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Abstract: Neural networks have enabled state-of-the-art approaches to achieve incredible results
on computer vision tasks such as object detection. However, previous works have tried to improve
the performance in various object detection necks but have failed to extract features efficiently.
To solve the insufficient features of objects, this work introduces some of the most advanced and
representative network models based on the Faster R-CNN architecture, such as Libra R-CNN, Grid
R-CNN, guided anchoring, and GRoIE. We observed the performance of Neighbour Feature Pyramid
Network (NFPN) fusion, ResNet Region of Interest Feature Extraction (ResRoIE) and the Recursive
Feature Pyramid (RFP) architecture at different scales of precision when these components were
used in place of the corresponding original members in various networks obtained on the MS COCO
dataset. Compared to the experimental results after replacing the neck and RoIE parts of these
models with our Reinforced Neighbour Feature Fusion (RNFF) model, the average precision (AP) is
increased by 3.2 percentage points concerning the performance of the baseline network.

Keywords: computer vision; object detection; feature extraction; region of interest; feature pyramid
network

1. Introduction

Target detection is an essential task in deep learning; it answers the question “what
objects are located where”. Traditional object detection algorithms mainly use artificially
designed feature modeling to extract geometric information such as edges, colors, and tex-
tures and then detect them through support vector machines. The method has some
obvious shortcomings. For example, the detection accuracy error is large in some complex
scenes, such as significant alterations in the background and object scale or occlusion.
With the advancement of deep learning, detection algorithms using convolutional neural
networks have been gradually proposed, and the detection accuracy has been greatly
improved. It has a potential impact on the development of the fundamentals of deep
learning techniques, and it may help to reduce the amount of required labeled data in
many deep learning tasks, such as recognition, instance segmentation, etc. [1]. Object
detection has many applications in self-driving vehicles, medical image analysis, business
analytics, and face identification. Object detection in transportation situations is still a
challenging difficulty which is the key to supervising traffic order and maintaining road
safety. The existing deep learning-based object detection algorithms are mainly divided
into one-stage detection and two-stage detection. The one-stage object detection algorithm
does not require a region of interest suggestion network, and the features extracted by
the deep convolutional network are directly classified and the object position coordinate
value, such as SSD [2], YOLOv1 [3], YOLOv2 [4], YOLOv3 [5], YOLOv4 [6], RetinaNet [7],
CornerNet [8], CornerNet-Lite [9], CenterNet [10], FCOS [11], ExtremeNet [12], etc.
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Since the one-stage detection network does not use candidate regions to generate the
network, the scale is small, so the detection speed is faster than the two-stage network,
and the accuracy is low. Based on one-stage target detection, Region-based Convolutional
Neural Network (RCNN) [13] introduced region proposals. It uses a priori box to filter out
the fields where objects could exist and use selective search means to merge these regions
to generate candidate regions finally. Perform position and classification regression in the
detector. Some R-CNN [13] frameworks, such as Libra R-CNN [14], Generic Region of In-
terest Extractor (GRoIE) [15], CBNet [16], ThunderNet [17], and CSPNet [18], fuse features
from different levels to obtain one-level features that simultaneously include semantic
information and location information. Some networks, such as Cascaded R-CNN [19],
improve the average precision (AP) by extracting features many times, and guided an-
choring [20] modifies the process of anchor frame generation to improve the AP. Feature
Pyramid Network (FPN) [21] based on top-down, independently detects each layer of
features and introduces Faster RCNN [22]. After FPN, there have been many feature fusion
methods based on FPN, such as PANet [23], ThunderNet [17], Balanced FPN in Libra
RCNN [14], BiFPN in NAS-FPN [24] and EfficientDet [25], etc. Nonetheless, the current
algorithm does not completely solve the multi-scale problem, and there is still a loss of
position and semantic information. In the top-down process, the background information
gradients of small-scale features will generate enormous errors, thus exacerbating the scale
imbalance in the feature fusion stage in the neck of the network. For the neck part, we
report NFPN experiments conducted on LISA [26], and Table 1 shows the enhancement
of the AP and the advantages for objects of different scales. Then, we report experiments
conducted to test the Recursive Feature Pyramid (RFP) and ResRoIE methods using the
Faster R-CNN architecture proceeding the MS COCO [27], including comparisons with
Faster R-CNN in Table 2 and several other processes using the Faster R-CNN architecture
in Table 3.

