalgebras of the algebra e(3): R2, so(2)⊕R, R3, e(2), e(2)a, so(3), and
e(2)⊕ R (see Figure 1). Choosing the physically interesting cases among these subalgebras, e(2),
e(2)a, so(3), and e(2)⊕R, we reduced the original Schrödinger equation to an ordinary differential
equation for each of them.

We would attract the reader’s attention to the case of subalgebra e(2)a, for which, as far as the
authors know, the Schrödinger equation in the corresponding electromagnetic field (58) is integrated
for the first time. We note that a special case of this field for µ1 = 0 was considered in the work [9]. It
is easy to see that in this case, in addition to the Hamiltonian, there are two commuting symmetry
operators allowing to integrate the quantum system using the method of separation of variables. As a
result, the authors of [9] reduced the corresponding Schrödinger equation to an ordinary differential
equation whose solutions are expressed in terms of Mathieu sine and cosine functions. It should be
emphasized that the analogous problem with µ1 6= 0 is much more difficult because the addition of
the uniform magnetic field leads to the fact that the symmetry algebra becomes noncommutative. As
a consequence, if we want to solve the problem using the separation of variables, we need to search
for additional “hidden” second-order symmetry operators. At the same time, the noncommutative
integration method allows one avoiding this difficulty involving only first-order symmetry operators.
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