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Abstract: In this study, the problem of observer-based adaptive sliding mode control is discussed
for nonlinear systems with sensor and actuator faults. The time-varying actuator degradation factor
and external disturbance are considered in the system simultaneously. In this study, the original
system is described as a new normal system by combining the state vector, sensor faults, and external
disturbance into a new state vector. For the augmented system, a new sliding mode observer is
designed, where a discontinuous term is introduced such that the effects of sensor and actuator faults
and external disturbance will be eliminated. In addition, based on a tricky design of the observer, the
time-varying actuator degradation factor term is developed in the error system. On the basis of the
state estimation, an integral-type adaptive fuzzy sliding mode controller is constructed to ensure the
stability of the closed-loop system. Finally, the effectiveness of the proposed control methods can be
illustrated with a numerical example.

Keywords: stability analysis; adaptive fuzzy control; time-varying actuator faults; sliding mode
control; sliding mode observer

1. Introduction

In industrial processes, actuator and/or sensor always occur with various components
faults due to unexpected physical constraints and reasons [1–4]. In order to maintain the re-
liability of the overall control systems, fault detection and isolation (FDI) and fault-tolerant
control (FTC) have received increasing research attention during the past decade [5–8].
The design scheme of FDI is to generate a residual signal to judge whether the faults occur
and provide a solution to determine the location of the faults [9–11]. However, in practice,
it is difficult to obtain the exact information of the fault. In this sense, the fault estimate
has been developed and has become an ideal design basis of FTC [12,13]. In recent years,
a great number of fault estimation methods have been reported in the existing literature,
for instance, nonlinear observer method, adaptive learning observer method, filter-based
estimation method and differential geometry methods, etc. [14–16].

Consequent to the in-depth study of SMO by researchers, combined with fuzzy and
adaptive technologies [17–19], sliding mode observers have been widely used in motors,
aerial vehicle, and other fields [20–24]. Among these existing fault estimation approaches,
sliding mode observer (SMO) [25–27] refers to one of the most popular nonlinear observer
methods, where the fault is reconstructed by the so-called equivalent output error injection
principle [14]. In this research forefront, a few fault estimation SMO results have been
developed for various systems by the researchers [11,28]. In [29], a fault estimation SMO
was developed for mismatched nonlinear systems with unknown disturbances, where
an adaptive law was designed to update the sliding mode gain online. In [30], the au-
thors proposed a cascaded SMO method to cope with the fault estimation problem for the
case in which the first Markov matrix of the system is not a full rank. In [31,32], based
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on a descriptor system augmentation strategy, the authors proposed a new type of ex-
tended SMO approach, which was applied to Ito stochastic systems and Markovian jump
systems, respectively.

Sliding mode control is a very effective control method, and some new ideas have
been put forward recently by researchers [33,34]. Hou et al. [35] solved the chattering
problem common in the sliding mode control for the servo motor system by designing
a new continuous terminal sliding mode control algorithm. In [36], an optimization
problem based on non-negative constraints was defined for time-varying delay systems,
to obtain sliding mode surface parameters and simplify the stability analysis process.
In [37], the nonlinear function with sliding variable was introduced by the approach law,
which alleviates the chattering phenomenon and improves the tracking performance.

However, it should be pointed out that most existing fault estimation results are
concerned only about actuator faults or sensor faults. Moreover, most of the reported work
has been focused on only additive actuator fault, while multiplicative type actuator fault
(also called fault degradation factor) has received little research attention. In fact, in many
practical control systems such as satellite systems, the multiplicative actuator faults may
always occur with a time-varying characterization. However, the existing SMO methods
in the aforementioned literature cannot be applied directly to solve this design problem
due to technical constraints, and only additive actuator faults are therefore considered. It is
thus desirable to develop a new effective SMO approach to investigate this problem.

In this paper, we aimed to research the fault estimation and FTC design problem for the
continuous-time nonlinear system, where sensor fault, external disturbance, time-varying
multiplicative actuator faults, and unknown nonlinearity are considered simultaneously
in a unified framework. A new type of SMO based on a system augmentation scheme
is developed for the investigated plant. The designed observer can estimate state vector,
sensor faults, and external disturbance, which thus possesses a more extensive estimation
performance, compared to the traditional SMO method. Moreover, due to the tricky
structure of the observer, the time-varying actuator degradation factor in the derived error
system can be eliminated. Based on the state estimation of the SMO, an adaptive integral-
type sliding control law is designed to ensure the asymptotic stability of the overall fault
control systems, where an adaptive fuzzy updating law is involved with the controller
gain to approximate the unknown nonlinearity of the plant. Finally, a simulation example
is given to verify the effectiveness of the proposed FTC methods. The structure of this
article is as follows: Section 2 gives the system model, hypothesis, and related theory.
Section 3 designs the observer and controller and analyzes the stability and the accessibility
of sliding mode motion. Section 4 provides a simulation example. Section 5 summarizes
the whole paper.

Notation: The n-dimensional Euclidean space is defined by Rn. The set of all m× n
real matrices is represented as Rm×n. Positive-definite (negative-definite) matrix A is
defined by A > 0 (< 0). An identity matrix is defined by In (n is the dimension of matrix
I); diag{...} denotes a block diagonal matrix.