Table 1. Module-wise ablation analysis on the LISA Traffic Sign Dataset.

Method mAP AP50 AP75 APs APm APl

Baseline 65.2 76.1 74.8 66.8 71.0 70.5
BFP 63.9 75.9 74.0 63.4 71.2 77.9

BiFPN 58.4 70.9 69.8 55.4 65.1 83.5
BiFPN × 2 49.2 59.9 58.4 49.1 56.6 78.5

NFPN (ours) 66.0 77.4 75.7 65.8 72.1 75.5
ResRoIE + NFPN (ours) 67.2 78.7 77.3 68.0 74.1 76.0

NFPN × 2 + ResRoIE (ours) 69.8 78.0 76.2 66.1 72.3 80.5
NFPN + RFP + ResRoIE (ours) 67.5 78.8 77.5 68.3 73.8 81.0

Table 2. Comparison with Faster R-CNN and PANet proceeding the MS COCO.

Method mAP AP50 AP75 APs APm APl

Baseline 37.4 58.1 40.4 21.2 41.0 48.1
PANet 37.5 58.6 40.8 21.5 41.0 48.6

NFPN (ours) 37.9 58.2 41.1 21.1 41.3 49.5
NFPN + ResRoIE (ours) 39.0 59.8 42.5 23.1 42.6 50.5

RNFF (ours) 39.3 60.0 42.4 22.9 42.2 50.6
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Table 3. Comparison experiments involving the application of the RNFF method in combination
with other networks.

Method mAP AP50 AP75 APs APm APl

Baseline 37.4 58.1 40.4 21.2 41.0 48.1
Libra R-CNN 38.7 59.9 42.0 22.5 41.1 48.7
Grid R-CNN 40.4 58.5 43.6 22.7 43.9 53.0

Guided anchoring 39.6 58.7 43.4 21.2 43.0 52.7
GRoIE 37.5 59.2 40.6 22.3 41.5 47.8

Libra R-CNN + RNFF (ours) 39.3 59.2 42.8 22.6 42.7 51.2
Grid R-CNN + RNFF (ours) 40.6 59.5 43.7 24.1 44.6 52.7

Guided anchoring + RNFF (ours) 40.5 59.3 44.1 23.1 44.2 54.0
GRoIE + RNFF (ours) 40.1 59.7 43.5 23.1 44.5 52.2

2. Related Work

The existing deep learning-based target detection algorithms are divided into one-
stage detection and two-stage detection.

2.1. One-Stage Detection

Contemporary researches concentrate on developing object detectors from several
aspects: Scale awareness, spatial awareness, and task awareness. YOLOv1 [3] takes the
image to be detected as the input of the network and classifies and regresses the features
in the output layer to obtain the prediction frame and category of the object. YOLOv2 [4]
optimizes the speed and accuracy of the model based on YOLOv1 and expands to be able
to detect 9000 categories at the same time, so it is also called YOLO9000. The YOLOv3 [5]
model draws on the ideas of ResNet and extracts features based on the Darknet-53 backbone
network. It achieves faster speed, and better performance than ResNet [28]. At the
same time, compared to YOLOv2, it uses the FPN feature pyramid to optimize multi-
scale object detection. YOLOv4 [6] object detection based on the CSP method balances
both up and down and regards to small and large networks while sustaining optimal
speed and precision. The most common model scaling technique is to change the depth
(number of convolutional layers in a CNN) and width (number of convolutional filters in a
convolutional layer) of the backbone and then train CNNs suitable for different devices [29].

