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Abstract: By rigorous analysis, it is proven that from discontinuous Lagrangians, which are invariant
with respect to the Galilean group, Rankine–Hugoniot conditions for propagating discontinuities
can be derived via a straight forward procedure that can be considered an extension of Noether’s
theorem. The use of this general procedure is demonstrated in particular for a Lagrangian for viscous
flow, reproducing the well known Rankine–Hugoniot conditions for shock waves.

Keywords: Galilean group; gauge symmetry; Rankine–Hugoniot conditions; shock waves; Noether
theorem

1. Introduction

The formulation of physical theories within the framework of variational principles en-
ables a deeper understanding of the physical system in many respects [1]. In particular, the
symmetries of the Lagrangian and their relation to physical conservation laws, which was
established via Noether’s theorem [2], is a good example for it. In the classical theory of La-
grangian formalism, one usually assumes two-times continuously differentiable fields, but
fluid dynamics also includes discontinuous phenomena, such as shock waves, for whose
description one uses transition conditions at the shock front—so-called Rankine–Hugoniot
conditions [3–5]. Analogous conditions are also used in fracture mechanics [6]. Although
such considerations are outside the Lagrangian formalism, the Rankine–Hugoniot condi-
tions are essentially based on conservation of physical quantities, such as mass, momentum
and energy. This poses the question of whether there is a way to obtain such conditions
via Noether’s theorem, applied to fundamental symmetries of the Lagrangian and, in
particular, the Galilean group.

In the present context, some prior works serve as starting points for our investiga-
tions, beginning with the classical Lagrangian for inviscid flows proposed by
Seliger and Witham [7] and the rigorous analysis undertaken by Scholle [8], which deliv-
ers general rules that have to be followed in the formulation of Lagrangians to ensure
Galilean invariance. By utilizing the rules formulated in [8] in order to extend the La-
grangian proposed in Seliger and Witham [7] toward viscous flow, Scholle and Marner [9]
obtained an extended Lagrangian for viscous flows, which, in the special case of vanish-
ing shear viscosity but nonzero volume viscosity, reproduces the Lagrangian proposed
by Zuckerwar and Ash [10] a few years before. By considering some flow examples of
prototypic character, however, partly unphysical solutions were obtained in [9], showing
the necessity for further modifications of the Lagrangian. In order to resolve the above
issue, Scholle and Marner [9] followed an idea of Anthony [11–13], who suggested a
complex field χ of thermal excitation, serving as an analogue to Schrödinger’s matter
field. A brief summary of Anthony’s concept, which was originally motivated by an
analogy between quantum mechanics and fluid mechanics discovered by Madelung [14],
is provided in the appendix of the recent work [15]. On introduction of the complex
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field χ, a discontinuity is imposed in the resulting Lagrangian, which goes beyond the
usual framework in continuum theory so that from the variation with respect to the
fundamental fields, in addition to the well-known Euler–Lagrange equations, corre-
sponding transition and production conditions along the discontinuity surfaces result.
Furthermore, an additional parameter ω0 becomes relevant. This surprising result can
be interpreted against the background that the physical phenomenon viscosity weakly
violates both the thermodynamic equilibrium and the continuum hypothesis, which leads
to the occurrence of discontinuities in the sense of microscopic fluctuations, where ω0
serves as a thermodynamic relaxation rate. Consequently, in the limiting case ω0 → ∞,
the classical Navier–Stokes theory is reproduced.

Although the focus of [9] was the reproduction of the classical Navier–Stokes the-
ory from an unconventional Lagrangian, subsequent papers [15–17] showed a further
development in the direction of linear and weakly nonlinear acoustics; in the outlook
of the paper [9], the possibility of applying the general formalism also to discontinuous
phenomena on a macroscopic scale, including shock waves, is pointed out. Therefore,
the aim of the present paper is to address this yet unresolved issue and to derive the
Rankine–Hugoniot conditions from the symmetries of the Lagrangian, which, at first,
requires the mathematical derivation of an extended Noether theorem, considering dis-
continuities. In a second step, the general theory is applied to viscous flow theory. Both
were not performed in the prior work [9].

