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1. Introduction

Fibonacci sequence {Fn} defined by F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2, where
n ≥ 2, and Lucas sequence {Ln} defined by L0 = 2, L1 = 1, and Ln = Ln−1 + Ln−2, where
n ≥ 2, in view of their connections with the golden ratio, are in the center of interest of
many researchers and mathematics enthusiasts. These sequences have many interesting
interpretations, applications and generalizations. Among numerous generalizations of
Fibonacci and Lucas numbers there are generalizations in the distance sens, such as, for ex-
ample, generalized Fibonacci numbers F(k, n) introduced by M. Kwaśnik and I. Włoch [1]
given by the formula F(k, n) = F(k, n− 1) + F(k, n− k), for n ≥ k and k ≥ 2, with initial
conditions F(k, n) = n + 1 for n = 0, 1, . . . k− 1 and generalized Lucas numbers defined
by A. Włoch [2] as follows: L(k, n) = L(k, n − 1) + L(k, n − k) for n ≥ 2k, with initial
values L(n, k) = n + 1 for n = 0, 1, 2, . . . , 2k− 1. It is worth mentioning that generalizations
in the distance sense are usually related to different graph parameters. Applications of
Fibonacci-like numbers in graphs was initiated by the paper of H. Prodinger and R. F.
Tichy [3], in which the relationship between Fibonacci numbers and independent sets (i.e.,
subsets of vertices of a graph being pairwise nonadjacent) was described. Independent sets,
and consequently Fibonacci-like numbers play an important role in chemical combinatorics
and many types of localization problems. Fibonacci and Lucas sequences, like other recur-
sively defined sequences, are naturally generalized to polynomials. Fibonacci polynomials
fn(x) are given by the recurrence relation fn(x) = x fn−1(x) + fn−2(x), for n ≥ 2, with
initial conditions f0(x) = 0, f1(x) = 1, Lucas polynomials are defined by the recursion
ln(x) = xln−1(x) + ln−2(x), for n ≥ 2, with initial values l0(x) = 2, l1(x) = x. Obviously
fn(1) = Fn, and ln(1) = Ln. Significant contributions to investigation on properties of
Fibonacci and Lucas polynomials have been made by V. E. Hoggatt Jr. and M. Bicknell [4–7].
A few newer results on the classical Fibonacci and Lucas polynomials and their applications
can be found in [8–10]. It is worth noting that Fibonacci and Lucas polynomials are used
for determining approximate solutions of many types of integral equations such as for
example Cauchy integral equations, Abel integral equations, Volterra-Fredholm integral
equations and others (for details see [11–14]). Fibonacci numbers and polynomials by their
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connections with diophantine equations and Hilbert’s 10th problem are also closely related
with the so-called Pell surfaces studied by the Shaw prize winner J. Kollar [15] due to an
important algorithmic embeddability problem for algebraic varieties [16].

The interest in Fibonacci-like polynomials has contributed to the emergence of many
generalizations. Most of them are obtained by changing initial terms while preserving the
recurrence relation (see References [17,18]) or by slight modifying the basic recursion (see
References [19–21]). Some are obtained in the distance sense i.e., by changing distance
between terms of a sequence. In the paper [22] we have introduced the distance Fibonacci
polynomials fn(k, x) given by the following recurrence relation

fn(k, x) = x fn−1(k, x) + fn−k(k, x) for n ≥ k (1)

with initial conditions fn(k, x) = xn for n = 0, 1, . . . , k− 1 for integers k ≥ 2, n ≥ 0.
In Table 1 we present some distance Fibonacci polynomials fn(k, x) for special values

of k and n.

