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1. Introduction

Let Ω ⊆ RN be a bounded domain (that is, a bounded connected set in the N-
dimensional Euclidean space) with a smooth boundary ∂Ω. In this paper, we study the
following double phase problem

(P)
{
−∆a

pu(z)− ∆qu(z) = f (z, u(z)) in Ω,
u|∂Ω = 0, 1 < q < p < +∞

(see [1]), with the unknown u : Ω −→ R. If a ∈ L∞(Ω) \ {0}, a(z) > 0 for almost all z ∈ Ω
and 1 < r < +∞, then by ∆a

r we denote the weighted r-Laplacian differential operator
defined by

∆a
r u = div (a(z)|Du|r−2Du).

If a ≡ 1, then we have the usual r-Laplacian. In problem (P) we have the sum of two such
operators. So, the differential operator (left hand side) in (P) is not homogeneous. The
differential operator of (P) is related to the so called “double phase” integral functional
defined by

J(u) =
∫

Ω

(
a(z)|Du|p + |Du|q

)
dz.

The integrand of this functional is the function

ϑ(z, y) = a(z)|y|p + |y|q ∀(z, y) ∈ Ω×RN . (1)

We do not assume that the weight a is bounded away from zero (that is, we do not assume
that ess inf

Ω
a > 0). So, the function ϑ(z, ·) exhibits unbalanced growth, namely we have

|y|q 6 ϑ(z, x) 6 c0
(
|y|p + |y|q

)
for a.a. z ∈ Ω, all y ∈ RN ,
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for some c0 > 0. Such functionals were first investigated by Marcellini [2,3] and Zhikov [4,5]
in the context of problems of the calculus of variations and of nonlinear elasticity theory. The
unbalanced growth of ϑ(z, ·) requires the use of Musielak–Orlicz spaces for the treatment
of problem (P). The interest for this kind of problems, was revived recently with the work
of Mingione and coworkers who produced interesting interior regularity results for local
minimizers of such functionals. We refer to the paper of Baroni–Colombo–Mingione [6] and
the references therein. We also mention the very recent work of Ragusa–Tachikawa [7] who
extended the interior regularity results to anisotropic double phase functionals. However, a
global (that is, up to the boundary) regularity theory for these problems, is not yet available
and this makes their study difficult.

The reaction f (z, x) in problem (P) is a Carathéodory function, which is (p − 1)-
superlinear at +∞ and symmetrically at −∞. This problem was examined recently by
Gasiński–Papageorgiou [8] and Liu-Dai [9], but under stronger conditions on f (z, ·). Here
using the Nehari method, we show that problem (P) has at least three nontrivial solutions
all with sign information (nodal (that is sign-changing) solution, positive solution and by
the symmetry of the behaviour of the data also negative solution) and minimum energy
(ground state solutions). The use of the Nehari manifold helps us overcome the difficulties
that originate from the fact that for double phase problems we have no global regularity
theory and so many of the tools and techniques of “balanced” problems cannot be used.
Our multiplicity result improves considerably Theorem 4.9 of Gasiński–Papageorgiou [8]
and Theorem 1.4 of Liu–Dai [9]. Normally multiplicity results for superlinear problems
are obtained by a combination of critical point theory and Morse theory, see the works
of Wang [10] (semilinear equations) and Papageorgiou–Rǎdulescu [11] (nonlinear, nonho-
mogeneous equations). The lack of global regularity theory for double phase problems,
leads to a different approach based on the Nehari manifold, as this was developed by
Brown–Wu [12], Szulkin–Weth [13] and Willem [14]. Other existence and multiplicity
results for double phase problems can be found in the works of Gasiński–Winkert [15]
(coercive equations), Colasuonno–Squassina [16], Ge–Wang–Lu [17] (eigenvalue problems),
Gasiński–Winkert [18], Papageorgiou–Vetro–Vetro [19] (Robin problems). For the nonlinear
problems related to the nonlinear frequency shift phenomena we refer to Kalyabin et al. [20]
and Sadovnikov et al. [21]. Finally we mention the two recent informative survey articles
by Mingione–Rǎdulescu [1] and Rǎdulescu [22].

2. Mathematical Background—The Nehari Manifold

As we already mentioned in the Introduction, the appropriate functional framework
for the analysis of double phase problems, is provided by the so called Musielak–Orlicz
spaces. For a comprehensive presentation of the theory of these spaces, we refer to the
book of Harjulehto–Hästö [23].

We introduce the following hypotheses (denoted by H1) on the weight a and the
exponents q, p, which will be used in the sequel.

Hypothesis 1. a ∈ C0,1(Ω) \ {0} (that is, a : Ω −→ R is nonzero and Lipschitz continuous),
a(z) > 0 for all z ∈ Ω, 1 < q < p < N and p

q < 1 + 1
N .

Remark 1. The last condition on the exponents q, p is common in Dirichlet double phase problems
and guarantees that the Poincaré inequality is valid for the corresponding Musielak–Orlicz–Sobolev
space (see Harjulehto–Hästö ([23], p. 138)). Note that the inequality p

q < 1 + 1
N implies that

p < q∗ and as we will see later in this section, this guarantees useful compact embeddings among
the relevant spaces.

We consider the Carathéodory integrand

ϑ(z, x) = a(z)|x|p + |x|q
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and let
M(Ω) = {u : Ω −→ R measurable}.

As usual we identify two such functions which differ only on a Lebesgue-null subset of Ω.
Then the Musielak–Orlicz space Lϑ(Ω) is defined by

Lϑ(Ω) = {u ∈ M(Ω) : $ϑ(u) < ∞},

with $ϑ being the modular function defined by

$ϑ(u) =
∫

Ω
ϑ(z, u(z)) dz,

where ϑ : Ω×R −→ R is defined by (1). We equip Lϑ(Ω) with the so called “Luxembourg
norm”

‖u‖ϑ = inf
{

µ > 0 : $ϑ

(
u
µ

)
6 1

}
(see Adams [24]). Then Lϑ(Ω) becomes a Banach space which is separable and reflexive
(in fact uniformly convex). Using the space Lϑ(Ω), we can define the corresponding
Musielak–Orlicz–Sobolev space W1,ϑ(Ω) by

W1,ϑ(Ω) = {u ∈ Lϑ : |Du| ∈ Lϑ(Ω)}.

Here and in the sequel Du denotes the weak gradient of u ∈ Lϑ(Ω). We equip W1,ϑ(Ω)
with the norm

‖u‖1,ϑ = ‖u‖ϑ + ‖Du‖ϑ ∀u ∈W1,ϑ(Ω),

with ‖Du‖ϑ = ‖ |Du| ‖ϑ. We set

W1,ϑ
0 (Ω) = C∞

c (Ω)
‖·‖1,ϑ .

For this space the Poincaré inequality holds (see Harjulehto–Hästö ([23], p. 138)), that is,
there exists ĉ > 0 such that

‖u‖ϑ 6 ĉ‖Du‖ϑ ∀u ∈W1,ϑ
0 (Ω).

Therefore on W1,ϑ
0 (Ω) we can consider the equivalent norm

‖u‖ = ‖Du‖ϑ ∀u ∈W1,ϑ
0 (Ω).