This paper is structured as follows: in Section 2, the general theory is presented,
starting with a review on Hamilton’s principle (Section 2.1), followed by a detailed analysis
about the Galilean group and its manifestation with regard to the respective Lagrangian
(Section 2.2) and the balances resulting from Noether’s theorem (Section 2.3). In Section 2.4,
it is demonstrated that transition and production conditions are obtained from discon-
tinuous Lagrangians. Finally, in Section 2.5, the desired Rankine–Hugoniot conditions
for Noether fluxes are derived. In Section 3, the procedure is applied to shock waves. A
discussion of the results is provided in Section 4.

2. General Theory
2.1. Hamilton’s Principle and Euler–Lagrange Equations

The evolution of a material continuum between initial time t1 and final time t2 is given
by Hamilton’s principle, i.e., by free and independent variation δI = 0 of the action integral
as follows:

I =
t2∫

t1

∫∫∫
V(t)

`(ψi, ψ̇i,∇ψi)dVdt , (1)

with respect to a set of N fundamental fields ψ1, . . . , ψN , where initial and final state are
fixed. V = V(t) denotes the volume of the system. The Lagrangian

` = `(ψi, ψ̇i,∇ψi) (2)

is a function of the fields, their first order time derivatives ψ̇i = ∂ψi/∂t, and their gradients
∇ψi.

Hamilton’s principle implies the set of N basic field equations as follows:

∂`

∂ψi
− ∂

∂t

(
∂`

∂ψ̇i

)
−∇ ·

(
∂`

∂∇ψi

)
= 0 , i = 1, . . . , N , (3)

the so-called Euler–Lagrange equations [1].

2.2. Galilean Invariance and Implications for the Lagrangian

If a system is physically closed, i.e., isolated from the surrounding, its equations of
motion are invariant with respect to the following four universal symmetry transformations
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of the Galilean group, corresponding to the homogeneity of time and space, isotropy of
space and equality of all inertial frames:

• time translations:
t→ t′ = t + τ (4)

• space translations:
~x → ~x′ = ~x +~s (5)

• rigid rotations:
~x → ~x′ = R~x (6)

• Galilei boosts:
~x → ~x′ = ~x− ~u0t (7)

Here, the scalar τ, the two vectors~s and ~u0 and the unitary matrix R fulfilling RTR = I
and det R = 1 are constants. Here, and in the following, an underbar denotes a ma-
trix/tensor and I is the unity matrix/tensor. Via formulae (4)–(7), the four symmetries
are obviously well-defined for discrete systems, for instance, systems of point masses in
Newtonian mechanics. For continuous systems, the situation is essentially different: in field
theories, the formulae (4)–(7) have to be supplemented by the respective transformation
formulae for the fields in order to define the transformations completely.

Through a rigorous analysis, Scholle [8] showed that Galilean invariance imposes
constraints on the analytic form of the Lagrangian density. A basic finding is the exis-
tence of two different but equivalent representations of each Galilei-invariant Lagrangian:
for each Lagrangian of the form (2), subsequently called the conventional representation,
which is invariant w.r.t. all transformations (4)–(7) of the Galilei group, the following
transformation exists:

ψi = Ki
(
Ψj, ζ,∇ζ

)
, (8)

ζ :=
~x 2

2t
(9)

defining a different set of fundamental fields Ψj and turning the Lagrangian (2) to a different
form as follows:

`
(
Ki
(
Ψj, ζ,∇ζ

)
, K̇i
(
Ψj, ζ,∇ζ

)
,∇Ki

(
Ψj, ζ,∇ζ

))
= `

(
Ψi,

◦
Ψi,∇Ψi +

1
t
~Ki
(
Ψj
))