2. Problem Formulation and Preliminaries
2.1. Problem Statement

Consider the following uncertainty nonlinear system subject to time-varying actuator
fault, sensor fault, and external disturbance:

ẋ(t) =Ax(t) + B(ρ(t)u(t) + fa(t)) + E f (x) + Dxd(t)

y(t) =Cx(t) + Ds fs(t) + Dyd(t). (1)

where x(t) ∈ Rn, u(t) ∈ Rm, fa(t) ∈ Rm, f (x) ∈ Rn f , d(t) ∈ Rnd , y(t) ∈ Rp, fs(t) ∈ Rq,
ρ(t) = diag{ρ1(t), ρ2(t), ..., ρh(t)}, ρh(t)(h = 1, 2, ..., m) represent the immeasurable system
state, control input, unknown stuck actuator fault, unknown smooth nonlinear function,
unknown external disturbance, measurable output, unknown sensor fault, unknown time-
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varying actuator efficiency factor, hth actuator, respectively. It is assumed that 0 ≤ ρ
h
≤

ρh(t) ≤ ρ̄h ≤ 1, for h = 1, 2, ..., m, where ρ
h

and ρ̄h are the known constants. Then, defining
that diag{ρ̄1, ρ̄2, ..., ρ̄h} = ρ̄, diag{ρ

1
, ρ

2
, ..., ρ

h
} = ρ, the following cases of hth actuator

failure are considered:

Case 1 : ρh(t) = 1, the hth actuator has no fault;
Case 2 : ρh(t) = 0, the hth actuator is outage;
Case 3 : ρh(t) ∈ (0, 1), the hth actuator is partial lo-

ss of effectiveness;
Case 4 : fah(t) 6= 0, the hth actuator undergoes

stuck fault.

For the given system matrices A, B, C, Ds, Dx, Dy, E, the matrix E is supposed to
satisfy that E = BB f in this paper. Without loss of generality, we suppose that the pair
(A, B) is controllable, and the pair (A, C) is observable. In order to study the problem of
the redundancy actuator fault, we assume that rank(B) = l ≤ m. Thus, we have B = B1B2,
where B1 ∈ Rn×l and B2 ∈ Rl×m. Then, the state equation of the original system (1) can be
rewritten as

ẋ(t) = Ax(t) + B1B2(ρ(t)u(t) + fa(t)) + E f (x) + Dxd(t). (2)

Remark 1. Different from the existing results of the simultaneous actuator fault and sensor fault
in [38], the fault problem in this paper is more complex. The time-varying actuator faults including
loss of effectiveness fault, outage fault, and stuck fault, combined with bias sensor fault, are first
studied simultaneously. Due to the more general character of actuator fault, the traditional observer-
based controllers are unable to provide the desired estimation and control performance; this is also
the difficulty in FTC design.

In this paper, we give the following assumptions:

Assumption 1. The stuck actuator fault fa(t), bias sensor fault fs(t) and external disturbance
d(t) are supposed to satisfy that

‖ fa(t)‖ ≤ fa1, ‖ ḟs(t)‖ ≤ fs1, ‖ fs(t)‖ ≤ fs2,

‖ḋ(t)‖ ≤ d1, ‖d(t)‖ ≤ d2 (3)

where fa1, fs1 , fs2, d1, d2 are unknown scalars.

Assumption 2 ([32]). It is assumed that the actuators satisfy the redundancy condition: rank(B2) =
rank(B2ρ(t)) = l.

Assumption 3. The system matrix dimensions satisfy: rank(B1) = rank(CB1) = l, and a scalar
σ can be found such that

rank
[

σI + A Dx
C Dy

]
= n + nd. (4)

Remark 2. Assumption 1 is proposed for proofing the stability of closed-loop systems and the
accessibility of sliding mode motion in Section 3, which is an important condition for scaling.
Compared to the traditional methods in [39], Assumption 2 will relax the restriction that the
norm bound of the external disturbance, stuck actuator fault, and bias sensor fault, which will be
applicable to a larger class of practical systems. Assumption 3 is a necessary condition in the process
of designing a controller.
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2.2. Fuzzy Logic Systems

The fuzzy IF–THEN rules of fuzzy logic systems (FLSs) are given as follows [40]:

Ri : If x1(t) is F1i and x2(t) is F2i, · · · , and xn(t) is Fni,

then ȳ(t) is Gi

where x(t) = [x1(t), x2(t), ..., xn(t)]T and ȳ(t) represent the input and output of the FLS,
respectively. Fιi and Gιi are fuzzy sets (ι = 1, 2, ..., n). i = 1, 2, · · · , N (N is the number of
the fuzzy rules). Obviously, the FLS can be represented as follows:

ȳ(x) =
∑N

i=1 ȳi(∏n
ι=1 µFιi (xι))

∑N
i=1(∏

n
ι=1 µFιi (xι))

(5)

where µFιi (x(t)) is the membership functions, and ȳi is the point at which µGi = max{µGi},
and it is assumed that µGi (ȳi) = 1. Define the following fuzzy basis functions:

ϕi(x) =
∏n

ι=1 µFιi (xι)

∑N
i=1 ∏n

ι=1 µFιi (xι)
, i = 1, 2, ..., N. (6)

Denoting θ = [ȳ1, ȳ2, ..., ȳN ]
T and ϕ(x) = [ϕ1(x), ϕ2(x), ..., ϕN(x)]T . Then, (5) can be

rewritten as

ȳ(x) = θT ϕ(x). (7)

Lemma 1 ([41]). For any continuous function, f (x) defined over a compact set Ω and any given
positive constant δ0, there exists θ such that

sup
x∈Ω
| f (x)− θT ϕ(x)| ≤ δ0. (8)

Since x(t) is not measurable, the function f (x) can be represented by the follow-
ing FLSs:

f (x) = θT ϕ(x) + δ f (t)

= θT ϕ(x̂) + θT(ϕ(x)− ϕ(x̂)) + δ f (t) (9)

where δ f (t) is the approximation error. Then, the reconstruction error δ(t) can be obtained

δ(t) = θT(ϕ(x)− ϕ(x̂)) + δ f (t). (10)

In general, δ(t) is assumed to be bounded with

‖δ(t)‖ ≤ δ̄, (11)

where δ̄ > 0 is an unknown constant.
To design the adaptive law for the unknown vector θ, we supposed that θ > 0

throughout the paper, which is not to lose the generality and also used in the FTC problems
of fuzzy logical systems ([41]).

3. Main Results
3.1. Observer Design

Consider the following augmented system:

˙̄x(t) = Āx̄(t) + B̄1B2ρ(t)u(t) + B̄1B2B f f (x) + D̄ω̄(t)

y(t) = C̄x̄(t) (12)
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where

x̄(t) =

 x(t)
d(t)

Ds fs(t)

, ω̄(t) =

 fa(t)
σd(t) + ḋ(t)

σ fs(t) + ḟs(t)

,

Ā =

 A Dx 0
0 −σInd 0
0 0 −σIp

, B̄1 =

 B1
0
0

,

D̄ =

 B 0 0
0 I 0
0 0 Ds

, C̄ =
[

C Dy Ip
]
,

n̄ = n + nd + p, 0 < σ < 1. (13)

From Assumption 3, we have

rank(C̄B̄1) = rank(CB1) = l. (14)

Hence, C̄B̄1 is fully column rank. Then, we define that

H =B̄1((C̄B̄1)
TC̄B̄1)

−1(C̄B̄1)
T

+ ζ[I − C̄B̄1((C̄B̄1)
TC̄B̄1)

−1(C̄B̄1)
T ], (15)

where ζ ∈ Rn̄×p is a free matrix to be selected. Before the design of fault-tolerant observer,
we define the following matrices:

A0 = Ā− HC̄Ā, L2 = (A0 − L1C̄)H,

Ls = (I − HC̄)D̄, L = L1 + L2 (16)

where L1 ∈ Rn̄×p is the gain matrix to be designed later. Now, we introduce the following
lemma for the existence of L1, which will be used in the observer design.

Lemma 2. The pair (A0, C̄) is detectable if there exists a matrix ζ such that (I−HC̄) is invertible.

Proof. Since (I − HC̄) can be invertible through selecting an appropriate matrix ζ, the ma-

trix
[

I − HC̄ sH
0 Ip

]
is of full column rank for ∀ s ∈ R+. Then, it can be obtained that

rank
[

sI − A0
C̄

]
= rank

([
I − HC̄ sH

0 Ip

][
sI − Ā

C̄

])
= rank

[
sI − Ā

C̄

]

= rank


sI − A −Dx 0

0 (s + σ)Id 0
0 0 (s + σ)Ip
C Dy Ip


= rank

 sI + A Dx
0 (s + σ)Id
C Dy

+ p. (17)
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Since the pair (A, C) is detectable, when s 6= −σ, it is obvious that

rank

 sI + A Dx
0 (s + σ)Id
C Dy


=rank

[
sI + A

C

]
+ nd = n + nd. (18)

When s = −σ, the following equation holds from Assumption 3

rank

 sI + A Dx
0 (s + σ)Id
C Dy


=rank

[
−σI + A Dx

C Dy

]
= n + nd. (19)

Summarizing the analysis above, we have

rank
[

sI − A0
C̄

]
= n + nd + p = n̄. (20)

Consequently, the pair (A0, C̄) is detectable. It completes the proof.