The spaces W1,ϑ(Ω) and W1,ϑ
0 (Ω) are Banach spaces which are separable and reflexive (in

fact uniformly convex).
There is a close relation between the norm ‖ · ‖ and the modular function $ϑ.

Proposition 1. (a) If u 6= 0, then ‖u‖ = µ⇐⇒ $ϑ

( u
µ

)
= 1.

(b) ‖u‖ < 1 (resp. = 1, > 1)⇐⇒ $ϑ(u) < 1 (resp. = 1, > 1).
(c) ‖u‖ < 1 =⇒ ‖u‖p 6 $ϑ(u) 6 ‖u‖q.
(d) ‖u‖ > 1 =⇒ ‖u‖q 6 $ϑ(u) 6 ‖u‖p.
(e) ‖u‖ → 0⇐⇒ $ϑ(u)→ 0 and ‖u‖ → +∞⇐⇒ $ϑ(u)→ +∞.

Proposition 2. (a) Lϑ(Ω) ⊆ Lr(Ω) and W1,ϑ
0 (Ω) ⊆W1,r

0 (Ω) continuously for every 1 6 r 6 q.
(b) W1,ϑ

0 (Ω) ⊆ Lr(Ω) continuously (resp. compactly), if 1 6 r 6 q∗ (resp. 1 6 r < q∗), where
q∗ = Nq

N−q .

(c) Lp(Ω) ⊆ Lϑ(Ω) continuously.
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Let V : W1,ϑ
0 (Ω)→W1,ϑ

0 (Ω)∗ be the nonlinear map defined by

〈V(u), h〉 =
∫

Ω

(
a(z)|Du|p−2(Du, Dh)RN + |Du|q−2(Du, Dh)RN

)
dz

for all u, h ∈W1,ϑ
0 (Ω) (by 〈·, ·〉we denote the duality brackets for the pair (W1,ϑ

0 (Ω), W1,ϑ
0 (Ω)∗)).

This operator has the following properties (see Liu-Dai ([9], Proposition 3.1)).

Proposition 3. The operator V : W1,ϑ
0 (Ω) −→W1,ϑ

0 (Ω)∗ is bounded (that is, maps bounded sets
into bounded sets), continuous, strictly monotone (thus maximal monotone too) and of type (S)+,
that is, V has the following property: “if un

w−→ u in W1,ϑ
0 (Ω) and

lim sup
n→+∞

〈V(un), un − u〉 6 0,

then un → u in W1,ϑ
0 (Ω).”

In the sequel by $a we denote the modular function defined by

$a(Du) =
∫

Ω
a(z)|Du|p dz ∀u ∈W1,ϑ

0 (Ω).

For every x ∈ R, let
x+ = max{x, 0}, x− = max{−x, 0}.

Then for every u ∈ M(Ω), we set

u±(z) = u(z)± ∀z ∈ Ω.

If u ∈W1,ϑ
0 (Ω), we know that

u± ∈W1,ϑ
0 (Ω), u = u+ − u−, |u| = u+ + u−.

By λ̂1(q) we denote the principal eigenvalue of (−∆q, W1,q
0 (Ω)), that is, we consider

the nonlinear eigenvalue problem{
−∆qu(z) = λ̂|u(z)|q−2u(z) in Ω,
u|∂Ω = 0.

This problem has a smallest eigenvalue λ̂1(q) > 0, which has the following variational
characterization

λ̂1(q) = inf
{‖Du‖q

q

‖u‖q
q

: u ∈W1,q
0 (Ω), u 6= 0

}
. (2)

This eigenvalue is simple and isolated and the corresponding eigenfunctions have fixed
sign and belong in C1(Ω). In fact this is the only eigenvalue with eigenfunctions of fixed
sign. All the other eigenvalues have eigenfunctions which are nodal. Moreover, if C+ is the
positive cone of

C1
0(Ω) = {u ∈ C1(Ω) : u|∂Ω = 0}

that is
C+ = {u ∈ C1

0(Ω) : u(z) > 0 for all z ∈ Ω}

and û ∈ C1
0(Ω) is a positive eigenfunction corresponding to λ̂1(q) > 0, then

û ∈ intC+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u
∂n

∣∣∣∣
∂Ω

<

}
,

with n being the outward unit normal on ∂Ω and ∂u
∂n = (Du, n)RN .
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The next lemma is an easy consequence of the above properties (see for example
Mugnai–Papageorgiou ([25], Lemma 4.11)).

Lemma 1. If β ∈ L∞(Ω), β(z) 6 λ̂1(q) for almost all z ∈ Ω and the inequality is strict on a set
of positive Lebesgue measure, then there exists c̃ > 0 such that

c̃‖Du‖q
q 6 ‖Du‖q

q −
∫

Ω
β(z)|u|q dz ∀u ∈W1,q

0 (Ω).

Next we introduce our hypotheses on the reaction f (z, x).

Hypothesis 2. f : Ω×R −→ R is a Carathéodory function such that f (z, 0) = 0 for almost all
z ∈ Ω and

(i) | f (z, x)| 6 â(z)(1+ |x|r−1) for almost all z ∈ Ω, all x ∈ R with â ∈ L∞(Ω), p < r < q∗;

(ii) lim
x→±∞

f (z, x)
|x|p−2x

= +∞ uniformly for almost all z ∈ Ω;

(iii) for almost all z ∈ Ω, the quotient function x 7−→ f (z,x)
|x|p−1 is increasing on R \ {0};

(iv) there exists β̂ ∈ L∞(Ω) and ĉ0 > 0 such that β̂ 6≡ λ̂1(q),

β̂(z) 6 λ̂1(q) for a.a. z ∈ Ω

and

−ĉ0 ≤ lim inf
x→0

f (z, x)
|x|q−2x

≤ lim sup
x→0

f (z, x)
|x|q−2x

≤ β(z) uniformly for a.a. z ∈ Ω.

Remark 2. Hypothesis H2 (ii) implies that for almost all z ∈ Ω, f (z, ·) is (p− 1)-superlinear.
However, we do not assume the usual in superlinear problems Ambrosetti–Rabinowitz condition (see,
for example, Willem ([14], p. 46)). This condition is used by Liu–Dai [9] (see hypothesis ( f4) in [9]).
The Ambrosetti–Rabinowitz condition is a convenient but restrictive condition which permits the
verification of the Palais–Smale condition (the compactness type condition on the energy functional),
which is necessary in order to apply the minimax theorem of the critical point theory. Furthermore,
hypothesis H2 (iii) is a relaxed version of Nehari-type monotonicity condition which requires that
the quotient function x 7−→ f (z,x)

|x|p−1 is strictly increasing on R \ {0}. This stronger version is used
by Liu–Dai [9] (see hypothesis ( f5) in [9]). Finally hypothesis H2 (iv) describes the behaviour
of f (z, ·) near zero and is less restrictive than the corresponding condition in Liu–Dai [9] (see
hypothesis ( f3) in [9]), who requires that f (z, ·) is strictly (q− 1)-sublinear near zero. Hypotheses
H2 are also less restrictive than those of Gasiński–Papageorgiou [8] (see hypotheses H( f ) in [8]).

