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Abstract: In this paper, the Aboodh transform is utilized to construct an approximate analytical
solution for the time-fractional Zakharov–Kuznetsov equation (ZKE) via the Adomian decomposition
method. In the context of a uniform magnetic flux, this framework illustrates the action of weakly
nonlinear ion acoustic waves in plasma carrying cold ions and hot isothermal electrons. Two
compressive and rarefactive potentials (density fraction and obliqueness) are illustrated. With the
aid of the Caputo derivative, the essential concepts of fractional derivatives are mentioned. A
powerful research method, known as the Aboodh Adomian decomposition method, is employed to
construct the solution of ZKEs with success. The Aboodh transform is a refinement of the Laplace
transform. This scheme also includes uniqueness and convergence analysis. The solution of the
projected method is demonstrated in a series of Adomian components that converge to the actual
solution of the assigned task. In addition, the findings of this procedure have established strong ties
to the exact solutions to the problems under investigation. The reliability of the present procedure
is demonstrated by illustrative examples. The present method is appealing, and the simplistic
methodology indicates that it could be straightforwardly protracted to solve various nonlinear
fractional-order partial differential equations.

Keywords: Aboodh transform; Caputo fractional derivative; Adomian decomposition method;
Zakharov–Kuznetsov equation

1. Introduction

In recent years, fractional calculus has sparked a wave of interest, and it has been
successfully tested and applied in a variety of real-world problems in science and tech-
nology [1–8]. Furthermore, it has been the subject of numerous investigations in many
domains: for instance, signal processing, random walks, Levy statistics, chaos, porous
media, electromagnetic flux, thermodynamics, circuits theory, optical fibre, and solid state
physics. Moreover, a systematic attempt has been conducted to derive explicit solutions of
partial differential equations (PDEs) [9–13].

The development of an integral transform to locate solutions in science can be con-
nected back to P. S. Laplace’s (1749–1827) work on statistical mechanics in the 1780s, in
addition to J. B. Fourier’s (1768–1830) treatise “La Théorie Analytique de La chaleur” (1822)
reported in [14]. In 2013, K. S. Aboodh [15] introduced a new integral transform which
is a modification of the Laplace transform. Aboodh transform (AT) is a valuable tool for
solving certain DEs that the Sumudu transform cannot solve. Ever since, researchers have
been particularly interested in the formation and acquisition of new integral transforms for
numerous enhancements [16–23].
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Daftardar-Gejji and Jafari [24,25] suggested a new recursive approach for solving func-
tional equations, having the solutions described in asymptotic form. The novel recursive
process is framed on the basis of decaying the nonlinear terms. Numerous techniques
that have been employed for various sorts of PDEs involve the Crank-Nicholson finite
difference method (CNFD) [26] for finding the solution of the fractional telegraph equation,
the auxiliary equation method (AEM) [27] for obtaining exact travelling wave solutions for
the Klein–Gordon equation and (2+1)-dimensional time-fractional Zoomeron equation, the
extended F-expansion method [28] for solitons and associated solutions to quantum ZKEs
in quantum magneto-plasmas, the tanh method [29] for establishing the exact explicit solu-
tion for reaction-diffusion equations, the Adomian decomposition method (ADM) [30,31]
for fractional diffusion equations, the ternary-fractional differential transform (TFDT) [32]
for fractional initial value problems, the homotopy perturbation method (HPM) [33] for
solving systems of FDEs, the optimal homotopy asymptotic method (OHAM) [34] for
solving the Blasius equation, the G/G′-expansion method [35] applied for solving nonlin-
ear PDEs in mathematical physics, the Lie symmetry analysis (LSA) [36] of generalized
fractional ZKEs, the contrast of perturbation-iteration algorithm (PIA), and the residual
power series method (RPSM) to solve fractional ZKEs [37].

The ZKE was originally developed in two dimensions to explain nonlinear phenomena
such as isotope waves in a highly magnetization lossless plasma [38]. In this paper,
we consider the time-fractional Zakharov–Kuznetsov equation (FZK(σ1, σ2, σ3)) with the
fractional time-derivative of the order 0 < ρ ≤ 1 of the form:

Dρ
t F + a1(Fσ1)x1 + b1(Fσ2)x1x1x1 + b1(Fσ3)x1x2x2 = 0, (1)

where F = F (x1, x2, t), Dρ
t is the Caputo fractional derivative with order ρ, a1 and b1

are arbitrary constants and σi, i = 1, 2, 3 are integers, and σi 6= 0 (i = 1, 2, 3) shows the
nature of nonlinear phenomena such as ion acoustic waves in the context of a symmetrical
magnetic field in a plasma containing cold ions and hot isothermal electrons [39,40]. For
example, in [38], the ZKEs were proposed to analyse a shallowly nonlinear isotope ripple
in substantially magnetization impairment plasma in three dimensions. The approximate
analytical solutions of fractional ZKEs are examined by the variation iteration method [41]
and HPM [42], respectively. The detriment of many of the above mentioned strategies
is that they are always hierarchical and require a lot of computational complexity. To
mitigate computational cost and difficulty, we proposed a new approach called the Aboodh
Adomian decomposition method (AADM), which is an amalgamation of the AT and
the ADM for solving the time-fractional ZKE, which is the innovation of this research.
The suggested technique generates a convergent series as a solution. AADM has fewer
parameters than other analytical methods, and it is the preferred approach because it does
not require discretion or linearization

In this study, we first provide a fractional ZKE, followed by a description of the AADM,
and then a uniqueness characterization of the AADM is presented. The convergence
analysis is then explained in order to be applied to the ZK problem. We present an
algorithm for AADM, discuss its estimation accuracy, and then show two examples that
demonstrate the effectiveness and stability of a novel approach so that their obtained
simulations can be analysed. Rarefaction curves are drawn for a graphical representation
of variations in density fraction and obliqueness, which are associated with the derived
results of electron superthermality. Finally, as a part of our concluding remarks, we discuss
the accumulated facts of our findings.