Then, the following sliding mode observer for system (12) is developed:

ż(t) = (A0 − L1C̄)z(t) + Ly(t) + Lsus(t)
ˆ̄x(t) = z(t) + Hy(t) (21)

where z(t) ∈ Rn̄; ˆ̄x(t) = [x̂(t), d̂(t), Ds f̂s(t)]T is the estimation of x̄(t); us(t)Rn̄ is the
discontinue input to be designed; the matrices A0, L1, L, Ls, H are defined in (16). Then,
we have

˙̄̂x(t) =(A0 − L1C̄)z(t) + Ly(t) + Lsus(t) + HC̄ ˙̄x

=(A0 − L1C̄) ˆ̄x(t)− (A0 − L1C̄)Hy(t) + L1y(t)

+ L2y(t) + Lsus(t) + HC̄ ˙̄x

=(A0 − L1C̄) ˆ̄x(t) + L1C̄x̄(t) + Lsus(t) + HC̄ ˙̄x. (22)

The augment system (12) can be rewritten as

˙̄x(t) =(A0 − L1C̄)x̄(t) + B̄1B2ρ(t)u(t) + B̄1B2B f f (x)

+ HC̄Āx̄(t) + L1C̄x̄(t) + D̄ω̄(t)

=(A0 − L1C̄)x̄(t) + Lsω̄(t) + L1C̄x̄(t) + HC̄D̄ω̄(t)

+ HC̄(B̄1B2B f f (x) + Āx̄(t) + B̄1B2ρ(t)u(t))

=(A0 − L1C̄)x̄(t) + Lsω̄(t) + L1C̄x̄(t) + HC̄ ˙̄x. (23)

Define that ē(t) = ˆ̄x(t)− x̄(t), we have

˙̄e(t) = (A0 − L1C̄)ē(t) + (I − HC̄)D̄(us(t)− ω̄(t)). (24)

Remark 3. It can be seen that the effect of the time-varying actuator degradation has been removed
in the error dynamics (24) by using an interesting matrix parameter design of H. This will help
us to employ the sliding mode observer (SMO) technology to obtain the estimation of the system
state x̂(t).
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Since the constants fa1, fs1 , fs2, d1, d2 are unknown in Assumption 1, we introduce a
positive constant ψ such that

fa1 + fs1 + σ fs2 + d1 + σd2 ≤ ψ (25)

where σ is given in (13). It can be seen that ψ is also unknown in (25), so we will substitute
the estimation ψ̂(t) for ψ in the observer design, and the adaptive law for ψ is presented,

˙̂ψ(t) = ce‖se(t)‖, ψ̂(0) ≥ 0 (26)

where se(t) is defined in (27), and ce is the adaptive gain parameter.
Now, the sliding mode is defined as follows:

se(t) = D̄T(I − HC̄)T Pē(t) (27)

where se(t) ∈ Rn̄, and P > 0 is the Lyapunov matrix such that

D̄T(I − HC̄)T P = RC̄ (28)

where the parameter matrix R ∈ R(m+nd+q)×p is to be determined. Then, we design the
discontinuous input us(t) as follows:

us(t) = −(ε + ψ̂(t))sgn(se(t)). (29)

where ε is a positive constant designed later.

3.2. Controller Design

Let u(t) = BT
2 ũ(t), we have

ẋ(t) =Ax(t) + B1B2ρ(t)BT
2 ũ(t) + B1B2 fa(t)

+ E f (x) + Dd(t). (30)

In the following part a Lemma is presented.

Lemma 3. For the nonsingular matrix B2ρ(t)BT
2 in (30), a positive scalar µ can be found such

that B2ρ(t)BT
2 ≥ µIl .

Proof. Based on Assumption 3, we have

rank(ρ(t)) ≥ rank(B2ρ(t)) = l (31)

that is, m(m ≥ l) actuators do not surfer outage. Without loss of generality, the first l
actuators are assumed to kept from outage, and ρo(t), ρa(t) ∈ Rm×m are defined as follows

ρo(t) = diag{ρ1/2
1 (t), ρ1/2

2 (t), ..., ρ1/2
l (t), 0, ...0},

ρa(t) = diag{ρ1/2
1 (t), ρ1/2

2 (t), ..., ρ1/2
l (t), ρ1/2

1 (t), ...ρ1/2
1 (t)}, (32)

where 0 < ρh(t) ≤ 1 with h = 1, 2, ..., l. So we have

rank(B2ρo(t)) = rank(B2ρo(t)ρa(t)) = rank(B2ρ(t)) = l. (33)

Obviously,

rank(B2ρ(t)BT
2 ) = rank(B2ρo(t)ρo(t)BT

2 ) = l. (34)
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Consequently, the matrix B2ρ(t)BT
2 is invertible. Then, we have

B2ρ(t)BT
2 − B2ρBT

2 = B2(ρ(t)− ρ)BT
2 ≥ 0

B2ρBT
2 − µIl ≥ 0 (35)

where µ = λmin(B2ρBT
2 ). Hence, we have

B2ρ(t)BT
2 ≥ µIl . (36)

It completes the proof.