Example 1. The following functions satisfy hypotheses H2, but fail to satisfy the hypotheses of
Gasiński–Papageorgiou [8] and Liu-Dai [9]:

f1(x) =

{
|x|p−2x if |x| 6 1,
|x|p−2x(ln |x|+ 1) if 1 < |x|,

f2(x) =

{
β|x|q−2x + η|x|p−2x ln(1 + |x|) if |x| 6 1,
|x|p−2x ln |x|+ η̂|x|p−2x if 1 < |x|,

with β < λ̂1(q), η > 2β(p− q) and η̂ = β + η ln 2. In these examples for the sake of simplicity
we have dropped the z-dependence.

For η > 0, we consider the following perturbation of the reaction

fη(z, x) = f (z, x) + ηr|x|r−2x.



Symmetry 2021, 13, 1556 6 of 23

Note that fη satisfies the same hypotheses as f and in fact now we have that for almost all

z ∈ Ω, the quotient function x 7−→ fη(z,x)
|x|p−1 is strictly increasing on R \ {0}.

We consider the Dirichlet double phase problem with fη(z, x) as reaction. So, we
consider the following problem

(Pη)

{
−∆a

pu(z)− ∆qu(z) = fη(z, u(z)) in Ω,
u|∂Ω = 0, 1 < q < p.

First we will prove a multiplicity result for problem (Pη) and then let η → 0+ to have
the multiplicity theorem for the original problem (P).

We set
Fη(z, x) =

∫ x

0
fη(z, s) ds

and consider the energy (Euler) functional ϕη : W1,ϑ
0 (Ω) −→ R for problem (Pη) defined by

ϕη(u) =
1
p

$a(Du) +
1
q
‖Du‖q

q −
∫

Ω
Fη(z, u) dz ∀u ∈W1,ϑ

0 (Ω).

Evidently ϕη ∈ C1(W1,ϑ
0 (Ω)) and we have

〈ϕ′η(u), h〉 = 〈V(u), h〉 −
∫

Ω
fη(z, u)h dz ∀h, u ∈W1,ϑ

0 (Ω).

Since we want to provide sign information for all the solutions produced, we introduce
also the positive and negative truncations ϕ±η : W1,ϑ

0 (Ω) −→ R defined by

ϕ±η (u) =
1
p

$a(Du) +
1
q
‖Du‖q

q −
∫

Ω
Fη(z,±u±) dz ∀u ∈W1,ϑ

0 (Ω).

Again we have ϕ±η ∈ C1(W1,ϑ
0 (Ω)).

We introduce the Nehari manifold Nη for the functional ϕη defined by

Nη = {u ∈W1,ϑ
0 (Ω) : 〈ϕ′η(u), u〉 = 0, u 6= 0}.

Evidently the Nehari manifold Nη contains the nontrivial weak solutions of problem
(Pη). In order to produce constant sign solutions, we introduce the corresponding sets for
the functionals ϕ±η , namely the sets

Nη
+ = {u ∈W1,ϑ

0 (Ω) : 〈(ϕ+
η )
′(u), u〉 = 0, u > 0, u 6= 0},

Nη
− = {u ∈W1,ϑ

0 (Ω) : 〈(ϕ−η )
′(u), u〉 = 0, u 6 0, u 6= 0}.

Evidently Nη
+, Nη

− ⊆ Nη .
Finally for the purpose of producing nodal solutions, we introduce also the set

Nη
0 = {u ∈W1,ϑ

0 (Ω) : u+ ∈ Nη , −u− ∈ Nη}.

Given u ∈W1,ϑ
0 (Ω) \ {0}, by kη

u we denote the corresponding fibering function defined by

kη
u(t) = ϕη(tu) ∀t > 0.

Note that tu ∈ Nη if and only if (kη
u)
′(t) = 0.

Proposition 4. If hypotheses H1, H2 hold and u ∈ W1,ϑ
0 (Ω) \ {0}, then there exists unique

tu > 0 such that tuu ∈ Nη .
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Proof. Consider the function

µ
η
u(t) = tp$a(Du) + tq‖Du‖q

q −
∫

Ω
fη(z, tu)(tu) dz. (3)

Evidently µ
η
u(t) = t(kη

u)
′(t) for all t > 0.

Note that hypothesis H2 (iii) is equivalent to saying that for almost all z ∈ Ω the
quotient map x 7−→ f (z,x)x

|x|p is increasing in |x| 6= 0. Therefore, for x 6= 0 and t ∈ (0, 1) we
have

fη(z, tx)(tx)
tp|x|p <

fη(z, x)x
|x|p for a.a. z ∈ Ω,

so
fη(z, tx)(tx) < tp fη(z, x) for a.a. z ∈ Ω. (4)

Using (4) in (3), we have

µ
η
u(t) > tp$a(Du) + tq‖Du‖q

q − tp
∫

Ω
fη(z, u)u dz.

Since q < p, we see that there exists t0 ∈ (0, 1) such that

µ
η
u(t) > 0 for all t ∈ (0, t0). (5)

On the other hand, we have

µ
η
u(t)
tp = $a(Du) +

1
tp−q ‖Du‖q

q −
∫

Ω

fη(z, tu)(tu)
tp dz.

Using hypothesis H2 (ii) we see that

lim
t→+∞

µ
η
u(t)
tp = −∞,

so
µ

η
u(t) < 0 for all t > 0 large. (6)

Then (5), (6) and Bolzano’s theorem, imply that there exists tu > 0 such that

µ
η
u(tu) = 0,

so
tu(k

η
u)
′(tu) = 0,

thus
(kη

u)
′(tu) = 0

and hence tuu ∈ Nη . Note that

µ
η
u(t) = 0 ⇐⇒ $a(Du) =

∫
Ω

fη(z, tu)(tu)
tp dz− 1

tp−q ‖Du‖q
q

and observe that in the last equation the right hand side is strictly increasing in t > 0.
Therefore, tu > 0 is unique.

The Nehari manifold is much smaller than the ambient space W1,ϑ
0 (Ω). So, ϕη |Nη

exhibits properties which fail to be true globally. In fact on account of hypothesis H2 (ii), ϕη

is unbounded below. However as we will show in the next proposition ϕη |Nη is coercive,
hence bounded below. This illustrates the usefulness of the Nehari manifold.

Proposition 5. If hypotheses H1, H2 hold, then ϕη |Nη is coercive.
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Proof. We argue by contradiction. So, suppose that we can find a sequence {un}n∈N ⊆ Nη

such that
ϕη(un) 6 c1 for all n ∈ N and ‖un‖ → +∞, (7)

for some c1 > 0. Let yn = un
‖un‖ for n ∈ N. Then ‖yn‖ = 1 for all n ∈ N and so we may

assume that
yn

w−→ y in W1,ϑ
0 (Ω), yn −→ y in Lr(Ω) (8)

(see Proposition 2). First we assume that y 6= 0. Let

Ω̂ = {z ∈ Ω : |y(z)| > 0}.

Then |Ω̂|N > 0, where by | · |N we denote the Lebesgue measure on RN . Hence we have

|un(z)| −→ +∞ for a.a. z ∈ Ω̂,

so
Fη(z, un(z))
|un(z)|p

−→ +∞ for a.a. z ∈ Ω̂

(see hypothesis H2 (ii)). By Fatou’s lemma, we have

∫
Ω̂

Fη(z, un)

‖un‖p dz −→ +∞

(recall that |Ω̂|N > 0). On account of hypotheses H2 (i),(ii), there exists M > 0 such that

Fη(z, x) > −M for a.a. z ∈ Ω, all x ∈ R.