Given that FPN makes network structure complex, brings memory burdens, and slows
down the detectors, we offer a mild but highly efficient way without using FPN to address
the optimization problem differently, denoted as YOLOF [30]. In this paper, the issue
associated with nudity detection at various scales and backgrounds were addressed [31].
CornerNet [8] concludes that the advantage of anchor frames, particularly in one-stage
detectors, has drawbacks, such as slowing down the training speed, and introducing ad-
ditional hyperparameters. CenterNet [10] further improves CornerNet and detects each
object by submitting another critical point as a triplet of crucial points in the proposed center.
FCOS [11] uses the idea of semantic segmentation to resolve the difficulty, abandoning the
standard anchor boxes and object proposals in object detection, making it unnecessary to
tune the hyper-parameters involving anchor boxes and object proposals. ExtremeNet [12]
turns the target detection problem into a simple appearance information-based key point
predicting situation, thus cleverly avoiding region classification and specific feature learn-
ing. First, the extreme points can reflect the object information better than the bounding
box, compared with the existing object detection model. Secondly, the author also pro-
posed that a more detailed octagonal segmentation estimation result can be obtained by
using a simple trick. Finally, if you are not satisfied, you can use it in combination with
Deep Extreme Cut [32] to convert extreme points into segmentation masks. An algorithm
based on a two-stage target detection network is proposed to realize the classification and
detection of people, vehicles, pets, etc., to achieve the detection of objects far away and
surrounding [33].
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2.2. Two-Stage Detection

Fast RCNN abandons RCNN’s method of extracting features for each suggested region
and introduces the RoI pooling algorithm to select features of the entire image. The purpose
is to resolve the time-consuming problem of RCNN repeatedly calculating the features of
each candidate region. Faster RCNN proposes a Region Proposal Network (RPN) to gener-
ate candidate regions, which greatly improves generating candidate regions. The possible
feature extraction methods in the backbone part mainly include ResNet [28], ResNeXt [34],
Res2Net [35], and HRNet [36], while the feature fusion in the neck part integrates the
output features from each level of the backbone. The feature extraction method of SSD [2]
is shown in Figure 1a. SSD is a typical method that uses multi-scale features without fusion.
SSD uses features of different resolutions for detection to avoid the exponential drop in
resolution caused by the CNN layer’s deeper. FPN in Figure 2 introduces a top-down
fusion method in the feature fusion part, which significantly promotes large objects with
deep features. However, the location information is lost due to the reduced resolution.
While the position information is kept sufficient at the time of the object, the semantic infor-
mation is not extracted. PANet shown in Figure 1b uses a bottom-up approach to further
feature fusion after FPN. Based on FPN, the position information of the shallow layer is
propagated to the deep layer. However, there are similar problems with FPN. The error
caused by FPN upsampling will continue to propagate in the bottom-up process with the
downsampling of PANet, and even amplify the error. Various features nearby to each other
might be picked; non-maximal suppression will be brought out after detection to remove
those not-so-significant feature points [37]. ZigZagNet [38] improves on PANet so that in
the top-down and bottom-up fusion process, information interaction between each layer of
features is also carried out so that the multi-scale context information in both directions is
enhanced. ThunderNet [17] simplifies FPN and proposes a Context Enhancement Module
(CEM) module. CEM uses global pooling to pool FPN features and then scale them to
three-layer features for detection. Libra RCNN scales the feature to the C4 level and then
restores it. The feature fusion part is named the Balanced FPN (BFP) model in shown in
Figure 1d. The bidirectional FPN (BiFPN) Figure 1c [25] offers double-way fusion methods.
In the feature fusion part, CSPNet proposes an Exact Fusion Model (EFM) in Figure 1f,
which can better aggregate feature pyramids. ThunderNet design a Global Fusion Model
(GFM) in Figure 1e to compare with the proposed EFM. We connect the anchor-based and
anchor-free branches with symmetric structures. Compared with a single unit, symmetry
is applied to combine knowledge extracted from two components. Moreover, the parallel
anchor-based branch and anchor-free branch run in symmetry to select the most desirable
trait and anchor box [39].
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Figure 1. Panel (a) shows a single way fusion method; (b,c) show double way fusion methods; and
(d–f) show other fusion methods.
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Figure 2. Backbone manuscript. and neck structures in Faster R-CNN. C1 and C2 are the output
features of the stem layer, C3–C6 are the output features of the ResLayers, and P3–P7 are the output
features of an FPN structure that includes an extra layer.