Table 1. Distance Fibonacci polynomials fn(k, x).

k
n 0 1 2 3 4 5 6

fn(2, x) 1 x x2 + 1 x3 + 2x x4 + 3x2 + 1 x5 + 4x3 + 3x x6 + 5x4 + 6x2 + 1

fn(3, x) 1 x x2 x3 + 1 x4 + 2x x5 + 3x2 x6 + 4x3 + 1

fn(4, x) 1 x x2 x3 x4 + 1 x5 + 2x x6 + 3x2

fn(5, x) 1 x x2 x3 x4 x5 + 1 x6 + 2x

We have found a direct formula, a generating function, matrix generators and some
identities for generalized Fibonacci polynomials fn(k, x). We have also extended the
distance Fibonacci polynomials fn(k, x) to negative integers n, namely

f−n(k, x) = f−n+k(k, x)− x f−n+k−1(k, x) for n ≥ 0 (2)

with initial conditions fn(k, x) = xn, for n = 0, 1, . . . , k− 1.

In Table 2 we present the first few elements of f−n(k, x) polynomials for special k and
negative n.

Table 2. Distance Fibonacci polynomials f−n(k, x).

k
n −7 −6 −5 −4 −3 −2 −1 0

fn(2, x) −x5 − 4x3 − 3x x4 + 3x2 + 1 −x3 − 2x x2 + 1 −x 1 0 1

fn(3, x) x2 1 −x 0 1 0 0 1

fn(4, x) −x 0 0 1 0 0 0 1

fn(5, x) 0 0 1 0 0 0 0 1

In this paper, which is a continuation of [22], based on a graph interpretation of
the distance Fibonacci polynomials fn(k, x) we introduce a new generalization of Lucas
polynomials in the distance sense. We derive a direct formula, a generating function and
matrix generators for these polynomials. We also prove some identities that generalize the
classical identities for Lucas polynomials and reveal some Pascal-like relations between
coefficients of these polynomials.
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2. From the Distance Fibonacci to the Distance Lucas Polynomials

In the paper [22] we have used a special kind of covering of a graph to obtain a graph
interpretation of the distance Fibonacci polynomials fn(k, x). Let us recall the idea of that
covering. Let G be an undirected, finite graph with the vertex set V(G) and the edge
set E(G), Pn be an n-vetrex path (a sequence of distinct vertices v1, v2, . . . , vn such that
{vi, vi+1} ∈ E(G) for i = 1, 2, . . . , n− 1) and C be a set of x colors, where x ≥ 1. We cover
the vertex set V(G) by the subgraphs Pk and P1, with the vertex of a graph P1 additionally
colored with one of x colors from the set C. This operation is called (Pk,P1)-covering with
xP1-coloring. By σ(G, k) we denote the number of all (Pk,P1)-covering with xP1-coloring
of the graph G.

To illustrate (Pk,P1)-covering with xP1-coloring of a graph G in Figure 1 we present
(P2,P1)-covering with xP1-coloring of a graph P3 (we have surrounded paths P2 and P1
by dashed lines, the letter x below a path P1 denotes a number of colors we can use for
coloring of this path). One can easy check that σ(P3, 2) = x3 + 2x.

x x x x x

Figure 1. (P2,P1)-covering with xP1-coloring of a graph P3.

For a graph Pn we have proved the following theorem.

Theorem 1 ([22]). Let k ≥ 2, n ≥ 1, x ≥ 1 be integers. Then σ(Pn, k) = fn(k, x).

Now let us consider (Pk,P1)-covering with xP1-coloring of an n-vertex cycle Cn (a
closed path), where n ≥ 3.

Theorem 2. Let k ≥ 2, n ≥ 3, x ≥ 1 be integers. Then σ(Cn, k) = x fn−1(k, x) + k fn−k(k, x).

Proof (by induction on n). Let k ≥ 2, n ≥ 3, x ≥ 1 be integers and Cn be a cycle with the
vertex set V(Cn) = {t1, t2, . . . , tn}.

If n = 3, . . . , k− 1, for k ≥ 4, then we cover the vertices only by subgraphs P1 with
coloring by one of x colors. Hence σ(Cn, k) = xn for n = 3, . . . , k− 1, k ≥ 4. If n = k and
k ≥ 3, then we can cover the vertices of a cycle Ck by k subgraphs P1 which are colored
with one of x colors or we can cover such a graph by one path Pk, which can be chosen on
k ways. Hence σ(Ck, k) = xk + k.