So, it follows that ∫
Ω

Fη(z, un)

‖un‖p dz −→ +∞. (9)

For x 6= 0 and τ > 0, using the chain rule and hypothesis H2 (iii), we have

1− τp

p
fη(z, x)x + Fη(z, τx)− Fη(z, x)

=
∫ 1

τ
fη(z, x)xsp−1 ds−

∫ 1

τ

d
ds

Fη(z, sx) ds

=
∫ 1

τ
fη(z, x)xsp−1 ds−

∫ 1

τ
fη(z, sx)x ds

=
∫ 1

τ

(
fη(z, x)
|x|p−1 −

fη(z, sx)
(s|x|)p−1

)
sp−1x|x|p−1 ds

> 0,

so
Fη(z, x)− Fη(z, τx) 6

1− τp

p
fη(z, x)x for a.a. z ∈ Ω, all x ∈ R, τ > 0. (10)

From (10) with τ = 0, we have

pFη(z, x) 6 fη(z, x)x for a.a. z ∈ Ω, all x ∈ R. (11)

From (11) and (9) it follows that∫
Ω

fη(z, un)un

‖un‖p dz −→ +∞. (12)
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Since un ∈ Nη for all n ∈ N, we have

$a(Dun) + ‖Dun‖q
q =

∫
Ω

fη(z, un)un dz ∀n ∈ N,

so ∫
Ω

fη(z, un)un

‖un‖p dz = $a(Dyn) +
1

‖un‖p−q ‖Dyn‖q
q 6 c2 ∀n ∈ N, (13)

for some c2 > 0. Comparing (12) and (13) we have a contradiction.
Next we assume that y = 0. Let ξ > 1 and introduce

vn = (pξ)
1
p yn ∀n ∈ N.

Evidently we have

vn
w−→ 0 in W1,ϑ

0 (Ω) and vn −→ 0 in Lr(Ω)

(see (8) and recall that y = 0). We obtain∫
Ω

Fη(z, vn) dz −→ 0. (14)

Let tn ∈ [0, 1] be such that
ϕη(tnun) = max

06t61
ϕη(tun). (15)

On account of (7), we can find n0 ∈ N such that

0 <
(pξ)

1
p

‖un‖
6 1 ∀n > n0. (16)

From (15) and (16), we see that for n > n0, we have

ϕη(tnun) > ϕη(vn)

> ξ$a(Dyn) +
ξ

q
p

q
‖Dyn‖q

q −
∫

Ω
Fη(z, vn) dz

>
ξ

q
p

q
$ϑ(yn)−

∫
Ω

Fη(z, vn) dz

(since p > 1 and ξ > 1), so

ϕη(tnun) >
ξ

q
p

2q
∀n > n1 > n0

(see (14) and since ‖yn‖ = 1; see Proposition 1).
However, ξ > 1 is arbitrary. So, we infer that

ϕη(tnun) −→ +∞ as n→ +∞. (17)

We know that
ϕη(0) = 0 and ϕη(un) 6 c1 ∀n ∈ N

(see (7)). Then from (17) it follows that we can find n2 ∈ N such that

tn ∈ (0, 1) ∀n > n2. (18)
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From (15) and (18) we have
d
dt

ϕη(tun)
∣∣
t=tn

= 0,

so
〈ϕ′η(tnun), tnun〉 = 0)

(by the chain rule and (18)), so

tnun ∈ Nη ∀n > n2, (19)

with 0 < tn < 1. However, we also have un ∈ Nη . Then on account of (19) and Proposition 4,
we have a contradiction.

On account of hypotheses H2 (i),(ii), we can find c3 > 0 such that

ϕη(u) 6 ϕ±η (u) + c3 ∀u ∈W1,ϑ(Ω).

Then from Proposition 5, we infer the following corollary.

Corollary 1. If hypotheses H1, H2 hold, then ϕ±η |Nη are coercive.

Next we show that the elements of the Nehari manifold maximize the fibering function.

Proposition 6. If hypotheses H1, H2 hold and u ∈ Nη , then ϕη(tu) 6 ϕη(u) for all t > 0.

Proof. We consider the corresponding fibering function

kη
u(t) = ϕη(tu) ∀t > 0.

Recall that
(kη

u)
′(1) = µ

η
u(1)

(see (3)). Hypotheses H2 (i),(ii),(iv) imply that given β > 0, we can find c4 = c4(β) > 0
such that

Fη(z, x) >
β

p
|x|p − c4|x|q for a.a. z ∈ Ω, all x ∈ R. (20)

Therefore we have

kη
u(t) = ϕη(tu) =

tp

p
$a(Du) +

tq

q
‖Du‖q

q −
∫

Ω
Fη(z, tu) dz

6
tp

p
(
$a(Du)− β‖u‖p

p
)
+ c5tq,

for some c5 > 0 (see (20)). Choosing β > $a(Du)
‖u‖p

p
, we see that

kη
u(t) 6 c5tq − c6tp,

for some c6 > 0, so
kη

u(t) < 0 for all t > 0 large (21)

(since q < p). On the other hand from hypotheses H2 (i),(iv), we see that given ε > 0 we
can find c7 = c7(ε) > 0 such that

Fη(z, x) 6
1
q
(β̂(z) + ε)|x|q + c7|x|r for a.a. z ∈ Ω, all x ∈ R. (22)
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Hence we have

kη
u(t) = ϕη(tu)

>
tp

p
$a(Du) +

tq

q

(
‖Du‖q

q −
∫

Ω
β̂(z)|u|q dz− ε

λ̂1(q)
‖Du‖q

q

)
− c8tr

>
tp

p
$a(Du) +

tq

q

(
c9 −

ε

λ̂1(q)

)
‖Du‖q

q − c8tr

for some c8, c9 > 0 (see (22), (21) and Lemma 1).
Choosing ε ∈ (0, λ̂1(q)c9), we have

kη
u(t) > c10tp − c8tr,

for some c10 > 0. Since p < r, it follows that

kη
u > 0 for t ∈ (0, 1) small. (23)

Then from (21) and (23), it follows that kη
u has a local maximizer t̂u > 0 and so we have

(kη
u)
′(t̂u) = µ

η
u(t̂u) = 0.

Since u ∈ Nη , from Proposition 4 we infer that

t̂u = 1 and this is a global maximizer of kη
u,

so
kη

u(t) 6 kη
u(1) ∀t > 0

and thus
ϕη(tu) 6 ϕη(u) ∀t > 0.

We show that the elements of the Nehari manifold not only are nontrivial but in fact
are bounded away from zero in norm.

Proposition 7. If hypotheses H1, H2 hold, then there exists d0 > 0 such that d0 6 ‖u‖r, ‖u‖ for
all u ∈ Nη .