, (10)

~Ki
(
Ψj
)

:= lim
ζ,∇ζ→0

∂Ki
∂(∇ζ)

, (11)

where the ring symbol ◦ indicates the dual time derivative [8]:

◦
Ψj:=

{
∂

∂t
+∇ζ · ∇

}
Ψj , (12)

which, in contrast to the conventional time derivative, is invariant w.r.t. Galilei boosts.
ζ is called the generating field. As a consequence, the Lagrangian in its alternative form

`

(
Ψi,

◦
Ψi,∇Ψi + ~Ki

(
Ψj
)
/t
)

, subsequently called the dual representation, proves to be in-

variant with respect to Galilei boosts if all fields ψi are assumed to be likewise invariant.
Thus, the essence of the dual representation is that Galilei boosts become manifest as pure
geometrical transformations without the need to combine them with a re-gauging of poten-
tials [18]. Since the conventional representation `(ψi, ψ̇i,∇ψi) is obviously strictly invariant
w.r.t. space and time translations while the dual representation is strictly invariant w.r.t.
Galilei boosts, simultaneous invariance with respect to translations and Galilei boosts is
granted by (10), which consequentially can be understood as a collective symmetry criterion
for the Galilean group. It has to be fulfilled by any Lagrangian related to a physically closed
continuous system.
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Once the functions Ki of the transformation (8) are determined by the collective
symmetry criterion (10), the following gauge transformation is well-defined:

ψi → ψi
′ = Ki

(
ψj, ε, 0

)
(13)

and, according to [8], likewise, is a symmetry transformation of the Lagrangian. This
induced gauge symmetry is remarkable since it is an indirect but compelling consequence of
the Galilean invariance and, therefore, on the same level as all symmetry transformations
of the Galilei group, and is consequently to be understood as universal symmetry just
like the latter, applied on any physical continuum. Since the parameter ε in (13) may take
arbitrary values, the induced gauge symmetry is a one-parameter Lie group.

The mere existence of this symmetry entails further consequences: one of them is the
statement that among the N fundamental fields ψi, there must be at least one non-observable
one, i.e., a potential field that is non-unique since it is influenced by the gauge transfor-
mation (13) and cannot, therefore, be determined by any kind of physical measurement
(For the example considered in Section 3, this applies to the Clebsch variable ξ). This is
proven in [8] by representing the induced gauge transformation as a combination of space
translations (5) and Galilei boosts (7).

Further consequences of the invariance w.r.t. the Galilei group, especially regarding
the representation of the velocity field by means of potentials, are reported in the review
article [18].

2.3. Associated Balances Resulting from Noether’s Theorem

The above-mentioned general properties of Lagrangians in continuum theory entail
additional general implications for the physical balances resulting from the variational
principle by utilizing Noether’s theorem, the essence of which is that each Lie symmetry of
the Lagrangian gives rise to a physical balance equation and to a canonical definition of
the density and flux density involved.

All transformations (4)–(7) of the Galilei group are Lie groups; each of them are related
to a continuous parameter ε. The infinitesimal generators of the group read as follows:

t̂ :=
∂t′

∂ε

∣∣∣∣
ε=0

, (14)

~̂x :=
∂~x′

∂ε

∣∣∣∣
ε=0

, (15)

ψ̂i :=
∂ψi
′

∂ε

∣∣∣∣
ε=0

. (16)

Then, Noether’s theorem [2,19,20] gives rise to the definition of a density $Q and an
associated flux density~jQ as follows:

$Q := `t̂ +
∂`

∂ψ̇i

[
ψ̂i − ψ̇i t̂− ~̂x · ∇ψi

]
, (17)

~jQ := `~̂x +
∂`

∂∇ψi

[
ψ̂i − ψ̇i t̂− ~̂x · ∇ψi

]
, (18)

fulfilling the homogeneous balance equation as follows:

∂$Q

∂t
+∇ ·~jQ = 0 . (19)

In Equations (17) and (18), subsequently, the following Einstein notation is utilized: an
index variable appearing twice in a single term implies summation of that term over all
values of the index.
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Physically, Equation (19) is associated with the conservation of the global quantity as
follows:

Q :=
∫
V

$Q dV (20)

with V being the entire volume of the continuum. More generally, if a Lie group with m
continuous parameters ε1, . . . , εm is considered, for each parameter, a balance equation of
the type (19) is obtained.