Assume that n ≥ k + 1, for k ≥ 2, and the theorem is valid for all integers less then n.
We will prove that it is true for n. We have to consider two possibilities:

1. tn ∈ V(P1).

Then a vertex tn can be colored by one of x colors. By σ1(Cn, k) let us denote the number
of all (Pk,P1)-covering with xP1-coloring of a graph Cn with tn belonging to P1. Thus,
σ1(Cn, k) = xσ(Pn−1, k).

2. tn ∈ V(P1).

Let σk(Cn, k) denote the number of all (Pk,P1)-covering with xP1-coloring of a graph Cn
with tn belonging to Pk. Since we have k such paths, hence σk(Cn, k) = kσ(Pn−k, k).

Taking into account both cases, Theorem 1 and induction hypothesis we obtain

σ(Cn, k) = σ1(Cn, k) + σk(Cn, k) = xσ(Pn−1, k) + kσ(Pn−k, k) = x fn−1(k, x) + k fn−k(k, x).

Thus, the theorem is proved.
As a consequence of Theorem 2 we obtain a new graph interpretation of the classical

Lucas polynomials ln(x).

Corollary 1. Let n ≥ 3, x ≥ 1 be integers. Then σ(Cn, 2) = ln(x).
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Proof. Let us consider(P2,P1)-covering with xP1-coloring of an n-vertex cycle Cn. By
Theorem 2 we have σ(Cn, 2) = x fn−1(2, x) + 2 fn−2(2, x). Since fn(2, x) = fn+1(x) then we
have the equality σ(Cn, 2) = x fn(x) + 2 fn−1(x) and by the well-known identity x fn(x) +
2 fn−1(x) = ln(x) we obtain σ(Cn, 2) = ln(x).

Let us denote σ(Cn, k) = ln(k, x) and call this parameter as the distance Lucas polynomial.

Theorem 3. Let k ≥ 2, n ≥ 3, x ≥ 1 be integers. Then ln(k, x) = xln−1(k, x) + ln−k(k, x).

Proof. We prove this theorem by induction on n. Let k ≥ 2, n ≥ 3, x ≥ 1 be integers.
For n = 3 and k = 2, we can easily check that l3(2, x) = xl2(2, x) + l1(2, x). Namely,

using Theorem 2 and Tables 1 and 2, we get that l3(2, x) = x f2(2, x) + 2 f1(2, x) = x(x2 +
1) + 2x = x3 + 3x. In turn, on the right side we get xl2(2, x) + l1(2, x) = x[x f1(2, x) +
2 f0(2, x)] + x f0(2, x) + 2 f−1(2, x) = x3 + 3x.

If n = 3 and k = 3, then we obtain l3(3, x) = x f2(3, x) + 3 f0(3, x) = x3 + 3 and on
the other hand xl2(3, x) + l0(3, x) = x[x f1(3, x) + 3 f−1(3, x)] + x f−1(3, x) + 3 f−3(3, x) =
x3 + 3. Thus, for n = 3 the theorem is true.

Assume that the theorem is valid for all integers n. We will prove that it is also true
for n + 1, i.e., ln+1(k, x) = xln(k, x) + ln−k+1(k, x) is satisfied. Using Theorem 2, recurrence
(1) and induction hypothesis we obtain

ln+1(k, x) = x fn(k, x) + k fn−k+1(k, x) = x[x fn−1(k, x) + fn−k(k, x)] + k[x fn−k(k, x) +
fn−2k+1(k, x)] = x[x fn−1(k, x) + k fn−k(k, x)] + x fn−k(k, x) + k fn−2k+1(k, x) = xln(k, x) +
ln−k+1(k, x).