Proof. Hypotheses H2 (i),(iv) imply that given ε > 0, we can find c11 = c11(ε) > 0 such that

f (z, x)x 6 (β̂(z) + ε)|x|q + c11|x|r for a.a. z ∈ Ω, all x ∈ R. (24)

Given u ∈ Nη , we have

$a(Du) + ‖Du‖q
q =

∫
Ω

f (z, u)u dz

6
∫

Ω
β̂(z)|u|q dz +

ε

λ̂1(q)
‖Du‖q

q + c11‖u‖r
r

(see (24) and (2)), so

$a(Du) +
(
‖Du‖q

q −
∫

Ω
β̂(z)|u|q − ε

λ̂1(q)
‖Du‖q

q

)
6 c11‖u‖r

r,

thus

$a(Du) +
(

c12 −
ε

λ̂1(q)

)
‖Du‖q

q 6 c11‖u‖r
r,



Symmetry 2021, 13, 1556 12 of 23

for some c12 > 0 (see Lemma 1).
Choosing ε ∈ (0, λ̂1(q)c12), we obtain

$ϑ(u) 6 c13‖u‖r
r,

for some c13 > 0, thus
min{‖u‖q, ‖u‖p} 6 c13‖u‖r

r

(see Proposition 1).
Since q < p < r and W1,ϑ

0 (Ω) ⊆ Lr(Ω) (see Proposition 2), we conclude that there
exists d0 > 0 such that

d0 6 ‖u‖r, ‖u‖ ∀u ∈ Nη .

Similar results can be proved for the functionals ϕ±η and the corresponding sets Nη
±

(recall that Nη
± ⊆ Nη).

Proposition 8. If hypotheses H1, H2 hold, then
(a) for every u ∈ W1,ϑ

0 (Ω) \ {0}, u > 0 (resp. u 6 0) there exists unique t+u > 0 (resp. t−u < 0)
such that

t+u u ∈ Nη
+, t−u u ∈ Nη

−;

(b) we have

ϕ+
η (tu) 6 ϕ+

η (u) ∀u ∈ Nη
+, t > 0,

ϕ−η (tu) 6 ϕ−η (u) ∀u ∈ Nη
−, t > 0;

(c) there exist d±0 > 0 such that

d+0 6 ‖u‖r, ‖u‖ ∀u ∈ Nη
+,

d−0 6 ‖u‖r, ‖u‖ ∀u ∈ Nη
−.

3. Multiple Solutions for Problem (Pη)

Let
m+

η = inf
Nη
+

ϕ+
η and m−η = inf

Nη
−

ϕ−η .

We show that both infima are realized.

Proposition 9. If hypotheses H1, H2 hold, then there exist u∗η ∈ Nη
+ and ûη ∈ Nη

− such that

ϕ+
η (u

∗
η) = m+

η and ϕ−η (ûη) = m−η .

Proof. We consider a minimizing sequence {un}n∈N ⊆ Nη
+ for ϕ+

η |Nη
+

. Therefore, we have

ϕ+
η (un)↘ m+

η .

Corollary 1 implies that the sequence {un}n∈N ⊆W1,ϑ
0 (Ω) is bounded. So, by passing to a

subsequence if necessary, we may assume that

un
w−→ u∗η in W1,ϑ

0 (Ω) and un −→ u∗η in Lr(Ω). (25)

Since un ∈ Nη
+ ⊆ Nη , we have

$a(Dun) + ‖Dun‖q
q =

∫
Ω

fη(z, un)un dz, un > 0 ∀n ∈ N. (26)
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From (25) and (26), we have u∗η > 0 and we can say that u∗η 6= 0. Indeed, if u∗η = 0, then
from (26), we see that

$ϑ(un) −→ 0,

so
un −→ 0 in W1,ϑ

0 (Ω) (27)

(see Proposition 1). However, from Proposition 8, we know that

0 < d+0 6 ‖un‖ ∀n ∈ N. (28)

Comparing (27) and (28) we have a contradiction. Therefore u∗η 6= 0, u∗η > 0.
The modular function $a is continuous, convex, hence it is sequentially weakly lower

semicontinuous and so from (25) we have

$a(Du∗η) + ‖Du∗η‖
q
q 6

∫
Ω

fη(z, u∗η)u
∗
η dz. (29)

Suppose that the inequality (29) is strict, that is, we have

$a(Du∗η) + ‖Du∗η‖
q
q <

∫
Ω

fη(z, u∗η)u
∗
η dz. (30)

Consider the function

(µ
η
u∗µ
)+(t) = tp$a(Du∗η) + tq‖Du∗η‖

q
q −

∫
Ω

fη(z, tu∗η)(tu
∗
η) dz ∀t > 0. (31)

Furthermore, let
kη,+

u∗η
(t) = ϕ+

η (tu
∗
η) ∀t > 0

be the fibering function for u∗η . Then

(µ
η
u∗η
)+(t) = t(kη,+

u∗η
)′(t).

As in the proof of Proposition 4, exploiting hypothesis H2 (iv) and recalling that q < p < r,
we see that

(µ
η
u∗η
)+(t) > 0 for t > 0 small, (µ

η
u∗η
)+(1) < 0

(see (30) and (31)). So, by Bolzano’s theorem, we can find t̂u∗η ∈ (0, 1) such that

(µ
η
u∗η
)+(t̂u∗η ) = 0,

so
t̂u∗η (k

η,+
u∗η

)′(t̂u∗η ) = 0,

thus
(kη,+

u∗η
)′(t̂u∗η ) = 0

and hence
t̂u∗η u∗η ∈ Nη

+.

Therefore, we have

m∗η 6 ϕ+
η (t̂u∗η u∗η)

=
1
p

$a(D(t̂u∗η u∗η)) +
1
q
‖D(t̂u∗η u∗η)‖

q
q −

∫
Ω

Fη(z, t̂u∗η u∗η) dz

=
1
p

( ∫
Ω

f (z, t̂u∗η u∗η)(t̂u∗η u∗η) dz− ‖D(t̂u∗η u∗η)‖
q
q

)
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+
1
q
‖D(t̂u∗η u∗η)‖

q
q −

∫
Ω

Fη(z, t̂u∗η u∗η) dz

=
1
p

∫
Ω

(
fη(z, t̂u∗η u∗η)(t̂u∗η u∗η)− pFη(z, t̂u∗u∗η)

)
dz

+

(
1
q
− 1

p

)
‖D(t̂u∗η u∗η)‖

q
q (32)

(since t̂u∗η u∗η ∈ Nη
+ ⊆ Nη). From (10) we have

sp

p
fη(z, x)x− Fη(z, sx) 6

1
p

fη(z, x)x− Fη(z, x)

for almost all z ∈ Ω, all x ∈ R, all s > 0. If s ∈ (0, 1), from (4), we have

fη(z, sx)(sx) < sp fη(z, x)x for a.a. z ∈ Ω, all x ∈ R.

Therefore,
1
p

fη(z, sx)(sx)− Fη(z, sx) <
1
p

fη(z, x)x− Fη(z, x) (33)

for almost all z ∈ Ω, all x ∈ R, all s ∈ (0, 1). Using (33), (32) and (25), we obtain

m+
η <

1
p

∫
Ω

(
fη(z, u∗η)u

∗
η − pFη(z, u∗η)

)
dz +

(
1
q
− 1

p

)
‖Du∗η‖

q
q

6 lim inf
n→+∞

(
1
p

∫
Ω

(
fη(z, un)un − pFη(z, un)

)
dz +

(
1
q
− 1

p

)
‖Dun‖q

q

)
= lim inf

n→+∞

(
1
p

$a(Dun) +
1
q
‖Dun‖q

q −
∫

Ω
Fη(z, un) dz

)
= lim inf

n→+∞
ϕ+

η (un) = m+
η

(since un ∈ Nη
+ ⊆ Nη), a contradiction.

