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Abstract: In this paper, a special subclass of reaction diffusion systems with two arbitrary constitutive
functions Γ(v) and H(u, v) is considered in the framework of transformation groups. These systems
arise, quite often, as mathematical models, in several biological problems and in population dynamics.
By using weak equivalence transformation the principal Lie algebra, LP , is written and the classifying
equations obtained. Then the extensions of LP are derived and classified with respect to Γ(v) and
H(u, v). Some wide special classes of special solutions are carried out.

Keywords: weak equivalence transformations; classical symmetries; biomathematical models; exact
solutions

1. Introduction

Motivated by several papers concerned with the mathematical models describing the
dispersal dynamics of the Aedes Aegypt mosquitoes (main vector of dengue, xicungunia,
zika, and other similar diseases) [1–3] as well as Anopheles [4], in two previous papers [5,6],
the following parabolic reaction-diffusion-advection system has been considered

ut = ( f (u)ux)x + g(u, v, ux),

vt = h(u, v),
(1)

where the diffusion coefficient f (u), the reaction-advection term g(u, v, ux) and the reaction
term h(u, v) are assumed to be analytic functions of their arguments. This system, apart
from its mathematical interest, could be considered a quite general model of two interacting
species. In this model the species u can be subjected to advection phenomena, such as wind
effects or water currents while the species v does not feel advection effects and, moreover,
does not show diffusive phenomena [7].

When the advection effects are negligible or absent it is possible to assume the con-
stitutive function g only depending on u and v. Concerned with mosquito models, it
might correspond to an infestation in a small region where the wind currents are very
weak. It is worthwhile stressing that a system class (1) with g(u, v) can model not only the
dispersal dynamics of some mosquito species with negligible advection, but it can model
the interaction between swimming and swarming populations in the colonies of Proteus
Mirabilis [8–10] or analogous bacterial colonies.

Having in mind to look for symmetries of systems belonging to the class (1) and taking
into account that a classification with respect to all the constitutive parameters usually
brings a big number of cases, several of them without biological meaning, here we focus
our attention in the following form of the functions f and g [3,11]

f = D0, g = γ1u(γ2 − u) + Γ(v),
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with D0, γ1, γ2 non zero constants, so that the system (1) reads
ut = D0uxx + γ1u(γ2 − u) + Γ(v),

vt = h(u, v).
(2)

In this way, it is assumed that there is a “weak interaction” of the species v over the
species u [12,13]. It is useful stressing that even though the symmetry approach provides a
methodological way to derive exact solutions of non linear system, the symmetry classifica-
tion with respect to arbitrary constitutive functions, that appear in (2), could suggest special
forms of them of a certain interest for the phenomena under consideration. Even though
in the last decades several studies have been devoted to reaction diffusion equations only
few papers have been devoted to the symmetry classification of non-linear systems like (1)
or (2) with advection (convection) terms. It is possible instead to find, as in [14], a complete
description of Lie symmetries for a class of diffusion systems with convection terms in
both equations. Moreover, the paper [15] shows Lie symmetry derivation for a class of
systems, which includes cases having a structure similar to system (1).

Here we do not follow the classical Lie criterion approach in order to get the infinitesi-
mal coordinates of the Lie symmetry generators [16,17]. We apply a projection theorem
introduced in [18] (see for some applications, e.g., [19–21]), that allows us to reduce the
plethora of calculations, by using a known equivalence generator. In our case we use a
weak equivalence generator [22] for class (1) derived in [5].

This paper is organized as follow. In the next section by applying a projection theorem
we write the classifying equations (for the system (2)) and the principal Lie algebra is
shown. In Section 3 the classifying equations are discussed and the extensions of LP are
derived. In Section 4, after having specialized the form of the constitutive function H in a
suitable way, we reduced the system by using the corresponding admitted generator. Then
some wide classes of special exact solutions are obtained. The conclusions are given in
Section 5.