Thus, the theorem is proved.
Based on Theorem 3 we can define the distance Lucas polynomials ln(k, x) as follows.
Let k ≥ 2, n ≥ 0 be integers. The distance Lucas polynomials ln(k, x) are given by the

recurrence relation

ln(k, x) = xln−1(k, x) + ln−k(k, x) for n ≥ k (3)

with initial conditions l0(k, x) = k, ln(k, x) = xn for n = 1, 2, . . . , k− 1.
Table 3 presents some distance Lucas polynomials ln(k, x) for special values of k and n.

Table 3. Distance Lucas polynomials ln(k, x).

k
n 0 1 2 3 4 5 6

ln(2, x) 2 x x2 + 2 x3 + 3x x4 + 4x2 + 2 x5 + 5x3 + 5x x6 + 6x4 + 9x2 + 2

ln(3, x) 3 x x2 x3 + 3 x4 + 4x x5 + 5x2 x6 + 6x3 + 3

ln(4, x) 4 x x2 x3 x4 + 4 x5 + 5x x6 + 6x2

ln(5, x) 5 x x2 x3 x4 x5 + 5 x6 + 6x

It is obvious that for k = 2 we have ln(2, x) = ln(x), and therefore ln(2, 1) = ln.
For n ≥ k and x = 1 we get ln(k, 1) = L(k, n), where L(k, n) is the nth generalized Lucas
number defined in [2]. Moreover, by recursion (3), one can easy check that

lk+m(k, x) = xk+m + (k + m)xm for m = 0, 1, . . . , k− 1 (4)

By graph interpretation of the distance Lucas polynomials almost immediately follows
a direct formula for these polynomials.

Theorem 4. Let k ≥ 2, n ≥ 1 be integers. Then

ln(k, x) =
b n

k c

∑
j=0

n
n− (k− 1)j

(
n− (k− 1)j

j

)
xn−kj. (5)
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For k = 2 by the formula (5) and relation ln(2, x) = ln we get

ln(x) =
b n

2 c

∑
j=0

n
n− j

(
n− j

j

)
xn−2j,

which is the well-known direct formula for Lucas polynomials.
Using steps method described in [22] we can observe some Pascal-like relations

between coefficients of the distance Lucas polynomials. For a fixed k ≥ 2 and each n ≥ 0
let us arrange coefficients of the distance Lucas polynomials ln(k, x) in ascending order
and form a left-shifted array of these coefficients. Building steps of height k− 1 we can
see that the sum of elements on steps beginning in a row corresponding to n = ki, where
i = 1, 2, . . ., is equal to (k + 1)2i−1. Moreover, adding two consecutive elements on steps
i.e., an element in the nth row and the jth column and an element in the (n − k + 1)st
row and the (j + 1)st column we obtain an element in the (n + 1)st row and the (j + 1)st
column. In Tables 4 and 5 we present cases k = 3 and k = 4, respectively.

In Table 4 we have marked the steps of height 2 starting in rows 3, 6, 9 (rows are
counted from n = 0), adding the elements (red numbers) on the steps we obtain sums
4× 20, 4× 21, 4× 22 in turn. Analogously, in Table 5 we have marked the steps of height 3
starting in rows 4 and 8, appropriate sums on the steps are 5× 20 and 5× 21, respectively.
We have marked in blue the rule of generating elements in Tables 4 and 5.

Table 4. Coefficients of ln(3, x) in ascending order.

n x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

0 3
1 0 1
2 0 0 1
3 3 0 0 1
4 0 4 0 0 1
5 0 0 5 0 0 1
6 3 0 0 6 0 0 1
7 0 7 0 0 7 0 0 1
8 0 0 12 0 0 8 0 0 1
9 3 0 0 18 0 0 9 0 0 1

Table 5. Coefficients of ln(4, x) in ascending order.

n x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

0 4
1 0 1
2 0 0 1
3 0 0 0 1
4 4 0 0 0 1
5 0 5 0 0 0 1
6 0 0 6 0 0 0 1
7 0 0 0 7 0 0 0 1
8 4 0 0 0 8 0 0 0 1
9 0 9 0 0 0 9 0 0 0 1

3. Generating Function, Extension for Negative Integers and Some Identities

Using the standard method we can derive a generating function for the distance Lucas
polynomials ln(k, n).
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Theorem 5. Let n ≥ 0, k ≥ 2 be integers. The generating function of the distance Lucas

polynomials sequence {ln(k, x)} is given by the formula h(t) =
k + (1− k)xt

1− xt− tk .