2. Prelude

Several definitions and axiom outcomes from the literature are prerequisites in our
analysis.
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Definition 1 ([1]). The Caputo fractional derivative (CFD) is defined as

c
0D

ρ
t F (t) =


1

Γ(n−ρ)

t∫
0

F (n)(x1)
(t−x1)

ρ+1−n dx1, n− 1 < ρ < n,

dn

dtnF (t), ρ = n.
(2)

Definition 2 ([15]). Aboodh transform (AT) for a function F (t) having exponential order over
the set of functions is stated as

A =
{
F :

∣∣F (t)∣∣ <M exp(κ|t|), i f t ∈ (−1) × [0, ∞),  = 1, 2;
(
M, κ1, κ2 > 0

)}
, (3)

where F (t) is represented by A
[
F (t)

]
= A(ω) and is described as

A
[
F (t)

]
=

1
ω

∞∫
0

F (t) exp(−ωt)dt = A(ω), t ≤ 0, ω ∈ [κ1, κ2]. (4)

Definition 3 ([43]). The inverse AT of a mapping F (t) is stated as

F (t) = A−1[A(ω)
]
, t ∈ (0, ∞). (5)

Lemma 1. (Linearity property of AT) Let AT of F1(t) and F2(t) be P(ω) and Q(ω), respec-
tively [44]:

A
[
γ1F1(t) + γ2F2(t)

]
= A

[
γ1F1(t)

]
+A

[
γ2F2(t)

]
= γ1P(ω) + γ2Q(ω), (6)

where γ1 and γ2 are arbitrary constants.

Lemma 2 ([45]). The AT of Caputo fractional derivative of order ρ is stated as

A
[
Dρ

t F (t); ω
]
= ωρA

[
F (t)

]
−

n−1

∑
κ=0

F (κ)(0)
ω2−ρ+κ

, n− 1 < ρ ≤ n, n ∈ N. (7)

3. Configuration for Aboodh Adomian Decomposition Method

In this note, we state the fundamental concept of AADM. The transform being utilized
here is the refinement of the Laplace transform, and it is assumed for the time domain
t ≥ 0. The AADM is addressed to the solution of the time-fractional KZE with the fractional
time-derivative of the order ρ presented as follows:

Dρ
t F (x1, x2, t) + LF (x1, x2, t) +NF (x1, x2, t) = h̄(x1, x2, t), n− 1 < ρ < n, (8)

with the initial condition

F (κ)(x1, x2, 0) = Fκ(x1, x2), κ = 0, 1, 2, ..., n− 1. (9)

where Dρ = ∂ρ

∂tρ is the Caputo operator, while L and N are linear and nonlinear terms,
respectively, and h̄(x1, x2, t) is the source term.

Employing the AT on (8) and utilizing the initial condition, we have
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A
[
Dρ

t F (x1, x2, t)
]
+A

[
LF (x1, x2, t) +NF (x1, x2, t)

]
= A

[
h̄(x1, x2, t)

]
, n− 1 < ρ < n, (10)

A
[
F (x1, x2, t)

]
=

1
ωρ

( n−1

∑
κ=0

F (κ)(x1, x2, 0)
ω2−ρ+κ

)
+

1
ωρ A

[
h̄(x1, x2, t)

]
− 1

ωρ A
[
LF (x1, x2, t) +NF (x1, x2, t)

]
. (11)

The following infinite series demonstrates the AADM solution of F (x1, x2, t) as

F (x1, x2, t) =
∞

∑
=0
F(x1, x2, t). (12)

The following are Adomian polynomial forms for the nonlinear term in the given
problem:

NF (x1, x2, t) =
∞

∑
=0
H, (13)

whereH is represented as

H =
1
!

[
d

dθ 

(
N

∞

∑
=0

(θ F)

)]
θ=0

,  = 0, 1, 2, .... (14)

Substituting (12) and (13) in (11), we obtain

A
[ ∞

∑
=0
F(x1, x2, t)

]
=

1
ωρ

( n−1

∑
κ=0

F (κ)(x1, x2, 0)
ω2−ρ+κ

)
+

1
ωρ A

[
h̄(x1, x2, t)

]
− 1

ωρ A
[
L

∞

∑
=0
F(x1, x2, t) +

∞

∑
=0
H

]
.

In view of the linearity property of AT, we have

A
[
F0(x1, x2, t)

]
=
F (x1, x2, 0)

ω2 +
1

ωρ A
[
h̄(x1, x2, t)

]
,

A
[
F+1(x1, x2, t)

]
= − 1

ωρ A
[
LF(x1, x2, t) +H

]
,  ≥ 1. (15)

Transforming the inverse AT into (15) yields

F0(x1, x2, t) = A−1
[
F (x1, x2, 0)

ω2 +
1

ωρ A
[
h̄(x1, x2, t)

]]
,

F+1(x1, x2, t) = −A−1
[

1
ωρ A

[
LF(x1, x2, t) +H

]]
,  ≥ 1. (16)

4. Qualitative Aspects of Aboodh-Adomian Decomposition Method

In what follows, we will demonstrate that the sufficient conditions assure the existence
of a unique solution. Our desired existence of solutions in the case of AADM follows [46].

Theorem 1. (Uniqueness theorem): Equation (16) has a unique solution whenever 0 < ε < 1,

where ε =
(
(

Ľ1+Ľ2+Ľ3

)
)t(ρ−2)

(ρ−2)! .
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Proof. Assume that K =
(
C[I ], ‖.‖

)
represents all continuous mappings on the Banach

space, defined on I = [0, T ] having the norm ‖.‖. For this, we introduce a mapping
Q : K 7→ K, and we have

Fn+1(x1, t) = F (x1, t) +A−1
[

1
ωρ A

[
L
[
Fn(x1, t)

]
+R

[
Fn(x1, t)

]
+N

[
Fn(x1, t)

]]]
, n ≥ 0, (17)

where L
[
F (x1, t)

]
≡ ∂3F (x1,t)

∂x3
1

and R
[
F (x1, t)

]
≡ ∂F (x1,t)

∂x1
. Now assume that L

[
F (x1, t)

]
andM

[
F (x1, t)

]
are also Lipschitzian with

∣∣RF −RF̃ ∣∣ < Ľ1
∣∣F − F̃ ∣∣ and

∣∣LF −LF̃ ∣∣ <
Ľ2
∣∣F − F̃ ∣∣, where Ľ1 and Ľ2 are Lipschitz constants, respectively, and F , F̃ are various

values of the mapping.