In Table 1, the infinitesimal generators for time/space translations and the induced
gauge symmetry, the associated global quantities, related densities and flux densities are
listed, with the infinitesimal generator K0i

(
ψj
)

defined as follows:

K0i
(
ψj
)

:= lim
ζ,∇ζ→0

∂Ki
∂ζ

. (21)

The Noether balance associated with rigid rotations (6) is the angular momentum
balance, which is not discussed in this paper. Finally, the Noether balance associated with
Galilei boosts (7) is analyzed by considering the dual representation (10) of the Lagrangian
in terms of the fields Ψj being invariant w.r.t. (7). Thus, the associated density and flux
density read as follows:

~z = t
∂`

∂Ψ̇j
∇Ψj , (22)

Z := −t`1 + t
∂`

∂∇Ψj
⊗∇Ψj , (23)

and the associated Noether balance

∂~z
∂t

+∇ · Z = 0 , (24)

is related to the motion of the system’s center of mass; see, for example, [21]. The physical
significance of the density~z and the flux density Z becomes clearer by transforming the
Noether expressions according to (8) back into conventional representation, revealing the
following constitutive relations:

~z = $~x− ~pt

=:~z∗︷ ︸︸ ︷
− ∂`

∂ψ̇i
~Ki
(
ψj
)

, (25)

Z = $~u⊗~x−Πt− ∂`

∂∇ψi
~Ki
(
ψj
)

︸ ︷︷ ︸
=:Z∗

, (26)

showing in particular how the density ~z and the flux density Z are related to the mass
density, the mass flux density $~u, the momentum density ~p, the momentum flux density
Π and additional contributions ~z∗ and Z∗, the physical meaning of which is revealed
subsequently: considering the mass and momentum balance, Equation (24) simplifies to
the following form:

0 =
∂~z
∂t

+∇ · Z

=

[
∂$

∂t
+∇ · ($~u)

]
︸ ︷︷ ︸

0

~x + $~u−
[

∂~p
∂t

+∇ ·Π
]

︸ ︷︷ ︸
0

t− ~p +
∂~z∗

∂t
+∇ · Z∗ ,
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revealing a fundamental relation between mass flux density and momentum flux density:

~p∗ := ~p− $~u =
∂~z∗

∂t
+∇ · Z∗ , (27)

Note that in classical continuum mechanics, the mass flux density and the momentum
density are expected to be equal. However, as can be seen from Equation (27), this is not
mandatory: the difference between both, ~p ∗ := ~p− $~u, is called the quasi-momentum density
and can be interpreted as contributions to the momentum due to non-material degrees of
freedom, e.g., electromagnetic fields, thermal fields and also due to phenomena beyond
the scope of continuum theories on a molecular scale, e.g., Brownian motion. Regarding
the latter, Fruleux et al. [22] investigated in these additional contribution to the momentum
caused by Brownian motion for non-equilibrium case, which they termed a “momentum
transfer deficit”, in detail. In [9], the role of Brownian motion for viscosity is emphasized.
Despite the fact that within the framework of continuum theories atoms or molecules
are not considered, it is possible to take their disorder on a microscopic scale and the
quasi-momentum caused by the latter into account by additional fields, here by the three
quantities marked with an asterisk,~z∗, Z∗ and ~p∗—the displacement density, its associated
current density and the quasi-momentum density.