3. Reinforced Neighbour Feature Fusion (RNFF)

Figure 3 shows the overall flow of our model. Our goal is to reduce the feature
imbalance caused by changes in the object scale. We design the following three methods
to solve this problem. We first create a Neighbour Feature Pyramid Network (NFPN)
architecture to verify the imbalance among different object scales at different feature levels
for feature extraction. Then, we propose a Recursive Feature Pyramid (RFP) fusion method,
which reduces the imbalance while integrating feature information from different layers.
Finally, we offer ResNet Region of Interest Feature Extraction (ResRoIE) to reduce the
mutual influence on the gradients caused by objects of different scales.

Figure 3. Overview of the proposed Reinforced Neighbour Feature Fusion (RNFF) network consists of three parts:
Neighbour Feature Pyramid Network (NFPN) performs feature fusion from a neighbor. The orange lines represent recursive
FPN connections Recursive Feature Pyramid (RFP). Features are returned to the backbone, extracted, and then added to
ResNet Region of Interest Feature Extraction (ResRoIE).
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3.1. Neighbour Feature Pyramid Network (NFPN)

For the neck part of the network, we design the NFPN architecture Figure 4 to verify
the deterioration in the AP caused by small objects and the improvement caused by large
objects after multiple up-sampling operations for objects of different sizes between different
layers. NFPN is to fuse the features of two adjacent levels. The lower-level features are
up-sampled or interpolated and then convolved to optimize the interpolated features.
The upper-level features use convolution with a step size of 2 after pooling. Then use the
convolution with a step size of 1, add the features of this layer for fusion, and add the
combined characteristics to the initial input features to conquer the small object knowledge
loss caused by upsampling. In a word, make full use of the feature to integrate it into
the next layer better to reduce feature loss and interference. In the algorithm below, Pi
denotes the output feature from the i-th layer of an FPN structure Figure 4, Oi is the
output from the i-th layer of NFPN. When it comes to Pi+1 relative to Oi, it stands for
up-sampling, the nearest impending interpolation of bilinear interpolation. As for Pi−1,
the Oi process represents pooling, either average pooling, maximum pooling, or minimum
pooling. The former part of O3 is the up-sampling of P4 plus P3, and the two are subjected to
a convolution to get a result. The latter part is the feature P3 of this layer. The primary part
of O7 is the pooled P6 plus P7, and the two undergo a convolution operation. The following
part is the feature P7 of this layer. For O4, O5, and O6 are also require two sections; the first
part is the feature Pi of this layer, the second part is Pi plus the up-sampling, the convolution
of Pi+1, and the convolution of Pi−1 after pooling. After the process of fusion of adjacent
layers, the specific algorithm is as follows.

O3 = P3 + conv(P3 + Resize(P4)) (1)

O4 = P4 + conv(P4 + conv(Resize(P3)) + Resize(P5)) (2)

O5 = P5 + conv(P5 + conv(Resize(P4)) + Resize(P6)) (3)

O6 = P6 + conv(P6 + conv(Resize(P5)) + Resize(P7)) (4)

O7 = P7 + conv(P7 + Resize(P6)) (5)

Figure 4. Neighbour Feature Pyramid Network (NFPN) architecture.