∥∥∥QF −QF̃
∥∥∥ = max

t∈I

∣∣∣∣∣∣∣∣∣
A−1

[
1

ωρ A
[
L
[
F (x1, t)

]
+R

[
F (x1, t)

]
+N

[
F (x1, t)

]]]
−A−1

[
1

ωρ A
[
L
[
F̃ (x1, t)

]
+R

[
F̃ (x1, t)

]
+N

[
F̃ (x1, t)

]]]
∣∣∣∣∣∣∣∣∣

≤ max
t∈I

∣∣∣∣∣∣∣∣∣∣∣

A−1
[ 1

ωρ A
[
L
[
F (x1, t)

]
−L

[
F̃ (x1, t)

]]]
+A−1

[ 1
ωρ A

[
R
[
F (x1, t)

]
−R

[
F̃ (x1, t)

]]]
+A−1

[ 1
ωρ A

[
N
[
F (x1, t)

]
−N

[
F̃ (x1, t)

]]]

∣∣∣∣∣∣∣∣∣∣∣

≤ max
t∈I


Ľ1A−1

[ 1
ωρ A

∣∣∣F (x1, t)− F̃ (x1, t)
∣∣∣]

+ Ľ2A−1
[ 1

ωρ A
∣∣∣F (x1, t)− F̃ (x1, t)

∣∣∣]
+ Ľ3A−1

[ 1
ωρ A

∣∣∣F (x1, t)− F̃ (x1, t)
∣∣∣]


≤ max

t∈I

(
Ľ1 + Ľ2 + Ľ3

)
A−1

[ 1
ωρ A

∣∣∣F (x1, t)− F̃ (x1, t)
∣∣∣]

≤
(

Ľ1 + Ľ2 + Ľ3
)
A−1

[ 1
ωρ A

∥∥∥F (x1, t)− F̃ (x1, t)
∥∥∥]

=
(
(

Ľ1 + Ľ2 + Ľ3
)
)t(ρ−2)

(ρ− 2)!

∥∥∥F (x1, t)− F̃ (x1, t)
∥∥∥.

Under the assumption 0 < ε < 1, the mapping is contraction. Thus, by Banach
contraction fixed point theorem, there exists a unique solution to (8). Hence, this completes
the proof.

Theorem 2. (Convergence Analysis) The general form solution of (8) will be convergent.

Proof. Suppose Sn is the nth partial sum, that is, Sn = ∑n
=0 F(x1, t). Firstly, we show

that {Sn} is a Cauchy sequence in Banach space in K. Taking into consideration a new
representation of Adomian polynomials, we obtain

R̄(Sn) = Ȟn +
n−1

∑
p=0

Ȟp,

N̄(Sn) = Ȟn +
n−1

∑
c=0

Ȟc. (18)
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Now,

∥∥Sn − Sq
∥∥ = max

t∈I

∣∣Sn − Sq
∣∣ = max

t∈I

∣∣ n

∑
=q+1

F̃ (x1, t)
∣∣,  = 1, 2, 3, ..., (19)

≤ max
t∈I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A−1
[ 1

ωρ A
[ n

∑
=q+1

L
[
Fn−1(x1, t)

]]]
+A−1

[ 1
ωρ A

[ n

∑
=m+1

R
[
Fn−1(x1, t)

]]]
+A−1

[ 1
ωρ A

[ n

∑
=m+1

Ȟn−1(x1, t)
]]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= max
t∈I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A−1
[ 1

ωρ A
[ n−1

∑
=q
L
[
Fn(x1, t)

]]]
+A−1

[ 1
ωρ A

[ n−1

∑
=q
R
[
Fn(x1, t)

]]]
+A−1

[ 1
ωρ A

[ n−1

∑
=q

Ȟn(x1, t)
]]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ max
t∈I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A−1
[ 1

ωρ A
[ n−1

∑
=m
L(Sn−1)−L(Sq−1)

]]
+A−1

[ 1
ωρ A

[ n−1

∑
=m
R(Sn−1)−R(Sq−1)

]]
+A−1

[ 1
ωρ A

[ n−1

∑
=m
N (Sn−1)−N (Sq−1)

]]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ max
t∈I

∣∣∣∣∣∣∣∣∣∣∣

A−1
[ 1

ωρ A
[
L(Sn−1)−L(Sq−1)

]]
+A−1

[ 1
ωρ A

[
R(Sn−1)−R(Sq−1)

]]
+A−1

[ 1
ωρ A

[
N (Sn−1)−N (Sq−1)

]]

∣∣∣∣∣∣∣∣∣∣∣
≤ Ľ1 max

t∈I
A−1

∣∣∣∣[ 1
ωρ A

[
(Sn−1)− (Sq−1)

]]∣∣∣∣
+ Ľ2 max

t∈I

∣∣∣∣A−1
[ 1

ωρ A
[
(Sn−1)− (Sq−1)

]]∣∣∣∣
+ Ľ3 max

t∈I

∣∣∣∣A−1
[ 1

ωρ A
[
(Sn−1)− (Sq−1)

]]∣∣∣∣
=

(Ľ1 + Ľ2 + Ľ3)t(ρ−2)

(ρ− 2)!

∥∥Sn−1 − Sq−1
∥∥.