2. Symmetries. A Projection Theorem

A projection theorem [18], reconsidered in [22] affirms:

Theorem 1. Let

Y = α(x)∂x + β(t)∂t + δ(t, u)∂u + λ(x, t, v)∂v + (2α′ − β′) f ∂ f+

+
(
δt + (δu − βt)g + (α′′ − δuuu2

x) f
)
∂g + ((λv − β′)h + λt)∂h

(3)

be an infinitesimal weak equivalence generator for the systems (1), then the operator

X = α(x)∂x + β(t)∂t + δ(t, u)∂u + λ(x, t, v)∂v, (4)

which corresponds to the projection of Y on the space (x, t, u, v), is an infinitesimal symmetry
generator of the system (2) if, and only if, the constitutive equations, specifying the forms of f , g
and h, are invariant with respect to Y.

For the system (2) the constitutive equations are given by
f = D0,
g = γ1u(γ2 − u) + Γ(v),
h = H(u, v).

(5)
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Applying Theorem 1 we need to require the invariance of (5) with respect to the
generator (3) imposing that the functions f , g and h are given by (5). Specifically from

Y( f − D0)|(5) = 0, (6)

we get
(2α′ − β′) f

∣∣
(5) = 0 (7)

that is
(2α′ − β′)D0 = 0. (8)

Similarly, from

Y(g− γ1γ2u + γ1u2 − Γ(v))
∣∣∣
(5)

= 0, (9)

we get

δt + (δu − βt)(γ1u(γ2 − u) + Γ(v)) + (α′′ − δuuu2
x)D0 − γ1γ2δ + 2γ1uδ− Γ′2λ = 0. (10)

Finally, from

Y(h− H(u, v))|(5) = 0 (11)

we get (
(λv − β′)H + λt

)
− Huδ− Hvλ = 0. (12)

Then the operator

X = α(x)∂x + β(t)∂t + δ(t, u)∂u + λ(x, t, v)∂v, (13)

is an infinitesimal symmetry generator of the system (2) if the functions α, β, δ, and λ
satisfy the conditions (8), (10), and (12). Taking into account that D0 6= 0, from (8) we
get immediately

α(x) = α1x + α0, β(t) = 2α1t + β0, (14)

with α0, α1, and β0 arbitrary constants. Substituting these forms of α(x) and β(t) in the
remaining conditions (10), and (12), we get

δt + (δu − 2α1)(γ1u(γ2 − u) + Γ)− δuuu2
xD0 − γ1(γ2 − 2u)δ− Γ′λ = 0, (15)

((λv − 2α1)H + λt)− Huδ− Hvλ = 0. (16)

We observe that the constants α0 and β0 do not appear in these conditions. Moreover,
for arbitrary forms of the functions Γ(v) and H(u, v) these conditions are satisfied only if

α1 = δ = λ = 0, (17)

then the Principal Lie Algebra LP (see, e.g., [18]) (the algebra of all the Lie symmetries that
leave the system (2) invariant for any form of the functions Γ(v), and H(u, v)) is spanned
by the following translation generators:

X1 = ∂t, X2 = ∂x. (18)

3. Extensions of LP
In this section, we are interested in getting extensions of the Principal Lie Algebra for

the system (2). Then our goal is to find special forms of the functions Γ(v), and H(u, v),
such that the conditions (15) and (16) are satisfied for α1, δ, and λ not all zero. The discus-
sion of (15) and (16) leads to a classification with respect to the functions Γ(v) and H(u, v).
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From (15) we get
δuu = 0 ⇒ δ(t, u) = δ1(t)u + δ0(t) (19)

so we can rewrite (15) in the form

δ0t + γ1(δ1 + 2α1)u2 + [δ1t + 2γ1(δ0 − α1γ2)]u− γ1γ2δ0 + (δ1 − 2α1)Γ− λΓ′ = 0, (20)

from where we are able to derive

γ1(δ1 + 2α1) = 0, (21)

δ1t + 2γ1(δ0 − α1γ2) = 0, (22)