Then, the following integral sliding surface is constructed

s(t) = Fyc(t) +
∫ t

0
Kx̂(t)d(t) (37)

where

yc(t) = y(t)− Ds f̂s(t)− Dyd̂(t),

F = ((CB1)
TCB1)

−1(CB1)
T (38)

and K ∈ Rl×n is designed later. Ds f̂s(t) and d̂(t) can obtained in the observer (21) that

Ds f̂s(t) = [0, 0, Ip] ˆ̄x(t), d̂(t) = [0, Ind, 0] ˆ̄x(t). (39)

Denoting e f s(t) = f̂s(t)− fs(t), ed(t) = d̂(t)− d(t), we have

ṡ(t) =FCẋ(t)− FDs ė f s(t)− FDy ėd(t) + Kx̂(t)

=FC(Ax(t) + B1B2ρ(t)B2ũ(t) + B1B2 fa(t) + E f (x))

+ FCDxd(t)− FDs ė f s(t)− FDy ėd(t) + Kx̂(t)

=FCAx(t) + B2ρ(t)B2ũ(t) + B2 fa(t) + B2B f f (x)

+ FCDxd(t)− FDs ė f s(t)− FDy ėd(t) + Kx̂(t). (40)

It can be seen that B2ρ(t)BT
2 is invertible according to Lemma 1. Therefore, the equiva-

lent control law in the sliding mode can be obtained from ṡ(t) = 0 that

ũeq(t) =− (B2ρ(t)BT
2 )
−1[FCAx(t) + B2 fa(t) + B2B f f (t)

+ FCDxd(t)− FDs ė f s(t)− FDy ėd(t) + Kx̂(t)]. (41)

Substituting (41) into (30), the sliding mode dynamics can be obtained as follows:

ẋ(t) =(A− B1FCA− B1K)x(t)− B1KIe ē(t)

+ B1F(Ds ė f s(t) + Dy ėd(t)) + (Dx − B1FCDx)d(t)

=(Aa − B1K)x(t)− B1KIe ē(t) + BΦΦ(t) (42)

where Aa = A − B1FCA, Ie =
[

In 0
]
, BΦ =

[
B1FDs B1FDy Dx − B1FCDx

]
,

Φ(t) =
[

ėT
f s(t) ėT

d (t) dT(t)
]T

.
According to Assumption 2, it can be shown that ė f s(t), ėd(t) are bounded, and they

will both converge to 0. In addition, the disturbance d(t) has also been assumed in the
sense of L2 norm in (1). Therefore, we assume Φ(t) ∈ L2[0, ∞].

In the following theorem, the stability condition for the overall closed-loop system
is given.
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Theorem 1. Given a positive scalar γ, the closed-loop system (24) and (42) is robust stable with
an H∞ performance γ, that is ‖x(t)‖2 + ‖ē(t)‖2 ≤ γ2‖Φ(t)‖2, if there exist symmetric positive
definite matrices P ∈ Rn̄×n̄, Q ∈ Rn×n, matrices X ∈ Rn×n, Y ∈ Rn̄×p, R ∈ R(m+q)×p

such that

Ω =

 Ω11 + I −XIe QBΦ
∗ Ω22 + I 0
∗ ∗ −γ2 I

 < 0 (43)

DT(I − HC̄)T P = RC̄ (44)

where

Ω11 = QAa + AT
a Q− X− XT ,

Ω22 = PA0 + AT
0 P−YC̄− C̄TYT . (45)

The proportional gain L1 in (24) and K in (42) can be calculated as

L1 = P−1Y, K = (BT
1 B1)

−1BT
1 Q−1X. (46)

Proof. First, we define the error variable ψ̃(t) = ψ̂(t)− ψ, where ψ and ψ̂(t) are defined
in (25) and (26), respectively. Choose the following Lyapunov function:

V(t) = Vx(t) + Ve(t) + Vψ(t) (47)

where

Vx(t) = xT(t)Qx(t), Ve(t) = ēT Pē, Vψ(t) =
ψ̃2(t)

ce
. (48)

Then, we have

V̇x(t) =xT(t)[(Aa − B1K)TQ + Q(Aa − B1K)]x(t)

− 2xT(t)QB1KIe ē(t) + 2xT(t)QB̄ΦΦ(t)

V̇e(t) =ēT(t)[P(A0 − L1C̄) + (A0 − L1C̄)T P]ē(t)

+ 2ēT(t)P(I − HC̄)D̄(us(t)− f̄ (t))

V̇ψ(t) =
2ψ̃(t) ˙̃ψ(t)

ce
. (49)

Since ˙̃ψ(t) = ˙̂ψ(t), it can be derived from the adaptive law (26) and (27) that

2ēT(t)P(I − HC̄)D̄(us(t)− f̄ (t)) +
2ψ̃(t) ˙̃ψ(t)

ce

≤− 2sT
e (t)(ε + ψ̂(t))sgn(se(t)) + 2‖se(t)‖‖ f̄ (t)‖+ 2ψ̃(t) ˙̂ψ(t)

ce

≤− 2‖se(t)‖(ε + ψ̂(t)) +
2ψ̃(t) ˙̂ψ(t)

ce

+ 2‖se(t)‖( fa1 + fs1 + σ fs2 + d1 + σd2)

≤− 2ε‖se(t)‖ − 2‖se(t)‖ψ̃(t) +
2ψ̃(t) ˙̂ψ(t)

ce

≤− 2ε‖se(t)‖. (50)
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Let QB1K = X and PL1 = Y, when Φ(t) = 0, after some algebraic manipulation, it
can be obtained from (49) and (50) that

V̇(t) =V̇x(t) + V̇e(t) + V̇ψ(t)

≤xT(t)[Q(Aa − B1K) + (Aa − B1K)TQ]x(t)

− 2xT(t)QB1KIe ē(t) + ēT(t)[P(A0 − L1C̄)

+ (A0 − L1C̄)T P]ē(t)− ε‖se(t)‖

≤
[

x(t)
ē(t)

]T[ Ω11 −XIe
∗ Ω22

][
x(t)
ē(t)

]
. (51)

If we can obtain the feasible solutions to (43), then it can be concluded that V̇(t) < 0
in (51). Therefore, system (24) and (42) is asymptotically stable when Φ(t) = 0.