Consider n = q + 1; then,∥∥Sq+1 − Sq
∥∥ ≤ ε

∥∥Sq − Sq−1
∥∥ ≤ ε2∥∥Sq−1 − Sq−2

∥∥ ≤ ... ≤ εq∥∥S1 − S0
∥∥,
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where (Ľ1+Ľ2+Ľ3)t(ρ−2)

(ρ−2)! . Analogously, from the triangular inequality, we have∥∥Sn − Sq
∥∥ ≤

∥∥Sq+1 − Sq
∥∥+ ∥∥Sq+2 − Sq+1

∥∥+ ... +
∥∥Sn − Sn−1

∥∥
≤
[
εq + εq+1 + ... + εn−1

]∥∥S1 − S0
∥∥

≤ εq
(1− εn−q

ε

)
‖F1‖,

since 0 < ε < 1, we have (1− εn−q) < 1, then

∥∥Sn − Sq
∥∥ ≤ εq

1− ε
max
t∈I
‖F1‖.

However, |F1| < ∞ (since F (x1, t) is bounded). Thus, as q 7→ ∞, then
∥∥Sn −Sq

∥∥ 7→ 0.

Hence, {S1} is a Cauchy sequence in K. As a result, the series
∞
∑

n=0
Fn is convergent, and

this completes the proof.

Theorem 3 ([46]). (Error estimate) The maximum absolute truncation error of the series solution
(8) to (16) is computed as

max
t∈I

∣∣∣F (x1, t)−
q

∑
n=1
Fn(x1, t)

∣∣∣ ≤ εq

1− ε
max
t∈I
‖F1‖. (20)

5. Numerical Illustrations

Problem 1. Assume the following time-dependent fractional-order Zakharov–Kuznetsov
equation [41,42]:

Dρ
t F +

∂F 2

∂x1
+

1
8

[ ∂

∂x1

(∂2F 2

∂x2
2

)
+

∂3F 2

∂x3
1

]
= 0, 0 < ρ ≤ 1 (21)

subject to the initial condition

F (x1, x2, 0) =
4
3

λ sinh2(x1 + x2), (22)

where λ is an arbitrary constant.

Proof. Applying the AT on both sides of (21), we find

A
[∂ρF

∂tρ

]
= −A

[
∂F 2

∂x1
+

1
8

[ ∂

∂x1

(∂2F 2

∂x2
2

)
+

∂3F 2

∂x3
1

]]
,

ωρA
[
F (x1, x2, t)

]
−

n1−1

∑
κ=0

F (κ)(0)
ω2−ρ+κ

= −A
[

∂F 2

∂x1
+

1
8

[ ∂

∂x1

(∂2F 2

∂x2
2

)
+

∂3F 2

∂x3
1

]]
. (23)

Employing the inverse AT, we have

F (x1, x2, t) = A−1

[
1

ωρ

n1−1

∑
κ=0

F (κ)(0)
ω2−ρ+κ

− 1
ωρ A

[
∂F 2

∂x1
+

1
8

[ ∂

∂x1

(∂2F 2

∂x2
2

)
+

∂3F 2

∂x3
1

]]]
. (24)

It follows that
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F (x1, x2, t) = A−1
[
F (x1, x2, 0)

ω2

]
−A−1

[
1

ωρ A
[

∂F 2

∂x1
+

1
8

[ ∂

∂x1

(∂2F 2

∂x2
2

)
+

∂3F 2

∂x3
1

]]]
,

F (x1, x2, t) = A−1
[

4
3

λ sinh2(x1 + x2)

ω2

]
−A−1

[
1

ωρ A
[

∂F 2

∂x1
+

1
8

[ ∂

∂x1

(∂2F 2

∂x2
2

)
+

∂3F 2

∂x3
1

]]]
. (25)

Utilizing the Adomian decomposition method, we obtain

∞

∑
=0
F(x1, x2, t) =

4
3

λ sinh2(x1 + x2)−A−1

[
1

ωρ A
[
N (F )x1 +

1
8

[
N (F )x1x1x1 +N (F )x1x2x2

]]]
, (26)

where N (F ) is the He’s polynomial describing a nonlinear term appearing in the above-
mentioned equations.

N (F ) = F 2 =
∞

∑
=0
H(F ). (27)

First, a few He’s polynomials are presented as follows:

H0 = F2
0 ,

H1 = 2F0F1,

H2 = 2F0F2 +F2
1 ,

F0(x1, x2, t) =
4
3

λ sinh2(x1 + x2),

F+1(x1, x2, t) = −A−1
[

1
ωρ A

[( ∞

∑
=0
H(F )

)
x1

+
1
8

( ∞

∑
=0
H(F )

)
x1x1x1

+
1
8

( ∞

∑
=0
H(F )

)
x1x2x2

]
,

for  = 0, 1, 2, ...

F1(x1, x2, t) = −A−1
[

1
ωρ A

[
(F 2

0 )x1 +
1
8
(F 2

0 )x1x1x1 +
1
8
(F 2

0 )x1x2x2

]]

=

(
− 224

9
λ2 sinh2(x1 + x2) cosh(x1 + x2)−

32
3

λ2 sinh(x1 + x2) cosh3(x1 + x2)

)
A−1

( 1
ωρ+2

)
=

(
− 224

9
λ2 sinh2(x1 + x2) cosh(x1 + x2)−

32
3

λ2 sinh(x1 + x2) cosh3(x1 + x2)

)
tρ

Γ(ρ + 1)
.