δ0t − γ1γ2δ0 + (δ1 − 2α1)Γ− λΓ′ = 0. (23)

By solving (21) and (22) we get

δ1 = −2α1, δ0 = α1γ2. (24)

By substituting these results in (23) and (16) we get the following coupled classifying
equations for the functions Γ(v) and H(u, v)

α1(γ1γ2
2 + 4Γ) + λΓ′ = 0, (25)

(λv − 2α1)H + λt + α1(2u− γ2)Hu − λHv = 0. (26)

It is possible to ascertain that Equation (25) brings to the discussion of the following cases

3.1. Γ′ 6= 0;

3.2. Γ′ = 0, Γ 6= − γ1γ2
2

4 that implies α1 = 0;

3.3. Γ′ = 0, Γ = − γ1γ2
2

4 .

3.1. Γ′ 6= 0

From (25) we get, for arbitrary Γ(v) with Γ′ 6= 0,

λ(t, x, v) = −
α1(γ1γ2

2 + 4Γ)
Γ′

(27)

so we can write (26) as

α1

(
γ1γ2

2 + 4Γ
Γ′

Hv + (2u− γ2)Hu +
(γ1γ2

2 + 4Γ)Γ′′ − 6Γ′2

Γ′2
H

)
= 0. (28)

If α1 = 0 we do not obtain any extension of the principal Lie algebra. Then, for α1 6= 0,
(28) is satisfied only when

H(u, v) =
(2u− γ2)

3

Γ′
φ(ω) (29)

with φ(ω) arbitrary function of ω =
(2u− γ2)

2

γ1γ2
2 + 4Γ

.

So the system 
ut = D0uxx + γ1u(γ2 − u) + Γ(v),

vt =
(2u− γ2)

3

Γ′
φ(ω)

(30)

admits the following additional generator

X3 = x∂x + 2t∂t + (γ2 − 2u)∂u −
(γ1γ2

2 + 4Γ)
Γ′

∂v. (31)
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Remark 1. If Γ′(v) 6= 0, it is possible to verify that the change of variable

w = Γ(v) (32)

maps the system (2) in the following equivalent form
ut = D0uxx + γ1u(γ2 − u) + w,

wt = Φ(u, w).
(33)

Remark 2. Of course the system (33), when Φ(u, w) assumes the form

Φ(u, w) = (2u− γ2)
3φ(ω)

with ω =
(2u− γ2)

2

γ1γ2
2 + 4w

, admits the following extension with respect to (18)

X3 = x∂x + 2t∂t + (γ2 − 2u)∂u − (γ1γ2
2 + 4w)∂w. (34)

Remark 3. From Remarks 1 and 2, without loss of generality, we can assume Γ(v) = v in the
system (30), as well as in the generator (31).

3.2. Γ′ = 0, Γ 6= − γ1γ2
2

4

In this case, the system (2) reads,
ut = D0uxx + γ1u(γ2 − u) + γ3,

vt = H(u, v)
(35)

with γ3 constant. As γ3 6= −
γ1γ2

2
4 and α1 = 0, from (26) we have two possibilities

3.2.1. Hu = 0;
3.2.2. Hu 6= 0.

We analyze them separately.

3.2.1. Γ(v) = γ3 6= −
γ1γ2

2
4 , Hu = 0

From (26), by solving with respect to λ, it follows

λ(t, x, v) = λ1(x, ω)H(v),

where λ1(x, ω) is an arbitrary function of x and ω, with ω = t−
∫ 1

H(v)
dv.