3.2. Resnet Region of Interest Feature Extraction (Resroie)

In the RoIE (RoI Extractor) part of the network in Figure 5, because only FPN output
features are extracted, there will still be an imbalance among multi-scale objects. Due to
the increase in the number of network layers of adjacent feature fusion, it impacts the
gradient of the object with a small scale itself and produces the phenomenon of gradient
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disappearance. Compared with Faster RCNN RPN50, the accuracy of large-scale objects
in a row of BiFPN × 2 is lower because the fusion network is too extensive, which leads
to a certain degree of gradient disappearance problem, which reduces the accuracy of
objects at all scales. Nevertheless, the accuracy of its large-scale objects is still higher than
Faster RCNN, which verifies the feature enhancement effect of the top-down process on
large-scale objects and the feature weakening effect on small-scale objects. In the RoIE
stage, map to the corresponding feature layer according to the region’s suggested area,
convolve the layer to obtain 7 × 7 features, and perform classification and regression.
The features obtained in this way only contain the information obtained by one fusion
method. To quickly and efficiently confirm this guess, we conducted experiments on the
Laboratory for Intelligent, and Safe Automobiles Traffic Sign Dataset (LISA) [26], in which
the resolution varies from 6 × 6 to 167 × 168. After the first ResNet [28] layer in the network
backbone, the feature resolution has been reduced to 1/4. Large objects will have location
information, whereas small objects, such as 6 × 6 objects, may have only weak semantic
information because their remaining resolution will be only 1.5 × 1.5 if convolution is
not considered. In addition, the resolution will be only 4 × 4 if 3 × 3 convolutions are
used twice, and only 1 × 1 pixel will not be influenced by background pixels; that is,
15/16 pixels will be influenced by invalid pixels, which can cause incorrect gradients for
deeper-level features when back-propagation is applied in top-down feature fusion. Due
to the top-down fusion method, the fused features at shallow levels contain many invalid
pixels, which the RoIE layer will also extract. Therefore, we extract the FPN features in
our neck structure so that the gradient can bypass the top-down process to reduce the
influence of invalid background pixels. For example, the features fused using the bottom-
up method may be beneficial to large objects, but the accuracy of small objects will be lost.
However, only using the top-down procedure to fuse information, it is impossible to use
the two-way fusion to have a beneficial impact on the large-scale object. As in Figure 5,
using the idea of shortcut in ResNet, the sum of FPN-out and NFPN-out is used as the
output of the neck part to solve imbalance among multi-scale objects. After the adjacent
features are merged in the neck stage, the FPN features are output simultaneously.

Figure 5. ResNet Region of Interest Feature Extraction (ResRoIE).



Symmetry 2021, 13, 1623 9 of 14

3.3. Recursive Feature Pyramid (RFP)

Because the fused features after the top-down operation are generated based on the
currently existing pixels rather than the original pixels, if 3 × 3 convolutions are used,
the influence of background pixels will still exist due to the enlargement of the receptive
field. To address this issue, we refer to the idea applied in DetectoRS Figure 6 [39], namely,
the idea of “thinking twice” for detection. It is built on the FPN, which combines additional
feedback connections from the FPN to the bottom-up backbone layer. For the fused features,
the backbone is used to select the parts again, as shown in Figure 7, and then the extracted
features are fused with the features before extraction. After the backbone extracts the
components, the parts before extraction are fused. After combining the features from
each layer, we use a convolution block corresponding to the depth in the backbone to
extort features again to reduce the impact of the background pixels after up-sampling and
3 × 3 convolutions. Then, the extracted features are summed with the output features
from NFPN fusion. By merging additional feedback links of the FPN to the bottom-up
backbone layer. RFP serves as the feature pyramid network, which takes level 3–7 features
C3, C4, C5, C6, C7 from the backbone network and recursively applies top-down and
bottom-up bidirectional feature fusion. We demonstrated a method that improved object
detection performance by building a more powerful robust feature extract module RNFF
that recursively inputs the first extracted features in the neural network to remove the
elements again. However, unlike DetectoRS, we do not need to build a new backbone and
use the original image; instead, after the neighbor feature fusion step of the feature fusion
process, the same backbone is used again for extraction to reduce parameters of the model.

Figure 6. The Recursive Feature Pyramid (RFP) architecture in DetectoRS. In DetectoRS, a new backbone is created to
extract the FPN output features.

Figure 7. The RFP architecture in our model: 1 and 2 are the neighbor feature fusion method (NFPN). We extract the
network features by reusing the backbone.