Accordingly, we can derive the remaining terms as follows:

F2(x1, x2, t) = −A−1
[

1
ωρ A

[
(2F0F1)x1 +

1
8
(2F0F1)x1x1x1 +

1
8
(2F0F1)x1x2x2

]]

=

(
128
27

λ3
(

1200 cosh6(x1 + x2)− 2080 cosh4(x1 + x2)

+968 cosh2(x1 + x2)− 79
) t2ρ

Γ(2ρ + 1)
, (28)

F3(x1, x2, t) = −A−1
[

1
ωρ A

[
(2F0F2 +F 2

1 )x1 +
1
8
(2F0F2 +F 2

1 )x1x1x1 +
1
8
(2F0F2 +F 2

1 )x1x2x2

]]

= −2048
81

λ4 sinh(x1 + x2) cosh(x1 + x2)
(

884, 000 cosh6(x1 + x2)− 160, 200 cosh4(x1 + x2)

+85, 170 cosh2(x1 + x2)− 11, 903
) t3ρ

Γ(3ρ + 1)
. (29)
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The approximate analytical AADM solution is

F (x1, x2, t) = F0(x1, x2, t) +F1(x1, x2, t) +F2(x1, x2, t) +F3(x1, x2, t) + ...,

F (x1, x2, t) =
4
3

λ sinh2(x1 + x2) +

(
− 224

9
λ2 sinh2(x1 + x2) cosh(x1 + x2)

−32
3

λ2 sinh(x1 + x2) cosh3(x1 + x2)

)
tρ

Γ(ρ + 1)
+

(
128
27

λ3
(

1200 cosh6(x1 + x2)

−2080 cosh4(x1 + x2) + 968 cosh2(x1 + x2)− 79
) t2ρ

Γ(2ρ + 1)

−2048
81

λ4 sinh(x1 + x2) cosh(x1 + x2)
(

884, 000 cosh6(x1 + x2)− 160, 200 cosh4(x1 + x2)

+85, 170 cosh2(x1 + x2)− 11, 903
) t3ρ

Γ(3ρ + 1)
+ .... (30)

The exact solution for ρ = 1 is presented by

F (x1, x2, t) =
4
3

λ sinh2(x1 + x2 − λt). (31)

Table 1 and Table 2 demonstrates the exact AADM solution and the absolute error
Eabs = ‖Eexact − Eapprox‖ for Problem 1. Figure 1 represents the comparison between the
exact (left) and the approximate (right) solution, while Figure 2 describes the surface plot of
the absolute error of the solution when ρ = 1, and λ = 0.001. Figure 3 represents a surface
plot of approximate solutions for various fractional orders, ρ = 0.55, 0.67, 0.75, 0.85, 0.95,
and 1. In addition, Figure 4 addresses approximate solutions for various fractional orders:
ρ = 0.55, 0.67, 0.75, 0.77, 0.95, and 1 converge very rapidly to exact solutions, implying
that approximate solutions are almost similar to exact solutions. As a result, the VIM [41]
and HPM [42] demanded the evaluation of the Lagrangian multiplier, but the AADM
demanded the evaluation of the Adomian polynomials, which entails less computation
algebraic work. By obtaining further expressions of approximate solutions, the reliability
of the analysis can be strengthened.

(a)

Figure 1. Cont.
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(b)

Figure 1. Numerical behaviours for Problem 1 established by the integer-order (a) ρ = 1 and (b) the
AADM at t = 0.1 with the parameters λ = 0.001 for various values of x1, and x2.

Table 1. Exact and AADM-approximate solution with absolute error in comparison derived by PIA and RPSM for Problem 1
at λ = 0.001, ρ = 1.

x1 x2 t AADM Solution Exact Solution PIA [37] Error RPSM [37] Error AADM Error

0.1 0.1 0.2 5.3966 × 10−5 5.39388 × 10−5 3.85217 × 10−7 3.85217 × 10−7 2.71884 × 10−8

0.1 0.1 0.3 5.39248 × 10−5 5.38841 × 10−5 5.75911 × 10−7 5.75912 × 10−7 4.07394 × 10−8

0.1 0.1 0.4 5.38837 × 10−5 5.38294 × 10−5 7.65359 × 10−7 7.65352 × 10−7 5.42615 × 10−8

0.6 0.6 0.2 3.02967 × 10−3 3.03651 × 10−3 4.66337 × 10−5 4.66389 × 10−5 6.83433 × 10−6

0.6 0.6 0.3 3.02553 × 10−3 3.03578 × 10−3 6.86056 × 10−5 6.86314 × 10−5 1.02517 × 10−5

0.6 0.6 0.4 3.02138 × 10−3 3.03505 × 10−3 8.98263 × 10−5 8.99046 × 10−5 1.36692 × 10−5

0.9 0.9 0.2 1.14455 × 10−2 1.15370 × 10−2 5.12131 × 10−4 5.14241 × 10−4 9.14704 × 10−5

0.9 0. 9 0.3 1.13973 × 10−2 1.15345 × 10−2 7.38186 × 10−4 7.48450 × 10−4 1.37206 × 10−4

0.9 0.9 0.4 1.13492 × 10−2 1.15321 × 10−2 9.57942 × 10−4 9.89139 × 10−4 1.82943 × 10−4

Table 2. Exact and AADM-approximate solution in comparison with PIA and RPSM for Problem 1 at λ = 0.001 for
fractional-order ρ = 0.67 and ρ = 0.75.

x1/x2 t AADM Solution PIA [37] RPSM [37] AADM Solution PIA [37] RPSM [37]

0.1 0.2 5.39424 × 10−5 5.31854 × 10−5 5.31244 × 10−5 5.3953 × 10−5 5.32747 × 10−5 5.32479 × 10−5

0.1 0.3 5.39094 × 10−5 5.28631 × 10−5 5.28410 × 10−5 5.39191 × 10−5 5.29757 × 10−5 5.29675 × 10−5

0.1 0.4 5.38798 × 10−5 5.25777 × 10−5 5.25897 × 10−5 5.38881 × 10−5 5.27039 × 10−5 5.27119 × 10−5

0.6 0.2 3.02730 × 10−3 2.95493 × 10−3 2.95185 × 10−3 3.02837 × 10−3 2.96356 × 10−3 2.96251 × 10−3

0.6 0.3 3.02397 × 10−3 2.92662 × 10−3 2.92709 × 10−3 3.02496 × 10−3 2.93717 × 10−3 2.93780 × 10−3