Table 1. Relations between symmetries and balances resulting from Noether’s theorem.

Symmetry t̂ ~̂x ψ̂i Balance Density Flux Density

time transl. 1 0 0 energy w = ∂`
∂ψ̇i

ψ̇i − ` ~S = ∂`
∂∇ψi

ψ̇i

space transl. 0 1 0 momentum ~p = − ∂`
∂ψ̇i
∇ψi Π = `1− ∂`

∂∇ψi
⊗∇ψi

ind. gauge 0 0 K0i mass $ = − ∂`
∂ψ̇i

K0i

(
ψj

)
$~u = − ∂`

∂∇ψi
K0i

(
ψj

)
2.4. Variation with a Discontinuous Lagrangian

We now consider a Lagrangian ` being discontinuous with respect to the field ϕ = ψN
at fixed values ϕn, n = 1, . . . , NS, but continuously differentiable with respect to all other
fields, ψi with i < N, and also continuously differentiable with respect to all derivatives
of any field, including ϕ̇ and ∇ϕ. In three-dimensional space, the discontinuities with
respect to ϕ become manifest along surfaces Sn(t) defined by: Sn := {~x | ϕ(~x, t) = ϕn},
n = 1, . . . , NS, intersecting the system’s volume V into a finite number NS + 1 of sub–
volumes according to the following:

V =
NS

∑
n=0

Vn , (28)

where the sub-volume Vn denotes the region between Sn and Sn+1 apart from V0 and VNS ,
denoting the region between the system’s boundary ∂V and S1 or SNS , respectively.

From the physical viewpoint, these time-dependent interfaces, Sn, may be related to
any kind of discontinuous phenomena like phase boundaries between non-mixable fluids,
propagating shock fronts in gaseous media or flame fronts. By

~n :=
∇ϕ

|∇ϕ| (29)

the normal vector of the interface is defined and its local propagation velocity~vs is implicitly
defined via the following:

∂ϕ

∂t
+~vs · ∇ϕ = 0 . (30)

The above vectors are sketched in relation to the discontinuous interface in Figure 1.
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−

ϕ(~x, t) = ϕn

~n

~vs

+

Figure 1. Geometry of a propagating discontinuity.

By a rigorous analysis, Scholle and Marner [9] showed that variation δI = 0 of the
action integral implies the following:

~n ·
s

∂`

∂∇ψi
−~vs

∂`

∂ψ̇i

{
=

J`K
|∇ϕ| δiN , (31)

as matching conditions (i = 1, . . . , N − 1) and production conditions (i = N) for the
generalized fluxes at each interface. The double square bracket indicates the jump at
the interface: J. . . K := [. . . ]− − [. . . ]+, where [. . . ]± indicates the limit of the respective
discontinuous expression by approaching it from the front side (subscript +) or the back
side (subscript −) of the interface Sn.

Independent of the formal proof given above, the matching conditions (for i = 1,
. . . , N − 1) can also be understood as natural boundary conditions at the phase boundaries
in a multiphase flow when assuming that all phases of the flow consist of the same liquid,
leading to the same Equation (31).

2.5. Rankine–Hugoniot Conditions for Canonical Noether Fluxes

We consider the Noether flux from the viewpoint of an observer moving alongside
with the discontinuity interface Sn,~jQ − $Q~vs and evaluate its contribution to a flux across

the discontinuity interface by taking the normal component,~n ·
[
~jQ − $Q~vs

]
. Then, conser-

vation of the related global quantity Q depends significantly on whether the flux across the
discontinuity surface remains continuous or not. Thus, one has to compute the following:

~n ·
r
~jQ − $Q~vs

z
= ~n ·

s(
~̂x−~vs t̂

)
`+

(
∂`

∂∇ψi
−~vs

∂`

∂ψ̇i

)(
ψ̂i − ψ̇i t̂− ~̂x · ∇ψi

){
(32)