Now we will consider the H∞ performance under zero initial conditions that

J =
∫ ∞

0
(xT(t)x(t) + ēT(t)ē(t)− γ2ΦT(t)Φ(t))dt

≤
∫ ∞

0
(xT(t)x(t) + ēT(t)ē(t)− γ2ΦT(t)Φ(t)

+ V̇(t))dt−
∫ ∞

0
V̇(t)dt

≤
∫ ∞

0
(xT(t)x(t) + ēT(t)ē(t)− γ2ΦT(t)Φ(t)

+ V̇(t))dt−V(∞) + V(0)

≤
∫ ∞

0
(xT(t)x(t) + ēT(t)ē(t)− γ2ΦT(t)Φ(t) + V̇(t))dt. (52)

From (49) and (50), we have

xT(t)x(t) + ēT(t)ē(t)− γ2ΦT(t)Φ(t) + V̇(t)

≤
[

xT(t) ēT(t) ΦT(t)
]
Ω
[

xT(t) ēT(t) ΦT(t)
]T

<0 (53)

where Ω is defined in (43). From (52) and (53), it can be obtained that J < 0, and the H∞
performance has been established.

Since B1 is of full column rank, BT
1 B1 is nonsingular. Hence, we have K = (BT

1 B1)
−1

BT
1 Q−1X. It completes the proof.

Remark 4. It is evident that there is linear matrix equality in Theorem 1, and the LMI toolbox can
not be used directly. According to the algorithm in [41], (44) can be taken as

Trace[(DT(I − HC̄)T P− RC̄)T(DT(I − HC̄)T P− RC̄)]

= 0.

Thus, the following inequality can be obtained:

(DT(I − HC̄)T P− RC̄)T(DT(I − HC̄)T P− RC̄) < η In̄ (54)

where ηi is a parameter to be designed. By the Schur complement, it is derived that −η In̄ (DT(I − HC̄)T P− RC̄)T

∗ −Im+nd+q

 < 0. (55)
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Then, the following minimization problem is equivalent to Theorem 1:

min η (56)

subject to (43) and (55)

which can be solved by the LMI toolbox in MATLAB directly.
Using pseudo-inverse can be, in some cases, not trivial. Ref. [42] encountered the same problem

as solving (46) in solving the pole assignment problem, which divided the problem into two stages to
solve and simplified the calculation process. This method can be considered to solve the case in which
it is difficult to calculate the pseudo-inverse matrix. Ref. [43] proposes a new control specification
for solving pole assignment based on LMI, and we will consider using this method to solve the LMI
problem in this paper in a subsequent work.

3.3. Reachability Analysis of Sliding Motion

In the following section, the reachability of the sliding surfaces s(t) in (37) is analyzed.
Before designing the sliding mode control law u(t), we present the following adap-

tive laws:

˙̂θh(t) = cθh‖s(t)‖‖B2B f ‖ϕh(x̂), θ̂(0) ≥ 0, h = 1, 2, ..., N,
˙̄̂
δ(t) = cδ‖s(t)‖‖B2B f ‖, ˆ̄δ(0) ≥ 0,
˙̂ξ(t) = cξ‖s(t)‖, ξ̂(0) ≥ 0, (57)

where cθh, cδ, cξ are the positive adaptive gains to be designed, and ξ̂(t) is the estimation
of ξ such that

‖B2 fa(t)‖+ ‖FCDxd(t)‖+ ‖FDs ḟs(t)‖
+‖FDyḋ(t)‖+ ‖FCAex(t)‖ ≤ ξ. (58)

Obviously, we have θ̂h(t), ˆ̄δ(t), ξ̂(t) ≥ 0. The sliding mode law ũ(t) is designed as

ũ(t) =− 1
µ
(η + ζ(t) + ξ̂(t) +

N

∑
h=1

θ̂h(t)ϕ(x̂(t))

+ ˆ̄δ(t))sgn(s(t)), (59)

where η > 0 will be designed later.