This proves that the strict inequality (30) cannot happen and so from (29) we have

$a(Du∗η) + ‖Du∗η‖
q
q =

∫
Ω

f (z, u∗η)u
∗
η dz.

Since ∫
Ω

f (z, un)un dz −→
∫

Ω
f (z, u∗η)u

∗
η dz

(see (25)), we infer that
$ϑ(un) −→ $ϑ(u∗η).

From this and the uniform convexity of the double phase integrand ϑ(z, ·), we obtain

$ϑ(un − u∗η) −→ 0

(see Harjulehto–Hästö ([23], p. 65)), so

un −→ u∗η in W1,ϑ
0 (Ω)

(see Proposition 1). It follows that

u∗η ∈ Nη
+ and m+

η = ϕ+
η (u

∗
η).

Similarly, working with the set Nη
− and the functional ϕ−η , we produce ûη ∈ W1,ϑ

0 (Ω)
such that

ûη ∈ Nη
− and m−η = ϕ−η (ûη).
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Reasoning as in Willem ([14], p. 74) and in Szulkin–Weth ([13], p. 611), via the
quantitative deformation lemma of Willem [14], we can show that

u∗η ∈ Kϕ+
η
= {u ∈W1,ϑ

0 (Ω) : (ϕ+
η )
′(u) = 0}

(the critical set of ϕ+
η ) and

ûη ∈ Kϕ−η
= {u ∈W1,ϑ

0 (Ω) : (ϕ−η )
′(u) = 0}

(the critical set of ϕ−η ). So, Nη
+ is a natural constraint for ϕ+

η , while Nη
− is a natural constraint

for ϕ−η (see Papageorgiou–Rǎdulescu–Repovš ([26], p. 425)).

Proposition 10. If hypotheses H1 and H2 hold and u∗η ∈ Nη
+, ûη ∈ Nη

− are as in Proposition 9,
then u∗η ∈ Kϕ+

η
, ûη ∈ Kϕ−η

.

Proof. Let τ ∈ (0,+∞) \ {1}. We have

ϕ+
η (τu∗η) < ϕ+

η (u
∗
η) = m+

η (34)

(see Proposition 8 and recall that u∗η ∈ Nη
+). Arguing by contradiction, suppose that

(ϕ+
η )
′(u∗η) 6= 0.

Then we can find δ > 0 and l > 0 such that

if ‖u− u∗η‖ 6 3δ, then ‖(ϕ+
η )
′(u)‖∗ > l.

Consider the interval D+ = ( 1
2 , 2

3 ) and note that

m∗+ = max
τ∈∂D+

ϕ+
η (τu∗η) < m+

η (35)

(see (34)). We can always choose δ > 0 small so that

lδ
8

6
m+

η −m∗+
4

.

Then we apply the quantitative deformation lemma of Willem ([14], p. 38), with

ε =
lδ
8

and S = Bδ(u∗η)

(here Bδ(u∗η) = {u ∈W1,ϑ
0 (Ω) : ‖u− u∗η‖ 6 δ}). In what follows for c ∈ R,

(ϕ+
η )

c = {u ∈W1,ϑ
0 (Ω) : ϕ+

η (u) 6 c}.

So, there is a deformation h : [0, 1]×W1,ϑ
0 (Ω) −→W1,ϑ

0 (Ω) such that
• h(1, u) = u if ϕ+

η 6∈ [m+
η − 2ε, m+

η + 2ε] ∩ S3ε;

• h(1, (ϕ+
η )

m∗η+ε ∩ Bδ(u∗η)) ⊆ (ϕ+
η )

m+
η −ε;

• ϕ+
η (h(1, u)) 6 ϕ+

η (u) for all u ∈W1,ϑ
0 (Ω).

Then we have
max
τ∈D+

ϕ+
η (h(1, τu∗η)) < m+

η . (36)
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We show that
h(1, D+u∗η) ∩ Nη

+ 6= ∅.

Then this nonempty intersection and (36) lead to a contradiction. To show that this inter-
section is nonempty we argue as follows. Let ζ(τ) = h(1, τu∗η) and consider the functions

λ0(τ) = 〈(ϕ+
η )
′(τu∗η), u∗η〉,

λ1(τ) =
1
τ
〈(ϕ+

η )
′(ζ(τ)), ζ(τ)〉.

Since u∗η ∈ Nη
+, we have

〈(ϕ+
η )
′(τu∗η), u∗η〉 > 0 for 0 < τ < 1,

〈(ϕ+
η )
′(τu∗η), u∗η〉 < 0 for 1 < τ

(see Proposition 8).
Let dB(·, ·, ·) denote the Brouwer degree. From Lloyd ([27], p. 20), we have

dB(λ0, D+, 0) = −1. (37)

Note that from the choice of ε > 0 and the properties of the deformation we have

ζ|∂D+
= id.

Therefore,
λ0
∣∣
∂D+

= λ1
∣∣
∂D+

(see (35) and the properties of the deformation h). So, by the boundary value dependence
property of the degree (see Lloyd ([27], p. 25)), we have

dB(λ1, D+, 0) = dB(λ0, D+, 0) = −1

(see (37)). Then the solution property of the degree (see Lloyd ([27], p. 23)) implies that we
can find τ ∈ D+ such that

λ1(τ) = 0,

so
ζ(τ) = h(1, τu∗τ) ∈ Nη

+,

thus
h(1, D+u∗η) ∩ Nη

+ 6= ∅.

However, as we already stated earlier, this contradicts (36). Therefore, we must have
(ϕ+

η )
′(u∗η) = 0 and so u∗η ∈ Kϕ+

η
. Similarly we show that ûη ∈ Kϕ−η

.

So, for the approximate problem (Pη) (with η > 0), we can have two constant sign so-
lutions.

Proposition 11. If hypotheses H1 and H2 hold and η > 0, then problem (Pη) has at least two
constant sign solutions

u∗η ∈W1,ϑ
0 (Ω) ∩ L∞(Ω), u∗η(z) > 0 for a.a. z ∈ Ω,

ûη ∈W1,ϑ
0 (Ω) ∩ L∞(Ω), ûη(z) < 0 for a.a. z ∈ Ω.

Proof. From Proposition 10, we already have two constant sign solutions

u∗η ∈ Nη
+ and ûη ∈ Nη

−.
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From Theorem 3.1 of Gasiński–Winkert [15], we have

u∗η , ûη ∈W1,ϑ
0 (Ω) ∩ L∞(Ω).

Finally Proposition 2.4 of Papageorgiou–Vetro–Vetro [19] implies that

ûη(z) < 0 < u∗η(z) for a.a. z ∈ Ω.

Using Nη
0 , we can generate a nodal (sign changing) solution of problem (Pη). We set

m0
η = inf

Nη
0

ϕη .

Proposition 12. If hypotheses H1 and H2 hold and η > 0, then we can find y∗η ∈ Nη
0 such that

ϕη(y∗η) = m0
η .