= ~n ·
(
~̂x−~vs t̂

)
J`K+~n ·

s
∂`

∂∇ψi
−~vs

∂`

∂ψ̇i

{(
ψ̂i − ψ̇i t̂− ~̂x · ∇ψi

)
By considering the matching and production conditions (31), the definition (29) and

the identity (30), Equation (32) simplifies to the following:

~n ·
r
~jQ − $Q~vs

z
= ~n ·

(
~̂x−~vs t̂

)
J`K+

J`K
|∇ϕ|

(
ϕ̂− ϕ̇t̂− ~̂x · ∇ϕ

)
= J`K

ϕ̂

|∇ϕ|

and therefore to the desired Rankine–Hugoniot condition:

~n ·
r
~jQ − $Q~vs

z
= ϕ̂

J`K
|∇ϕ| (33)

for the flux of the associated quantity Q across the interface.
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Thus, an extension of Noether’s theorem to systems with discontinuities is achieved,
which, like the corresponding balance Equation (19) for continuous systems, accounts
for the conservation of the respective observable Q at the interface, provided that the
infinitesimal generator ϕ̂ vanishes. This is the case for all symmetries of the Galilei group
and for the induced gauge symmetry, as demonstrated below.

2.5.1. Energy

In the case of the time translation (4) with again ψ̂i = 0, the associated Rankine–
Hugoniot condition (33) for the energy flux reads as follows:

~n ·
r
~S− w~vs

z
= 0 (34)

2.5.2. Momentum

From the space translation (5) with ψ̂i = 0, one receives via (33) the Rankine–Hugoniot
condition for the momentum flux as follows:

~n · JΠ−~vs ⊗ ~pK =~0 (35)

2.5.3. Mass and Displacement

Applying (33) to the induced gauge transformation (13), the Rankine–Hugoniot con-
dition for the mass flux results as follows:

~n · J$(~u−~vs)K = K0N
J`K
|∇ϕ| . (36)

Accordingly, application to Galilei boosts (7) delivers the respective condition for
the center of mass motion, which, by making use of the previous findings, results in the
following:

0 = ~n · JZ−~vs ⊗~zK
= ~n · J$~u⊗~x−Πt + Z∗ −~vs ⊗ ($~x− ~pt +~z∗)K
= ~n · J$(~u−~vs)K︸ ︷︷ ︸

K0N
J`K
|∇ϕ|

~x−~n · JΠ−~vs ⊗ ~pK︸ ︷︷ ︸
0

t +~n · JZ∗ −~vs ⊗~z∗K ,

implying the Rankine–Hugoniot condition related to the displacement:

~n · JZ∗ −~vs ⊗~z∗K = −K0N
J`K
|∇ϕ|~x , (37)

revealing a special feature, namely, the explicit dependence on ~x of the production term on
the right-hand side of the equation, which would break the translational symmetry (5). In
order to resolve this issue, one has to assume the following:

ϕ̂ = K0N = 0 , (38)

leading finally to homogeneous Rankine–Hugoniot conditions both for the mass and the
displacement:

~n · J$(~u−~vs)K = 0 , (39)

~n · JZ∗ −~vs ⊗~z∗K = 0 . (40)
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3. Application of the Theory to Shock Waves
3.1. Lagrangian for Viscous Flow

In [9] a Lagrangian for compressible viscous flow was proposed as follows:

` = −$

[
Dtξ + αDtβ +

1
ω0
=(χ̄Dtχ)−

~u 2

2
+ e
]
+

χ̄χ ln
√

χ̄
χ

iω0c0T

[
ηtrD2 +

η′

2
(∇ · ~u)2

]
, (41)

in terms of the mass density $, the velocity ~u, the Clebsch variables ξ, α, β and the complex
field of thermal excitation χ and its complex conjugate, χ̄. By

D :=
1
2
∇⊗ ~u +

1
2
(∇⊗ ~u )t − 1

3
∇ · ~u I (42)

the traceless tensor of strain rate is denoted, and by

Dt :=
∂

∂t
+ ~u · ∇

the material time derivative. tr is the trace of a tensor, ⊗ the tensor product and the
superscript t indicates the transpose of a tensor. η and η′ are the two viscosities and the
parameter ω0 can, according to [9], be interpreted as a relaxation rate for processes beyond
the thermodynamic equilibrium.