ζ(t) = ‖FCAx̂(t)‖+ ‖Kx̂(t)‖+ ‖FDs
˙̂fs(t)‖+ ‖FDy

˙̂d(t)‖. (60)

Remark 5. In order to illustrate the computational effort of solving the LMI, we proposed the
following through MATLAB LMI Toolbox:

1. Select a suitable free matrix ς and a scalar σ, which satisfies Equation (4), such that (I − HC̄)
is invertible;

2. Design an appropriate Equation (29), define suitable matrices H, A0, Ls, L2, L, and solve the
minimization problem Equation (56);

3. Design adaptive law Equation (57), Equation (65), and sliding mode law Equation (59).

By analyzing the reachability of sliding motion, we have the following theorem:

Theorem 2. If there exist matrices 0 < PT = P ∈ Rn̄×n̄, 0 < QT = Q ∈ Rn×n, and matrices
R ∈ R(m+nd+q)×p, X ∈ Rn×n, Y ∈ Rn̄×p, such that (43) and (44) hold. Based on the input u(t)
defined in (59), the system state of (42) can be driven onto the sliding surface s(t) = 0 in finite time.
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Proof. First, denoting that

θ̃h(t) = θ̂h(t)− θh, h = 1, 2, ..., N,

ξ̃(t) = ξ̂(t)− ξ, ˜̄δ(t) = ˆ̄δ(t)− δ̄. (61)

Then, we define that

V0(t) = Vs(t) + Vξ(t) + Vθ(t) + Vδ(t) (62)

where

Vs(t) =
1
2

sT(t)s(t), Vθ(t) =
N

∑
h=1

θ̃2
h(t)

2cθh
,

Vξ(t) =
ξ̃2(t)
2cξ

, Vδ(t) =
˜̄δ2(t)
2cδ

(63)

We have

V̇s(t) = sT(t)ṡ(t)

=sT(t)[FCAx(t) + B2d(t) + B2ρ(t)BT
2 ũ(t) + Kx̂(t)]

≤‖s(t)‖[‖FCAx(t)‖+ ‖B2‖‖d(t)‖+ ‖Kx̂(t)‖]
− sT(t)B2ρ(t)BT

2 ϕ(t)sgn(s(t))

≤‖s(t)‖[‖FCAx(t)‖+ ‖B2‖‖d(t)‖+ ‖Kx̂(t)‖]
− sT(t)B2ρBT

2 ϕ(t)sgn(s(t))

≤‖s(t)‖[‖FCAx(t)‖+ ‖B2‖‖d(t)‖+ ‖Kx̂(t)‖]− µ|s(t)|ϕ(t)
≤‖s(t)‖[‖FCAx̂(t)‖+ ‖FCAex(t)‖+ ‖B2‖‖d(t)‖+ ‖Kx̂(t)‖]

− |s(t)|(‖FCAx̂(t)‖+ ‖FCABn‖
ε(t)√

λmin(P)

+ ‖B‖d̄ + ‖Kx̂(t)‖+ η)

≤− η‖s(t)‖. (64)

The proof is completed.

Remark 6. Specifically, when the unknown actuator efficiency factor is constant as ρ(t) = ρ,
the estimation of the ρ can be given in the proposed methods, and the stabilization of the closed-loop
system can be also guaranteed simultaneously.

Now, the adaptive law for ρh is given by

˙̂ρh(t) = Proj[ρ
h
, ρ̄h ]
{Lh(t)}

=


0, if ρ̂h(t) = ρ

h
, and Lh(t) ≤ 0

or ρ̂h(t) = ρ̄h, and Lh(t) ≥ 0
Lh(t), otherwise

(65)

where

Lh(t) = chsT(t)B(h)
2 (B(h)

2 )T ũ(t) (66)

where Bh
2 is the hth column of B2. The SMC law ũ(t) is designed in (59).

Theorem 3. If there exist symmetric positive definite matrices P ∈ Rn̄×n̄, Q ∈ Rn×n, matrices
R ∈ R(m+q)×p, X ∈ Rn×n, Y ∈ Rn̄×p, such that (43) and (44) hold. Under the control input u(t)
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in (59), the trajectory x(t) of the closed-loop system (42) will be driven onto the sliding surface
s(t) = 0 in finite time.

Proof. Define that

ρ̃h(t) = ρ̂h(t)− ρh, Vs = 0.5sT(t)s(t) +
m

∑
h=1

ρ̃2
h(t)
ch

. (67)

Then, we have

V̇s(t) =sT(t)ṡ(t) +
m

∑
h=1

ρ̃h(t) ˙̃ρh(t)
ch

≤‖s(t)‖[‖FCAx(t)‖+ ‖B2‖‖d(t)‖+ ‖Kx̂(t)‖]

− 1
µ

sT(t)B2ρBT
2 ϕ1(t)sgn(s(t)) +

m

∑
h=1

ρ̃h(t) ˙̂ρh(t)
ch

≤‖s(t)‖[‖FCAx(t)‖+ ‖B2‖‖d(t)‖+ ‖Kx̂(t)‖]

− 1
µ

sT(t)B2ρ̂(t)BT
2 ϕ1(t)sgn(s(t))

+
m

∑
h=1

ρ̃h(t) ˙̂ρh(t)
ch

− sT(t)B2ρ̃(t)BT
2 ũ(t)

≤− η‖s(t)‖ −
m

∑
h=1

ρ̃h(t)Lh
ch

+
m

∑
h=1

ρ̃h(t) ˙̂ρh(t)
ch

≤− η‖s(t)‖. (68)

The proof is completed.