0.6 0.4 3.02099 × 10−3 2.90307 × 10−3 2.90522 × 10−3 3.02182 × 10−3 2.91448 × 10−3 2.91561 × 10−3

0.9 0.2 1.14179 × 10−2 1.06822 × 10−2 1.05522 × 10−2 1.14303 × 10−2 1.07716 × 10−2 2.91561 × 10−2

0.9 0.3 1.13792 × 10−2 1.04487 × 10−2 1.01199 × 10−2 1.13907 × 10−2 1.05488 × 10−2 1.03695 × 10−2

0.9 0.4 1.13447 × 10−2 9.02777 × 10−2 9.60606 × 10−2 1.13543 × 10−2 1.03736 × 10−2 9.96743 × 10−2
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Figure 2. The absolute-error of solution of Problem 1 at t = 0.1 with the parameters ρ = 1, λ = 0.001.

Figure 3. The approximate-analytical AADM solution F (x1, x2, t) of Problem 1 for ρ = 0.55, 0.67, 0.75, 0.85, 0.95, and 1 with
the parameter λ = 0.001.
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Figure 4. Convergence at various values of ρ and t for Equation (21) at x1 = 0.2, x2 = 0.2 with the parameter λ = 0.001.

Problem 2. Assume the following time-dependent fractional-order Zakharov–Kuznetsov
equation [41,42]:

Dρ
t F +

∂F 3

∂x1
+ 2
[ ∂

∂x1

(∂2F 3

∂x2
2

)
+

∂3F 3

∂x3
1

]
= 0, 0 < ρ ≤ 1 (32)

subject to the initial condition

F (x1, x2, 0) =
3
2

λ sinh
[1

6
(x1 + x2)

]
, (33)

where λ is an arbitrary constant.

Proof. Applying the AT on both sides of (32), we find

A
[∂ρF

∂tρ

]
= −A

[
∂F 3

∂x1
+ 2
[ ∂

∂x1

(∂2F 3

∂x2
2

)
+

∂3F 3

∂x3
1

]]
,

ωρA
[
F (x1, x2, t)

]
−

n1−1

∑
κ=0

F (κ)(0)
ω2−ρ+κ

= −A
[

∂F 3

∂x1
+ 2
[ ∂

∂x1

(∂2F 3

∂x2
2

)
+

∂3F 3

∂x3
1

]]
. (34)

Employing the inverse AT, we have

F (x1, x2, t) = A−1

[
1

ωρ

n1−1

∑
κ=0

F (κ)(0)
ω2−ρ+κ

− 1
ωρ A

[
∂F 3

∂x1
+ 2
[ ∂

∂x1

(∂2F 3

∂x2
2

)
+

∂3F 3

∂x3
1

]]]
. (35)

It follows that
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F (x1, x2, t) = A−1
[
F (x1, x2, 0)

ω2

]
−A−1

[
1

ωρ A
[

∂F 3

∂x1
+ 2
[ ∂

∂x1

(∂2F 3

∂x2
2

)
+

∂3F 3

∂x3
1

]]]
,

F (x1, x2, t) = A−1
[

3
2

λ sinh
[ 1

6 (x1 + x2)
]

ω2

]
−A−1

[
1

ωρ A
[

∂F 3

∂x1
+ 2
[ ∂

∂x1

(∂2F 3

∂x2
2

)
+

∂3F 3

∂x3
1

]]]
. (36)

Utilizing the Adomian decomposition method, we obtain

∞

∑
=0
F(x1, x2, t) =

3
2

λ sinh
[1

6
(x1 + x2)

]
−A−1

[
1

ωρ A
[
N (F )x1 +

1
8

[
N (F )x1x1x1 +N (F )x1x2x2

]]]
, (37)

where N (F ) is the He’s polynomial describing a nonlinear term appearing in the above-
mentioned equations.

N (F ) = F 3 =
∞

∑
=0
G(F ). (38)

First a few He’s polynomials are presented as follows:

G0 = F3
0 ,

G1 = 3F2
0F1,

G2 = 3F2
0F2 + 3F2

0F2
1 ,

F0(x1, x2, t) =
3
2

λ sinh
[1

6
(x1 + x2)

]
,

F+1(x1, x2, t) = −A−1
[

1
ωρ A

[( ∞

∑
=0
G(F )

)
x1

+ 2
( ∞

∑
=0
G(F )

)
x1x1x1

+ 2
( ∞

∑
=0
G(F )

)
x1x2x2

]
,

for  = 0, 1, 2, ...

F1(x1, x2, t) = −A−1
[

1
ωρ A

[
(F 3

0 )x1 + 2(F 3
0 )x1x1x1 + 2(F 3

0 )x1x2x2

]]

=

(
− 3λ3 sinh2

[1
6
(x1 + x2)

]
cosh

[1
6
(x1 + x2)

]
+

3
8

λ3 cosh3
[1

6
(x1 + x2)

])
A−1

( 1
ωρ+2

)
=

(
− 3λ3 sinh2

[1
6
(x1 + x2)

]
cosh

[1
6
(x1 + x2)

]
+

3
8

λ3 cosh3
[1

6
(x1 + x2)

]) tρ

Γ(ρ + 1)
.

Accordingly, we can derive the remaining terms as follows:

F2(x1, x2, t) = −A−1
[

1
ωρ A

[
(3F 2

0F1)x1 + 2(3F 2
0F1)x1x1x1 + 2(3F 2

0F1)x1x2x2

]]

=
3

32
λ5 sinh

[1
6
(x1 + x2)

][
765 cosh4

[1
6
(x1 + x2)

]
− 729 cosh2

[1
6
(x1 + x2)

]
+ 91

]
t2ρ

Γ(2ρ + 1)
,
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F3(x1, x2, t) = −A−1
[

1
ωρ A

[
(3F 2

0F2 + 3F 2
0F 2

1 )x1 + 2(3F 2
0F2 + 3F 2

0F 2
1 )x1x1x1 + 2(3F 2

0F2 + 3F 2
0F 2

1 )x1x2x2

]]

= − 3
128

cosh
[1

6
(x1 + x2)

][
171, 738 cosh6

[1
6
(x1 + x2)

]
− 349, 884 cosh4

[1
6
(x1 + x2)

]
+215, 496 cosh2

[1
6
(x1 + x2)

]
− 36, 907

]
t3ρ

Γ(3ρ + 1)
.