Symmetry 2021, 13, 1623 10 of 14

4. Experiments and Results

In this part, we report two groups concerning comparative experiments. The first
group supports the effectiveness of addressing feature imbalance, using the NFPN architec-
ture as the basis for comparison. The second group verifies the improvement achieved with
our method. In the third group, the application of our Reinforced Neighbour Feature Fu-
sion (RNFF) method in combination with other recent networks is investigated by replacing
the original neck and RoIE parts of the networks. We use an auxiliary multi-scale feature
enhancement module to assist in extracting multi-scale shallow features and merging
them with the components selected from the backbone, which dramatically improves the
expression ability of small objects [40].

4.1. Dataset

We conducted experiments on the LISA Traffic Sign Dataset for the NFPN architecture,
and on the MS COCO dataset, [27] for the RNFF architecture. The LISA Traffic Sign Dataset
contains 6k images divided into 47 traffic signal sign categories, and the MS COCO dataset
contains more than 11k images of 80 classes.

4.2. Implementation Details

Our default experimental configuration was as follows unless otherwise specified.
The experimental platform had 8 GPUs (TITAN V). The total number of epochs was 24,
and we selected the best mAP among all epochs. The learning rate was 0.02, the weight
decay rate was 0.0001, and the batch size on each GPU was 2. We used the Faster R-CNN
architecture and ResNet-50 as the backbone. We used the COCO evaluation metrics in the
MMDetection framework to evaluate and compare RNFF and the other methods. In the
two-stage network experiment, taking Faster RCNN and its variant network as an example,
after replacing the corresponding module in the model, whether it is the experiment with
Res50 as the backbone network and the Res101 series as the backbone, the average accuracy
and each, the scale accuracy has been improved. In the experiment with ResNet50, the mAP
increase was the highest when compared with GRoIE, from 37.5% to 40.1%. The mAP has
increased by 2.6 percentage points, and small, medium, and large objects have increased
by 1.4, 1.2, and 4.4 percentage points, respectively.

4.3. Module-Wise Ablation Analysis

Toward the MS COCO dataset, we observed the act of NFPN fusion, ResRoIE, and the
RFP architecture at different precision scales and the improvements in precision when
these components were used in place of the corresponding original components in various
networks. On the LISA Traffic Sign Dataset, we used FPN, BFP, and BiFPN to observe
the influence of these different fusion methods on precision and used two stacked BiFPN
modules to observe the influence of top-down fusion on precision.

In the NFPN architecture, we performed ablation experiments on two datasets.
The LISA Traffic Sign Dataset experiments were performed to observe the impact of top-
down and bottom-up fusion on objects at different scales and the improvement enabled
by our NFPN architecture. We used the five feature layers generated by FPN for feature
fusion. The fusion process is divided into three steps. First, the neighboring layers of the
reference layer are resized to the exact resolution as the reference layer through pooling
or interpolation. Then, a 3 × 3 convolution check is used to convolve the reconstructed
features and add them to the reference layer features. Finally, a 1 × 1 convolution kernel
is used for convolution. We used the sum (+) method to fuse two parts with the exact
resolution. Through experimental data, it is found that the NFPN structure can improve
mAP on the Lisa data set, but the detection effect on objects of different scales varies greatly.
For the large scale, although it is an increase of 5.2% compared to the benchmark network,
the improvement is even more significant when other network fusion methods are used
in the benchmark network. For the medium scale, NFPN increased by 1.1 percentage
points. Except for RNFF, which can increase by 0.2 percentage points, other methods have
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decreased significantly. For small objects, the Faster RCNN network using FPN performs
the best, the NFPN reduces the least, and the accuracy of the remaining networks reduces
significantly. For this phenomenon, this article believes that the reason is that after the
top-down (FPN) process. However, the background pixels cause the first interference to
the small-scale object; due to the lateral conv, there will be no original features in the up-
sampled backbone network. Convolution and addition, thereby reducing this interference.
After FPN, feature fusion is performed, that is, the bottom-up process, which transmits
the position information of the shallow layer to the deep layer. Because the large object
has a larger resolution, its influence is much more significant than the influence of the
surrounding background pixels. The enhancement process from semantics (bottom-up) to
location information (top-down) is verified by NFPN × 2 in Table 1.