Proof. We consider a minimizing sequence {yn}n∈N ⊆ Nη
0 for ϕη |Nη

0
, that is

yn ∈ Nη
0 ∀n ∈ N and ϕη(yn)↘ m0

η . (38)

We have {
ϕη(yn) = ϕη(y+n − y−n ) = ϕ(η)(y+n ) + ϕη(−y−n ),
y+n ∈ Nη , −y−n ∈ Nη ∀n ∈ N.

(39)

From Proposition 5, we have that the sequences {y+n }n∈N ⊆ W1,ϑ
0 (Ω) and {y−n }n∈N ⊆

W1,ϑ
0 (Ω) are bounded. So, we may assume that

y+n
w−→ y∗1 and y−n

w−→ y∗2 in W1,$
0 (Ω) (40)

Suppose that y∗1 = 0. Since y+n ∈ Nη , for n ∈ N (see (39)), we have

$a(Dy+n ) + ‖Dy+n ‖
q
q =

∫
Ω

fη(z, y+n )y
+
n dz ∀n ∈ N,

so
$θ(y+n ) −→ 0

(see (40) and recall that y∗1 = 0), thus

y+n −→ 0 in W1,ϑ
0 (Ω)

(see Proposition 1).
This then contradicts Proposition 7. Therefore y∗1 6= 0.
Similarly we show that y∗2 6= 0.
From Proposition 4, we know that there exist unique t+, t− > 0 such that

t+y∗1 ∈ Nη , t−y∗2 ∈ Nη .

We set
y∗η = t+y∗1 − t−y∗2 ∈W1,ϑ

0 (Ω),

so
(y∗η)

+ = t+y∗1 and (y∗η)
− = t−y∗2 .
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Then, using (38), (39) and Proposition 6, we have

m0
η = lim

n→+∞
ϕη(yn)

= lim
n→+∞

(
ϕη(y+n ) + ϕη(−y−n )

)
> lim inf

n→+∞

(
ϕη(tny+n ) + ϕη(−t−y−n )

)
> ϕη(tny∗1) + ϕη(−t−y∗2)
= ϕη(y∗η)
> m0

η

(since y∗η ∈ Nη
0 ), so

m0
η = ϕη(y∗η),

with y∗η ∈ Nη
0 .

Arguing as in the proof of Proposition 10, we show that Nη
0 is a natural constraint for

the functional ϕη , that is, y∗η ∈ Kϕη . In this case we replace the interval D+ by the square

D̂ =

(
1
2

,
3
2

)
×
(

1
2

,
3
2

)
and the functionals ζ, λ0, λ1 by

ζ̂(τ, t) = h(1, τy∗1 − ty∗2) ∀τ, t > 0,
λ̂0(τ, t) =

(
〈ϕ′η(τy∗1), y∗1〉, 〈ϕ′η(−ty∗2),−y∗2〉

)
,

λ̂1(τ, t) =

(
1
τ
〈ϕ′η(ζ(τ, t)+), ζ(τ, t)+〉, 1

τ
〈ϕ′η(−ζ(τ, t)−),−ζ(τ, t)−〉

)
.

Reasoning as in the proof of Proposition 10, via the quantitative deformation lemma of
Willem ([14], p. 38), we obtain the following result showing that Nη

0 is a natural constraint
for the functional ϕη .

Proposition 13. If hypotheses H1 and H2 hold and η > 0, then

y∗η ∈ Kϕη = {y ∈W1,ϑ
0 (Ω) : ϕ′η(y) = 0}

and so y∗η ∈W1,ϑ
0 (Ω) ∩ L∞(Ω) is a nodal solution of (Pη).

Summarizing the situation for problem (Pη), we can state the following multiplic-
ity result.

Proposition 14. If hypotheses H1 and H2 hold and η > 0, then problem (Pη) has at least three
nontrivial solutions

u∗η ∈W1,ϑ
0 (Ω) ∩ L∞(Ω), u∗η(z) > 0 for a.a. z ∈ Ω,

ûη ∈W1,ϑ
0 (Ω) ∩ L∞(Ω), ûη(z) < 0 for a.a. z ∈ Ω,

y∗η ∈W1,ϑ
0 (Ω) ∩ L∞(Ω) nodal

and
ϕ+

η (u
∗
η) = mη

+ < 0 < mη
− = ϕ−η (ûη), ϕη(y∗η) = mη

0 .

4. Multiple Solutions for Problem (P)

In this section, we use the solutions from Proposition 14 and let η → 0+ to produce
multiple solutions with sign information for problem (P).
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Proposition 15. If hypotheses H1 and H2 hold, then there exists d∗ > 0 such that

0 < d∗ 6 ϕη(u) ∀u ∈ Nη , η ∈ (0, 1).

Proof. On account of hypotheses H2 (i),(iv), given ε > 0, we can find c14 = c14(ε) > 0 such
that

F(z, x) 6
1
q
(β̂(z) + ε)|x|q + c14

r
|x|r for a.a. z ∈ Ω, all x ∈ R. (41)

If u ∈ Nη (η ∈ (0, 1)), then from Proposition 6, we have

ϕη(u) = max
t>0

ϕη(tu)

> max
t>0

(
tp

p
$a(Du) +

tq

q
‖Du‖q

q −
∫

Ω
F(z, tu) dz− tr

r
‖u‖r

r
)

> max
t>0

(c15tp − c16tr),

for some c15, c16 > 0 (recall that η ∈ (0, 1), use (41), Lemma 1 and choose ε > 0 small), so

ϕη(u) > d∗ > 0 ∀η ∈ (0, 1)

(since p < r).

In a similar fashion, using Proposition 8, we obtain the following result.

Proposition 16. If hypotheses H1 and H2 hold, then there exists d∗± > 0 such that

0 < d∗+ 6 ϕ+
η (u) ∀u ∈ Nη

+, η ∈ (0, 1),
0 < d∗− 6 ϕ−η (u) ∀u ∈ Nη

−, η ∈ (0, 1).

Now we are ready to pass to the limit as η → 0+ and have the multiplicity result for
problem (P).

In the sequel ϕ : W1,ϑ
0 (Ω) −→ R is the energy functional for problem (P) defined by

ϕ(u) =
1
p

$a(Du) +
1
q
‖Du‖q

q −
∫

Ω
F(z, u) dz ∀u ∈W1,ϑ

0 (Ω).

We have that ϕ ∈ C1(W1,ϑ
0 (Ω)).

Furthermore, we consider the positive and negative truncations of ϕ, namely the
C1-functionals ϕϕ : W1,ϑ

0 (Ω) −→ R defined by

ϕ±(u) =
1
p

$q(Du) +
1
q
‖Du‖q

q −
∫

Ω
F(z,±u±) dz ∀u ∈W1,ϑ

0 (Ω).

Again we have ϕ± ∈ C1(W1,ϑ
0 (Ω)).