The absolute square of the thermal excitation delivers the specific entropy s as follows:

χ̄χ = c0T0 exp
(

s
c0

)
, (43)

where c0 and T0 are reference values for specific heat and temperature. The specific inner
energy e and the temperature T in (41) are functions of $ and s, i.e., e = e($, s) and
T = ∂e/∂s.

For the subsequent analysis according to Section 2, we have to identify the field ϕ
w.r.t. which the Lagrangian is discontinuous. For this sake, the complex field of thermal
excitation is decomposed into modulus and phase according to the following:

χ =
√

c0T0 exp
(

s
2c0
− iϕ

)
, (44)

transforming the Lagrangian (41) into its real-valued form:

` = −$

[
Dtξ + αDtβ−

c0T0

ω0
e

s
c0 Dt ϕ− ~u 2

2
+ e
]

︸ ︷︷ ︸
=:`0

+
T0e

s
c0

ω0T
S(ϕ)

[
ηtrD2 +

η′

2
(∇ · ~u)2

]
︸ ︷︷ ︸

=:`∗

(45)

where S(x) denotes the sawtooth function:

S(x) := x− 2π

⌊
x + π

2π

⌋
,

revealing the discontinuity of the Lagrangian. We remark the first part `0 of the La-
grangian (45) equals the classical Lagrangian by Seliger and Witham [7] for inviscid flow.
The second part containing the discontinuity, `∗, takes viscous effects into account.
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3.2. Dual Transformation and Noether Observables

For the present Lagrangian (45), the dual transformation (8) takes the following form:

~u = ~U +∇ζ , ξ = X + ζ α = A

β = B $ = P (46)

s = S ϕ = Φ

fulfilling criterion (10), whereby the invariance of the Lagrangian with respect to the
complete Galilean group is proven.

With the above explicit form of the dual transformation, (46), the Noether densities
and flux densities can be calculated according to Section 2.3: at first, $ and $~u are confirmed
as the mass density and mass current density. Furthermore, displacement density and
displacement current density result as follows:

~z∗ = 0 , (47)

Z∗ = −S(ϕ)
T0e

s
c0

ω0T
[
2ηD + η′∇ · ~u I

]
, (48)

which implies, according to (27), a quasi-momentum density ~p∗ = ∇ · Z∗ and, therefore, a
momentum density as follows:

~p = $~u +∇ · Z∗ , (49)

while the associated momentum flux density according to Table 1 results in the following:

Π = ~u⊗ ~p + pI + Z∗(∇⊗ ~u)t , (50)

p := $2 ∂e
∂$

+ `∗
$

T
∂T
∂$

, (51)

with the pressure p consisting of the classical thermodynamical expression $2∂e/∂$ and a
non-classical contribution. Finally, energy density and Poynting vector according to Table 1
read as follows:

w = $

[
~u2

2
+ e
]
+ (∇ · Z∗) · ~u− `∗ , (52)

~S = (w + p)~u + Z∗
D~u
Dt

. (53)

The observables listed above are to be understood as extensions of the expressions
known from classical theory with regard to a thermodynamic non-equilibrium. The latter
is manifested by those terms in which `∗ and ~Z∗ occur.