In the experiment using ResRoIE + NFPN, mAP is increased by 2.0% for medium
objects, while the accuracy of small objects is increased by 1.2%. The common point
of all experiments in Table 3 is that the network of the feature fusion part increases,
and the accuracy of small and medium objects decreases. For the large-scale experiment,
NFPN × 2 + ResRoIE, the accuracy is 4.7 percentage points higher than that of the external
NFPN + ResRoIE. Compared with BiFPN × 2 in Table 1, both increase network layers and
decrease the accuracy. It shows that ResRoIE can reduce the feature fusion part and the
grade fading made by increasing the network. In the experiment of the proposed RFP +
ResRoIE method, after using RFP, the experiment is increased by 0.2%. The accuracy of
each scale object is also improved, which verifies the hypothesis that there is noise in the
feature fusion section. The RFP algorithm can reduce this noise. Subsequently, an adaptive
weight standardization strategy was used to reduce the mutual influence between different
scale features. The accuracy of the small, medium, and large objects were slightly improved.
When SEnet is used to add attention to the feature fusion of each layer, the accuracy drops
by 0.1%, indicating that the features of different layers are fused. While paying attention
to the object feature, it also gives the same attention as the noise. Compared with some
mainstream networks based on two stages, the experiment uses a combination of NFPN,
ResRoIE, and RFP. Experiments prove that the algorithm offered in this paper can increase
the precision of target detection. Balanced FPN imports the neck module in Libra RCNN
into Faster RCNN, and the rest remains unchanged.

In addition, weight normalization (ConvAWS) is added to the network, and the idea
of using weight fusion features in BiFPN in EfficientDet is referred to. The attention
mechanism is used to add learnable weights when different layers of features are fused.
Experiments show that the combination of ResRoIE and RFP introduced can realize more
reliable performance, significantly improving compared to some current two-stage methods.
For small and medium scales, in the experimental results, PANet, Balanced FPN, GRoIE,
and RFP + ResRoIE have been upgraded in turn. Indicating that in a larger data set with a
relatively balanced distribution of categories and scales, the more feature fusion is, the more
accurate the detection of small and ordinary targets is presented in Figure 8. It is meriting
that feature fusion may lead to information loss and noise interference in a small-scale
data set due to the scale and category distribution imbalance, thereby triggering gradient
descent. For large objects, the accuracy of GRoIE is lower than Faster RCNN. The reason
is that features of all scales are used in its detection. The shallow features of small-scale
objects are easily disturbed by upsampling, while large objects use disturbing features. So
it manages to decrease the precision of the large object, as is shown in Figure 9.
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Figure 8. Detection of medium-sized and small objects.

Figure 9. Detection of large objects.

5. Conclusions

To solve the insufficient features of objects, this work introduces some of the most
advanced and representative network models based on Faster R-CNN, such as Libra R-
CNN, Grid R-CNN, guided anchoring, and GRoIE, which we observed the performance of
NFPN fusion, ResRoIE and the RFP architecture at different scales of precision. ResRoIE
was added to the NFPN network on the Lisa data set, which verified that NFPN has
vanishing gradients, and ResRoIE can alleviate this problem. Then, experiments were
performed on other data sets of different scales. Among them, the small and medium data
sets are the same as Lisa’s conclusion that ResRoIE can alleviate the problem of gradient
disappearance, thereby improving the accuracy of objects at various scales. The two-
stage network experiment took Faster RCNN and its variant network as a reference after
replacing the corresponding module in the model. In the experiment with ResNet50 as the
backbone network, the mAP increase was the highest compared with GRoIE, from 37.5%
to 40.1%. In a large-scale data set such as MS COCO, the NFPN + ResRoIE in this article
can improve the detection accuracy in the current most advanced two-stage network.
Some well-known methods in recent object detection are selected for comparison. In the
experiment based on those methods, we keep ResNet50 as a fixed backbone network to
observe the performance improvement by the feature RNFF. Experiments show that the
algorithm proposed in this paper can improve the accuracy of object detection.
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