We introduce the corresponding Nehari manifolds

N = {u ∈W1,ϑ
0 (Ω) : 〈ϕ′(u), u〉 = 0, u 6= 0},

N+ = {u ∈W1,ϑ
0 (Ω) : 〈ϕ′+(u), u〉 = 0, u > 0, u 6= 0},

N− = {u ∈W1,ϑ
0 (Ω) : 〈ϕ′−(u), u〉 = 0, u 6 0, u 6= 0},

N0 = {u ∈W1,ϑ
0 (Ω) : u+ ∈ N, −u− ∈ N}.
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Theorem 1. If hypotheses H1 and H2 hold, then problem (P) has at least three nontrivial solutions

u∗ ∈W1,ϑ
0 (Ω) ∩ L∞(Ω), u∗(z) > 0 for a.a. z ∈ Ω,

û ∈W1,ϑ
0 (Ω) ∩ L∞(Ω), û(z) < 0 for a.a. z ∈ Ω,

y∗ ∈W1,ϑ
0 (Ω) ∩ L∞(Ω) nodal.

Proof. Let ηn → 0+. According to Proposition 14, we can find un = uηn ∈ Nηn
0 such that

ϕηn(un) = mηn
0 −→ m∗ > 0 and ϕ′ηn(un) = 0 ∀n ∈ N (42)

(see Proposition 15).

Claim. The sequence {un}n∈N ⊆W1,ϑ
0 (Ω) is bounded.

We argue by contradiction. So, suppose that at least for a subsequence, we have

‖un‖ −→ +∞. (43)

Let vn = un
‖un‖ for n ∈ N. Then ‖vn‖ = 1 for all n ∈ N and so we may assume that

vn
w−→ v in W1,ϑ

0 (Ω) and vn −→ v in Lr(Ω). (44)

First suppose that v = 0. Using (42) and Proposition 6, for k > 1, we have

mηn
0 = ϕηn(un)

> ϕηn

(
k
‖un‖

un

)
= ϕηn(kvn)

=
kp

p
$a(Dvn) +

kq

q
‖Dvn‖q

q −
∫

Ω
F(z, kvn) dz− ηkr‖vn‖r

r

>
kq

p
−
∫

Ω
F(z, kvn) dz− ηkr‖vn‖r

r

(since k > 0, q < p, ‖vn‖ = 1; see Proposition 1).
We pass to the limit as n→ +∞ and use (44) (recalling that v = 0). Then

m∗ >
kq

p
> 0

(see (42)).
Since k > 1 is arbitrary, we let k→ +∞ and have a contradiction.
Next suppose that v 6= 0 and set

Ω̂ = {z ∈ Ω : v(z) 6= 0}.

We have |Ω̂|N > 0 (here | · |N denotes the Lebesgue measure on RN) and |un(z)| → +∞
for a.a. z ∈ Ω̂. From (42) we have

0 <
mηn

0
‖un‖p =

ϕηn(un)

‖un‖p

6
1
p

$a(Dvn) +
1

q‖un‖p−q ‖Dvn‖q
q −

∫
Ω

F(z, un)

‖un‖p dz

6
1
q
(
$a(Dvn) + ‖Dvn‖q

q
)
−
∫

Ω

F(z, un)

‖un‖p dz

=
1
q

$ϑ(vn)−
∫

Ω

F(z, un)

‖un‖p dz
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=
1
q
−
∫

Ω

F(z, un)

‖un‖p dz (45)

for all n > n1 (see (43) and recall that q < p).
Hypothesis H2 (ii) implies that∫

Ω̂

F(z, un)

‖un‖p dz −→ +∞

and so ∫
Ω

F(z, un)

‖un‖p dz −→ +∞.

Passing to the limit as n→ +∞ in (45), we have a contradiction. This proves the Claim.

On account of the Claim, we may assume that

un
w−→ y∗ in W1,ϑ

0 (Ω) and un −→ y∗ in Lr(Ω). (46)

From (42), we have

〈V(un), h〉 =
∫

Ω
fη(z, un)h dz ∀h ∈W1,ϑ

0 (Ω).

We choose h = un − y∗ ∈W1,ϑ
0 (Ω), pass to the limit as n→ +∞ and use (46). We obtain

lim
n→+∞

〈V(un), un − y∗〉 = 0,

so
un −→ y∗ in W1,ϑ

0 (Ω)

(see Proposition 3), so

u+
n −→ (y∗)+ and u−n −→ (y∗)− in W1,ϑ

0 (Ω). (47)

From Proposition 15, we have

ϕ(0) = 0 < d∗ 6 ϕ((y∗)±)

(see (47) and recall that ηn → 0+), so (y∗)± 6= 0 and thus y∗ ∈ N0 (see (47)).
Moreover, we have

m∗ = ϕ(y∗) > m0 = inf
N0

ϕ. (48)

We will show that in fact equality holds in (48). To this end, given ε > 0 we choose vε ∈ N0
such that

ϕ(vε) 6 m0 + ε. (49)

According to Proposition 8, we can find τn, tn > 0 such that

τnv+ε ∈ Nηn
+ , −tnv−ε ∈ Nηn

− , hence τnv+ε − tnv−ε ∈ Nηn
− ∀n ∈ N. (50)

We know that
ϕ(u) = ϕη(u) + η‖u‖r

r ∀u ∈W1,ϑ
0 (Ω), η > 0. (51)

Then,

m0 + ε > ϕ(vε) = ϕ(v+ε ) + ϕ(−v−ε )
> ϕ(τnv+ε ) + ϕ(−tnv−ε )
= ϕ(τnv+ε − tnv−ε )
> ϕηn(τnv+ε − tnv−ε )
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> mηn
0 ∀n ∈ N

(see Proposition 6, (51), (50)), so
m0 + ε > m∗

(see (42)). Since ε > 0 is arbitrary, we let ε→ 0+ and obtain

m∗ 6 m0,

so
m∗ = m0

(see (48)). From (48), we have

ϕ(y∗) = m0, y∗ ∈ N0.

Since ϕ′ηn(un) = 0 for all n ∈ N, we have ϕ′(y∗) = 0 and so we conclude that y∗ is nodal

solution of (P) and y∗ ∈W1,ϑ
0 (Ω) ∩ L∞(Ω).

Similarly, using Propositions 14 and 16, we produce u∗ ∈ N+ and û ∈ N− with

ϕ+(u∗) = m+ = inf
N+

ϕ, u∗ ∈W1,ϑ
0 (Ω) ∩ L∞(Ω), u∗(z) > 0 a.e. in Ω,

ϕ−(û) = m− = inf
N−

ϕ, û ∈W1,ϑ
0 (Ω) ∩ L∞(Ω), û(z) < 0 a.e. in Ω.

5. Conclusions

We have extended the classical multiplicity result to superlinear problems (see [10,25],
three solutions theorem) to double-phase problems, under more general conditions on the
reaction and we provided sign information for all the solutions produced.
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22. Rădulescu, V.D. Isotropic and anistropic double-phase problems: Old and new. Opusc. Math. 2019, 39, 259–279. [CrossRef]
23. Harjulehto, P.; Hästö, P. Orlicz Spaces and Generalized Orlicz Spaces. In Lecture Notes in Mathematics 2236; Springer: Cham,

Switzerland, 2019.
24. Adams, R.A. Sobolev Spaces; Academic Press: New York, NY, USA; London, UK, 1975.
25. Mugnai, D.; Papageorgiou, N.S. Resonant nonlinear Neumann problems with indefinite weight. Ann. Sc. Norm. Super. Pisa Cl.

Sci. 2012, 11, 729–788.
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