The approximate analytical AADM solution is

F (x1, x2, t) = F0(x1, x2, t) +F1(x1, x2, t) +F2(x1, x2, t) +F3(x1, x2, t) + ...,

F (x1, x2, t) =
3
2

λ sinh
[1

6
(x1 + x2)

]
−
(

3λ3 sinh2
[1

6
(x1 + x2)

]
cosh

[1
6
(x1 + x2)

]
+

3
8

λ3 cosh3
[1

6
(x1 + x2)

]) tρ

Γ(ρ + 1)

+
3

32
λ5 sinh

[1
6
(x1 + x2)

][
765 cosh4

[1
6
(x1 + x2)

]
− 729 cosh2

[1
6
(x1 + x2)

]
+ 91

]
t2ρ

Γ(2ρ + 1)

− 3
128

cosh
[1

6
(x1 + x2)

][
171, 738 cosh6

[1
6
(x1 + x2)

]
− 349, 884 cosh4

[1
6
(x1 + x2)

]
+215, 496 cosh2

[1
6
(x1 + x2)

]
− 36, 907

]
t3ρ

Γ(3ρ + 1)
+ .... (39)

The exact solution for ρ = 1 is presented by

F (x1, x2, t) =
3
2

λ sinh
[1

6
(x1 + x2 − λt)

]
. (40)

Table 3 and Table 4 demonstrates the exact AADM solution and the absolute error
Eabs = ‖Eexact − Eapprox‖ for Problem 2. Figure 5 represents the comparison between the
exact (left) and the approximate (right) solution, while Figure 6 describes the surface plot of
the absolute error of the solution when ρ = 1, and λ = 0.001. Figure 7 represents a surface
plot of approximate solutions for various fractional orders ρ = 0.55, 0.67, 0.75, 0.85, 0.95,
and 1. In addition, Figure 8 addresses approximate solutions for various fractional orders:
ρ = 0.55, 0.67, 0.75, 0.77, 0.95, and 1 converge very rapidly to exact solutions, implying
that approximate solutions are almost similar to exact solutions. As a comparison, the
VIM [41] and HPM [42] necessitated the evaluation of the Lagrangian multiplier, but the
AADM required the evaluation of the Adomian polynomials, which involved less algebraic
computation. By obtaining further expressions of approximate solutions, the reliability of
the analysis can be strengthened.
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(a)

(b)

Figure 5. Numerical behaviours for Problem 2 established by the integer-order (a) ρ = 1 and (b) the
AADM at t = 0.003 with the parameters λ = 0.001 for various values of x1, and x2.

Table 3. AADM and exact solution with absolute error solution in comparison with the solution derived by VIM for
Problem 2 at λ = 0.001 and α = 1.

x1 x2 t AADM Solution Exact Solution VIM [41] Error AADM Error

0.1 0.1 0.2 5.00092 × 10−5 4.99592 × 10−5 5.00091 × 10−5 4.99519 × 10−8

0.1 0.1 0.3 5.00091 × 10−5 4.99342 × 10−5 5.00091 × 10−5 7.49278 × 10−8

0.1 0.1 0.4 5.00091 × 10−5 4.99092 × 10−5 5.00091 × 10−5 9.99037 × 10−8

0.6 0.6 0.2 3.02004 × 10−4 3.01953 × 10−4 3.02003 × 10−4 5.08987 × 10−8

0.6 0.6 0.3 3.02004 × 10−4 3.01927 × 10−4 3.02003 × 10−4 7.63479 × 10−8

0.6 0.6 0.4 3.02004 × 10−4 3.01902 × 10−4 3.02003 × 10−4 1.01797 × 10−7

0.9 0.9 0.2 4.5678 × 10−4 4.56728 × 10−4 4.56780 × 10−4 5.21227 × 10−8

0.9 0. 9 0.3 4.5678 × 10−4 4.56702 × 10−4 4.56780 × 10−4 7.81839 × 10−8

0.9 0.9 0.4 4.5678 × 10−4 4.56676 × 10−4 4.56780 × 10−4 1.04245 × 10−7
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Table 4. AADM solution in comparison derived by VIM for Problem 2 at λ = 0.001 and different fractional-orders ρ = 0.67
and 0.75.

x1/x2 t AADM for ρ = 0.67 VIM [41] for ρ = 0.67 AADM for ρ = 0.75 VIM [41] for ρ = 0.75

0.1 0.2 5.00091 × 10−5 5.00091 × 10−5 5.00091 × 10−5 5.00091 × 10−5

0.1 0.3 5.00091 × 10−5 5.00090 × 10−5 5.00091 × 10−5 5.00090 × 10−5

0.1 0.4 5.0009 × 10−5 5.00090 × 10−5 5.00091 × 10−5 5.00090 × 10−5

0.6 0.2 3.02004 × 10−4 3.02003 × 10−4 3.02004 × 10−4 3.02003 × 10−3

0.6 0.3 3.02004 × 10−4 3.02003 × 10−4 3.02004 × 10−4 3.02003 × 10−3

0.6 0.4 3.02004 × 10−4 3.02003 × 10−4 3.02004 × 10−4 3.02003 × 10−3

0.9 0.2 4.5678 × 10−4 4.56780 × 10−4 4.5678 × 10−4 4.5678 × 10−2

0. 9 0.3 4.5678 × 10−4 4.56780 × 10−4 4.5678 × 10−4 4.5678 × 10−2

0.9 0.4 4.5678 × 10−4 4.56780 × 10−4 4.5678 × 10−4 4.5678 × 10−2

Figure 6. The absolute-error of solution of Problem 2 at t = 0.003 with the parameters ρ = 1,
λ = 0.001.
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Figure 7. The approximate-analytical AADM solution F (x1, x2, t) of Problem 2 for ρ =0.55, 0.67, 0.75,
0.85, 0.95, and 1 when the parameter λ = 0.001.
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Figure 8. Convergence at various values of ρ and t for Equation (32) at x1 = 0.2, x2 = 0.2 with the
parameter λ = 0.001.