3.3. Resulting Rankine–Hugoniot Conditions

Based on the Noether observables listed in the previous Section 3.2, the generally
formulated Rankine–Hugoniot conditions in Section 2.5 take the following individual form
for viscous flow. First, the condition for the mass (39),

~n · J$(~u−~vs)K = 0 (54)

is valid for systems, the Lagrangian of which fulfills the criterion (10), but independent of
the individual form of the Lagrangian. The condition for the displacement, (40), simpli-
fies to the following:

JZ∗~nK = 0 . (55)
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In order to understand the physics behind this condition, we re-write the term inside
the brackets as follows:

Z∗~n = −S(ϕ)
T0e

s
c0

ω0T
[
2ηD + η′∇ · ~u I

]
~n︸ ︷︷ ︸

~tvisc

(56)

with the viscous stress vector ~tvisc. Furthermore, we have to take into account that at
each discontinuity, S(ϕ) jumps from π to −π or vice versa. In any case, the sign of S(ϕ)
changes when turning from the back side to the front side of an interface. As a consequence,
condition (55) entails the following:[

T0e
s

c0

ω0T
~tvisc

]
−
+

[
T0e

s
c0

ω0T
~tvisc

]
+

=~0 , (57)

which implies a reversal of the direction of the viscous stress vector ~tvisc at the inner
boundary. Physically, this is associated with a slip occurring at the interface.

The two remaining conditions for energy and momentum, (34) and (35), read on
inserting the Poynting vector (53) and the momentum flux density (50):

0 =

s
w~n · (~u−~vs) + p~n · ~u +

D~u
Dt

Z∗~n
{

, (58)

~0 = J~n · (~u−~vs)~p + p~n + (∇⊗ ~u)Z∗~nK , (59)

where, due to the symmetry (Z∗)t = Z∗ of the displacement flux density tensor (48),
the identities ~nZ∗ D~u

Dt = D~u
Dt Z∗~n and ~nZ∗(∇⊗ ~u)t = (∇⊗ ~u)Z∗~n are considered. The

above equations can again be interpreted as the classical conditions [23] supplemented by
non-equilibrium terms containing Z∗~n.

4. Discussion

Based on a consistent analysis of the Galilean group and its implications for the struc-
ture of Lagrangians, as well as preliminary work with respect to dealing with discontinuous
Lagrangian densities, it was possible to transfer the concept that every Lie-type symmetry
can be assigned a physical conservation law, originally formulated by E. Noether, for the
first time to physical problems with discontinuities, whereby the classical balance equations
of the form (19) are supplemented by Rankine–Hugoniot conditions (33).

A remarkable result is that the form (39) of the mass balance does not depend on the
individual form of the Lagrangian density and is, thus, universally valid.

The application of the general methodology developed here to an unsteady Lagrangian
density for viscous flows yields, with respect to energy and momentum, corresponding
Rankine–Hugoniot conditions, which on the one hand are known from the classical liter-
ature and on the other hand are provided with additional contributions due to viscosity.
The additional contributions essentially contain the viscous stresses~tvisc, but are also pro-
portional to the quantity ω−1

0 , which, according to [9], can be interpreted as a characteristic
relaxation time for processes beyond thermodynamic equilibrium. For large ω0, these con-
tributions consequently become negligibly small so that the Rankine–Hugoniot conditions
of the classical theory of shock waves [23] are reproduced, which is remarkable since the
analysis started from pure symmetry considerations.

Based on the present work, there are numerous perspectives for further investiga-
tions since the methodology developed here is transferable to arbitrary systems whose
Lagrangian densities are Galilei-invariant, but in principle, an extension of the methodol-
ogy to other symmetries outside the Galilei group is also conceivable as long as they are
Lie groups. There are other symmetries being related to non-Lie groups, e.g., the gauge
group of the Clebsch variables ξ, α, β occurring in the Lagrangian (41), which was analyzed
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by Schoenberg [24] in detail. In [25], a different theorem was derived by which such
symmetries are associated to balances of line-shaped objects, such as vortices or disloca-
tions. It would be interesting to generalize this methodology for the case of discontinuous
Lagrangian densities as well.
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