Then, (35) becomes 
ut = D0uxx + γ1u(γ2 − u) + γ3,

vt = H(v)
(36)

admitting the additional generator

Xλ1 = λ1(x, ω)H(v)∂v, (37)

so the extended algebra is infinite dimensional.
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3.2.2. Γ(v) = γ3 6= −
γ1γ2

2
4 , Hu 6= 0

In this case, we recall that α1 = 0, and, in order to have extensions of the principal Lie
algebra, it must be λ(t, x, v) 6= 0. Then by differentiating the condition (26) with respect to
u we can get

λv

λ
=

Huv

Hu
; (38)

then
H(u, v) = ψ(u)eφ1(v) + φ2(v), (39)

and
λ = λ1(t, x)eφ1(v). (40)

Going back to (26) we can write

φ′2 − φ′1φ2 =
λ1t
λ1

(41)

that implies

φ2(v) = eφ1(v)
(

φ0

∫
e−φ1(v) dv + φ01

)
, (42)

λ1(t, x) = λ3(x)eφ0t. (43)

In conclusion, when the function H assumes the form

H(u, v) = eφ1(v)
(

ψ(u) + φ0

∫
e−φ1(v) dv

)
,

with φ1(v), ψ(u) constitutive functions and φ0 constitutive constant, the system admits the
additional generator

Xλ3 = λ3(x)eφ0t+φ1(v)∂v, (44)

with λ3(x) arbitrary function. Even in this case the extended algebra is infinite dimensional.

3.3. Γ(v) = − γ1γ2
2

4

In this case, the system (2) assumes the form
ut = D0uxx + γ1u(γ2 − u)− γ1γ2

2
4 ,

vt = H(u, v).
(45)

From (26) we have still two cases

3.3.1 Hu = 0;
3.3.2 Hu 6= 0.

We analyze them separately.

3.3.1. Γ(v) = − γ1γ2
2

4 , Hu = 0

In this case, from (26), we get

λ(t, x, v) =
(

λ1(x, ω) + 2α1

∫ 1
H(v)

dv
)

H(v)
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with ω = t−
∫ 1

H(v)
dv, then the system


ut = D0uxx + γ1u(γ2 − u)− γ1γ2

2
4 ,

vt = H(v)
(46)

admits two additional generators:

X3 = x∂x + 2t∂t + (γ2 − 2u)∂u +

(
2
∫ 1

H(v)
dv
)

H(v)∂v, (47)

Xλ1 = λ1(x, ω)H(v)∂v. (48)

Xλ1 already obtained in the Section 3.2.1.

3.3.2. Γ(v) = − γ1γ2
2

4 , Hu 6= 0

In this last case, deriving appropriately the condition (26), after some calculations, we
are able to carry out the following subcases.

1. H(u, v) = eφ(v)
(

ψ0 + ψ1(2u− γ2)
k
)

, with φ(v) arbitrary constitutive function and
ψ0, ψ1, k constitutive constants.
The system admits two additional generators, the generator

X3 = x∂x + 2t∂t + (γ2 − 2u)∂u +
(

2kψ0t− 2(k− 1)
∫

e−φ(v)dv
)

eφ(v)∂v, (49)

and the generator
Xλ2 = λ2(x)eφ(v)∂v (50)

where λ2(x) is an arbitrary function. Even in this case, the extended algebra is infinite
dimensional.

2. H(u, v) =
e−2φ(v)

φ′
ψ(ω) where φ(v) and ψ(ω) are arbitrary constitutive functions

with ω = (2u− γ2)e2φ(v). It is possible to ascertain that in this case the system admits
the following additional generator

X3 = x∂x + 2t∂t + (γ2 − 2u)∂u +
1
φ′

∂v. (51)

The results of this section are summarized in the Table 1.

Table 1. The generators that appear in this table are the extensions of LP concerned with each couple of functions Γ(v) and
H(u, v).

1 Γ(v) arbitrary with Γ′ 6= 0

H(u, v) = (2u−γ2)3

Γ′ φ(ω) X3 = x∂x + 2t∂t + (γ2 − 2u)∂u+

with ω =
(2u− γ2)

2

γ1γ2
2 + 4Γ

− (γ1γ2
2+4Γ)
Γ′ ∂v

2 Γ(v) = γ3 6= −
γ1γ2

2
4

H(u, v) = H(v) Xλ1 = λ1(x, ω)H(v)∂v

with ω = t−
∫ 1

H(v)
dv

H(u, v) = eφ1(v)
(

ψ(u) + φ0
∫

e−φ1(v) dv
)

Xλ3 = λ3(x)eφ0t+φ1(v)∂v
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Table 1. Cont.