4. Simulation Example

In this section, a numerical example is given and the correctness of the theorem is
verified. Consider an uncertain nonlinear system subject to time-varying actuator fault,
sensor fault, and external disturbance as form (1), where

A =

[
−1 1
−8 −1

]
, B =

[
−1 0
−5 −4

]
,

C =

[
0.14 0.1
−1 2

]
, B1 =

[
−1 0
−5 −4

]
,

B2 =

[
1 0
0 1

]
, Ds =

[
2
1

]
, B f =

[
1
2

]
,

Dx =

[
2 1
0 1

]
, Dy =

[
1 0
0 1

]
, E = BB f =

[
−1
−13

]
with n = 2, m = 2, p = 2, l = 2, q = 1, nd = 2, σ = 0.2, n̄ = n + nd = 4. It can be
checked that (A, B) is controllable, and (A, C) is observable. Let f (x) = sin(x1(t)), σ = 0.2,

fa(t) =
[

1
1

]
denote the stuck actuator fault.

1. Observer Design: In the first step, the fault-tolerant observer is designed given the
following matrices:

H =



5.2763 0.8476
2.6131 0.9185

0 0
0 0
0 0
0 0
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A0 =



3.3368 3.3318 3.2731 −0.9444 1.0552 0.1695
1.6441 1.6511 1.6281 −0.3620 0.5226 0.1837

0 0 −0.2 0 0 0
0 0 0 −0.2 0 0
0 0 0 0 −0.2 0
0 0 0 0 0 −0.2



Ls =



1.11396 8.8916 −5.2763 −0.8476 −11.4002
0.5457 4.3937 −2.6131 −0.9185 −6.1448

0 0 1 0 0
0 0 0 1 0
0 0 0 0 2
0 0 0 0 1



L2 =



−257676 −160190
−202696 −128852
−36008 −24683
87374 57837
87818 57410
43079 28139

, L =



5323 54247
4321 42672
855 7580
−1972 18394
−1946 18488
−953 9069


2. Design of controller us(t): Next, we design the sliding mode function (27). According

to (24) and the adaptive gain ce = 0.1, the discontinuous input us(t) is given by

se(t) =
−2.3389 9.0417 14.3679 3.8213 14.1294 4.0084
−29.7330 95.3811 116.8905 43.4552 116.2150 43.5985

3.6878 −1.8811 19.6842 −1.7707 18.8433 −5.1520
−15.3572 26.7646 −14.2582 18.1904 −14.3375 14.4901
−22.5776 52.2656 19.5038 25.2978 24.8239 25.2804

ē(t)

˙̂ψ(t) = 0.1‖se(t)‖
us(t) = −

(
0.2 + ψ̂(t)

)
sgn(se(t))

3. Design of controller: The state feedback gain matrix K as

K =

[
−3005 401
4762 −1179

]
and the matrix F is

F =

[
−5.2631 0.2631

0 −1.2500

]
The simulation results for system (2) are shown in Figures 1–6 below. The trajectory of

error vector ē(t) is shown in Figure 1. Figure 1 illustrates a comparison between the actual
state of the system and the state estimated by the observer, and the error is asymptotically
stable. The trajectories of output error sliding surface se(t) and discontinuous term us(t)
are shown in Figures 2 and 3, respectively. As shown in Figure 4, the state of the system is
asymptotically stable, thus verifying that the sliding surface and controller are effective.
It can be seen from Figure 3 that the system can reach the sliding surface in a short time,
which is basically consistent with the theoretical analysis. The sliding variables (40) and the
sliding mode controllers (59) are very close to zero after 8s. The comparisons of state vector
x(t), external disturbance d(t), and sensor fault fs(t) and their estimations are illustrated
in Figures 4–6, respectively. It can be seen that the proposed FTC approach can ensure the
asymptotical stability of the closed-loop fault system.
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Figure 1. Trajectories of ē(t).
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The study in [44] investigates an adaptive fuzzy output feedback fault-tolerant optimal
control problem for a class of single-input and single-output nonlinear systems. The com-
parison of the performance of the two controllers is given in Table 1 using the same data of
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Example. By comparison, it can be found that our method is better than the adaptive fuzzy
sliding-mode controller (59) in terms of convergence time and steady-state error.

Table 1. The performance indexes of our method and [8].

Performance Indexes Convergence Time (s) Steady-State Error

Our method 8 0.002

The controller in [8] 14 0.04

5. Conclusions

In this study, the adaptive fuzzy FTC problem was addressed for a class of nonlinear
systems with actuator fault, sensor fault, and external disturbance. By augmenting the
original plant into a normal system, a new SMO was designed to obtain the estimation of
the state vectors and faults information. Based on the state estimation, an integral-type
SMC strategy was developed to stabilize the closed-loop fault system. The advantage of
this study is providing an observer that can simultaneously estimate state vectors, sensor
faults, and external disturbances and has a wider estimation range than the traditional SMO.
In addition, the effect of the time-varying actuator degradation in the error system can be
eliminated because of the structure of the observer. However, there are some limitations
in this article. For example, the proposed method is complicated in practical application
and cannot be directly applied to descriptor systems. Future work will focus on extending
the designed methods (small-gain theorem [44,45]) to more complicated systems such as
switched systems and stochastic systems.
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