6. Other Aspects of ZKEs

Firstly, considering the fractional order to be 1 and rotating the coordinate axes (t, ζ)
through an angle ϑ, maintaining the v-axis stationary, in order to evaluate the temperature
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dependence of solitary waves in a direction making an angle ϑ with the t-axis, i.e., with the
magnetization and lying in the (ζ − t) plane, the independent variables are adjusted in the
following manner:

x1 = t sin ϑ + ζ cos ϑ, x2 = v, x3 = t cos ϑ− ζ sin ϑ, and t = τ. (41)

Utilizing the aforesaid Scheme (41) in the ZKE (1), yields

∂F
∂t

+ η1F
∂F
∂x1

+ η2
∂3F
∂x3

1
+ η3F

∂F
∂x3

+ η4
∂3F
∂x3

3
+ η5

∂3F
∂x2

1∂x3
+ η6

∂3F
∂x1∂x2

3
+ η7

∂3F
∂x1∂x2

2

+η8
∂3F

∂x3∂x2
2
= 0, (42)

where

η1 = A1 cos ϑ, η2 = A2 cos3 ϑ + A3 cos ϑ sin2 ϑ, η3 = −A1 sin ϑ,

η4 = A2 sin3 ϑ−A3 sin ϑ cos2 ϑ, η5 = −3A2 sin ϑ cos2 ϑ−A3(sin2 ϑ− 2 sin ϑ cos2 ϑ),

η6 = 3A2 sin2 ϑ cos ϑ + A3(cos3 ϑ− 2 sin2 ϑ cos ϑ), η7 = A3 cos ϑ, η8 = −A3 sin ϑ. (43)

Now, the steady state solution of the ZKE (42) in the form is investigated as follows:

F = F0(Λ), (44)

where Λ = x1 −U t, whereas U is a constant velocity normalized to C. Employing (44) in
(42), then, the steady state formulation is represented as

−U dF0

dΛ
+ η1F0

dF0

dΛ
+ η2

d3F0

dΛ3 = 0. (45)

Utilizing the suitable boundary assumptions, viz., (F0,F ′0 and F ′′0 ) tends to 0 when
Λ 7→ ±∞, then, the solution of (45) is derived as

F0(Λ) = Fm sec h2(Λ/L
)
, (46)

where Fm = 3U/η1 denotes the peak amplitude, and L =
√

4η2/U is the width of solitons,
respectively. Since the amplitude and width of ion acoustic waves in plasma are influenced
by a variety of factors and physical parameters, it is fascinating to quantitatively determine
their consequences on plasma carrying superthermality of cold and hot electrons.

Figure 9a,b exhibited symmetric behaviour for positive and negative pressure struc-
tures with varied values of density fraction depending on the unperturbed cold electron to
fluid ion concentration ratio, in order to see the influence of cold electron superthermality.
It is remarkable that with fluctuations in the value of the superthermality of electrons, the
wave profile is revealed to be dramatically altered by the superthermality of electrons.

The impact of obliqueness ϑ on both positive and negative potential is represented in
Figure 10a,b. As a result, the increment in obliqueness ϑ strengthened the amplitude and
width, respectively.
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Figure 9. Behaviour of density-fraction (ratio of concentration of cold electrons to ions) (a) changes
of positive potential structure: straight curve, dotted-dashed curve, dotted, and dashed curve for
density fraction = 0.6, 0.7, 0.8, and 0.9, respectively. (b) Changes of negative potential structure:
straight curve, dotted-dashed curve, dotted, and dashed curve for density fraction = 0.2, 0.3, 0.4, and
0.45, respectively.
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Figure 10. Behaviour of obliqueness-ϑ (a) changes of positive potential structure when density
fraction = 0.5: straight curve, dotted-dashed curve, dotted, and dashed curve for ϑ = 30◦, 35◦, 40◦ ,
and 45◦, respectively. (b) Changes of negative potential structure when density fraction=0.2: straight
curve, dotted-dashed curve, dotted, and dashed curve for density fraction for ϑ = 30◦, 35◦, 40◦, and
45◦, respectively.

7. Conclusions

In this study, the AADM was proposed to investigate the time-fractional Zakharov–
Kuznetsov equation regulating the nonlinear evolution of ion acoustic waves in a mag-
netised plasma having cold and hot temperature electrons. For the various physical
characteristics, both positive (compressive) and negative (rarefactive) potential structures
are generated that are symmetric with respect to origin. The methodology of the suggested
technique has been considered to be more effective than other analytical schemes due to its
confined number of estimations. The technique is clearly understood by the researchers
because it involves implementing the AT explicitly to the projected problem and then adapt-
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ing the ADM. The inverse Aboodh transform is then employed to derive the approximate
solution for the projected problem. To demonstrate the conformity of the developed model
and precise solutions to the problems, we have shown 2D and 3D graphs, respectively.
The findings acquired by the current report are in excellent accordance with the actual
solution of Example 1 and 2 in the paper. Furthermore, the manuscript includes a graph
of absolute errors and tabular results which have already been presented and addressed.
This demonstrates that the proposed model provided adequate accuracy to the problem
solution even though two terms of the series solution were considered. The simulation
process reveals that the AADM has achieved an excellent agreement. It may be assumed
that the AADM is extremely efficient and easy to implement in determining approximate
analytical solutions of several fractional physical and biological models.
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