3 Γ(v) = − γ1γ2
2

4

H(u, v) = H(v) X3 = x∂x + 2t∂t + (γ2 − 2u)∂u+

+
(

2
∫ 1

H(v) dv
)

H(v)∂v

Xλ1 = λ1(x, ω)H(v)∂v

with ω = t−
∫ 1

H(v)
dv

H(u, v) = eφ(v)
(

ψ0 + ψ1(2u− γ2)
k
)

X3 = x∂x + 2t∂t + (γ2 − 2u)∂u+

+2
(
kψ0t− (k− 1)

∫
e−φdv

)
eφ∂v

Xλ2 = λ2(x)eφ(v)∂v

H(u, v) =
e−2φ(v)

φ′
ψ(ω) X3 = x∂x + 2t∂t + (γ2 − 2u)∂u + 1

φ′ ∂v

with ω = (2u− γ2)e2φ(v)

4. Reduced Systems and Invariant Solutions

In this section we focus our attention in the subclass of systems (2) of the form
ut = D0uxx + γ1u(γ2 − u) + Γ(v),

vt =
(2u− γ2)

3

Γ′
φ(ω) where ω =

(2u− γ2)
2

γ1γ2
2 + 4Γ

,
(52)

with φ arbitrary function of ω, and Γ(v) arbitrary function with Γ′(v) 6= 0.
Previously in the Section 3.1 we have verified that the system (52) admits the

additional generator

X3 = x∂x + 2t∂t − (2u− γ2)∂u −
(γ1γ2

2 + 4Γ)
Γ′

∂v. (53)

After having taken into account the remarks of Section 3.1, without loss of generality,
we can assume Γ(v) = v.

However, for sake of readability we prefer to use the new variable w = Γ(v). Then
the system (52) reads

ut = D0uxx + γ1u(γ2 − u) + w,

wt = (2u− γ2)
3φ(ω) where ω =

(2u− γ2)
2

γ1γ2
2 + 4w

.
(54)

In this way it is clear that the results hold for any function Γ(v) with Γ′(v) 6= 0.
By using the invariant surface conditions corresponding to the generator (34)

we derive

σ =
x2

t
, u =

1
2

γ2 +
1
t

U(σ), w =
1
x4 W(σ)−

γ1γ2
2

4
,

then (54) is reduced to the following ODE system in the new dependent variables U(σ)
and W(σ) 

−U − σU′ = D0(2U′ + 4σU′′)− γ1U2 +
W
σ2 ,

−W ′ = 8σU3φ(ω̃), where ω̃ =
σ2U2

W
.

(55)
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Remark 4. By identifying W(σ) with V(σ), we observe that the reduced system (55) is also the
reduced system of the system (52) for which the similarity variables corresponding to the generator
(53) are

σ =
x2

t
, u =

1
2

γ2 +
1
t

U(σ), (56)

while v is implicitly defined from

Γ(v) =
1
x4 V(σ)−

γ1γ2
2

4
.

In order to look for exact solutions of the reduced system (55), we need to specialize
the form of the constitutive function φ. In the following we assume φ of the form

φ(ω) =
γ4

ω
+ γ5 (57)

with γi (i = 4, 5) real constitutive constants.
So the system (52) becomes

ut = D0uxx + γ1u(γ2 − u) + w,

wt = (2u− γ2)
[
γ4(γ1γ2

2 + 4w) + γ5(2u− γ2)
2] (58)

while the reduced system reads
−U − σU′ = D0(2U′ + 4σU′′)− γ1U2 +

W
σ2 ,

−σW ′ = 8U
(
γ4W + γ5σ2U2). (59)

It is a simple matter to ascertain that this system admits the following
particular solutions:

1. If γ4 =
γ1

4
and γ5 = −

γ2
1

4
,

U(σ) = −3(D0 + σ)

2D0γ1
, W(σ) =

3σ2(9D2
0 + 10σD0 + 3σ2)

4D2
0γ1

, (60)

that imply the following solution

u(t, x) =
1
2

γ2 −
3(D0t + x2)

2D0γ1t2 , w(t, x) =
3(9D2

0t2 + 10D0tx2 + 3x4)

4D2
0γ1t4

−
γ1γ2

2
4

. (61)

Taking into account (32) we are able to write

v(t, x) = Γ−1(w) (62)

where Γ−1 denotes the inverse function of Γ, so

v(t, x) = Γ−1

(
3(9D2

0t2 + 10D0tx2 + 3x4)

4D2
0γ1t4

−
γ1γ2

2
4

)
. (63)

If, for instance, Γ(v) = γ6v3, then the solution (61) becomes

v(t, x) =
1

γ6

(
3(9D2

0t2 + 10D0tx2 + 3x4)

4D2
0γ1t4

−
γ1γ2

2
4

) 1
3

. (64)
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In another way it is possible to derive v by taking into account (32) where v is implicitly
definite by

Γ(v)− w = 0. (65)

2. If γ5 = − 1
18

(γ1 + 8γ4)(γ1 + 2γ4),

U(σ) =
3

2(γ1 − 4γ4)
, W(σ) =

3σ2(γ1 + 8γ4)

4(γ1 − 4γ2
4)

, (66)

that imply the following spatially homogeneous solution

u(t, x) =
1
2

γ2 +
3

2t(γ1 − 4γ4)
, w(t, x) =

3(γ1 + 8γ4)

4t2(γ1 − 4γ2
4)
−

γ1γ2
2

4
. (67)

3. If γ5 = 0,

U(σ) = − 1
4γ4

, W(σ) =
1

16γ2
4
(γ1 + 4γ4)σ

2, (68)

that imply the following spatially homogeneous solution

u(t, x) =
1
2

γ2 −
1

4γ4t
, w(t, x) =

1
16γ2

4t2
(γ1 + 4γ4)−

γ1γ2
2

4
. (69)

4. For γ4 and γ5 arbitrary, we get

U(σ) =
6D0γ4

(γ1γ4 + γ5)σ
, W(σ) = −

36D2
0γ4γ5

(γ1γ4 + γ5)2 , (70)

that imply the following temporally homogeneous solution

u(t, x) =
1
2

γ2 +
6D0γ4

(γ1γ4 + γ5)x
, w(t, x) =

36D2
0γ4γ5

(γ1γ4 + γ5)2x4 −
γ1γ2

2
4

. (71)

We wish to recall that, being our system invariant with respect to translations in t and
x, it is possible to put in all solutions

t := t + t0, x := x + x0.

5. Conclusions

This paper deals with the class of reaction-diffusion systems of PDEs (2). These sys-
tems are studied in the framework of symmetry methods in order to perform a classification
of the different forms of the constitutive parameter functions Γ(v) and H(u, v) that allow
to get some extensions of the principal Lie algebra. We have discussed the classifying
Equations (8), (15) and (16) for the constitutive functions Γ(v) and H(u, v) obtained by
applying a projection theorem where we used the weak equivalence generator (3) of the
class (1).

It is useful stressing that in our classification the function Γ is arbitrary or constant,
while the form of the function H(u, v), even if assigned, is depending on arbitrary constitu-
tive functions, that give us more degrees of freedom in the selection of cases of interest.

Between the cases of extensions of LP carried out, we considered the system (52)
admitting the additional generator

X3 = x∂x + 2t∂t − (2u− Γ)∂u −
(γ1Γ2 + 4Γ)

Γ′
∂v.
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We remarked that as Γ(v) is an arbitrary invertible function by a suitable change of
variable it is possible to write (52) and its reduced system in a more simple form.

Several and wide classes of solutions have been obtained by specializing φ(ω).
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