Proof. Let h(t) =
∞
∑

n=0
ln(k, x)tn. By recurrence relation (3) we get

h(t) = l0(k, x) + l1(k, x)t + . . . + lk−1(k, x)tk−1 +
∞

∑
n=k

ln(k, x)tn

= k + xt + . . . + xk−1tk−1 +
∞

∑
n=k

[ xln−1(k, x) + ln−k(k, x) ]tn

= k + xt + . . . + xk−1tk−1 + xt
∞

∑
n=k

ln−1(k, x)tn−1 + tk
∞

∑
n=k

ln−k(k, x)tn−k

= k + xt + . . . + xk−1tk−1 + xt
∞

∑
n=k−1

ln(k, x)tn + tk
∞

∑
n=0

ln(k, x)tn

= k + xt + . . . + xk−1tk−1 + xt(
∞

∑
n=0

ln(k, x)tn − k− xt− . . .− xk−2tk−2) + tk
∞

∑
n=0

ln(k, x)tn

= k + (1− k)xt + xt
∞

∑
n=0

fn(k, x)tn + tk
∞

∑
n=0

fn(k, x)tn = k + (1− k)xt + xth(t) + tkh(t).

Thus,

h(t) =
k + (1− k)xt

1− xt− tk ,

which ends the proof.
Note that for k = 2 by Theorem 5 and the fact that ln(2, x) = ln(x) we obtain a function

h(t) =
2− xt

1− xt− t2 being a generating function for the classical Lucas polynomials ln(x).

The distance Lucas polynomials ln(k, x) can be extended to negative integers n. Let
k ≥ 2, n ≥ 0 be integers. Then

l−n(k, x) = l−n+k(k, x)− xl−n+k−1(k, x) for n ≥ 0 (6)

with initial conditions l0(k, x) = k, ln(k, x) = xn, for n = 1, 2 . . . , k− 1.
Table 6 includes the first few elements of l−n(k, x) polynomials for special k and

negative n.

Table 6. Distance Lucas polynomials l−n(k, x).

k
n −6 −5 −4 −3 −2 −1 0

ln(2, x) x6 + 6x4 + 9x2 + 2 −x5 − 5x3 − 5x x4 + 4x + 2 −x3 − 3x x2 + 2 −x 2

ln(3, x) −2x3 + 3 −5x 2x2 3 −2x 0 3

ln(4, x) 3x2 0 4 −3x 0 0 4

ln(5, x) 0 5 −4x 0 0 0 5

Notice that setting k = 2 in (6), we get the well-known extension of Lucas polynomials
for negative numbers

l−n(2, x) = (−1)nln(2, x).

For k = 2 and x = 1 we obtain the extension of classical Lucas numbers for negative numbers.
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Theorem 6. Let k ≥ 2, n ≥ 0 be integers. Then

(i) x
n
∑

i=1
lik−1(k, x) = lnk(k, x)− l0(k, x),

(ii) x
n
∑

i=0
lik(k, x) = lnk+1(k, x) + (k− 1)x,

(iii) x
n
∑

i=0
li(k, x) =

n+1
∑

i=n+2−k
li(k, x) + (k− 1)x− k for n ≥ k− 2,

(iv) ln(k, x) =
k−1
∑

i=0
xiln−k−i(k, x) + xkln−k(k, x),

(v) xln(k, x) = x2ln−1(k, x) + ln−k+1(k, x)− ln−2k+1(k, x) for n ≥ 2k− 1,
(vi) ln(k, x) = fn(k, x) + (k− 1) fn−k(k, x).

Proof. At the beginning we prove the identity (i). Using the recurrence relation (3)
we obtain

xln−1(k, x) = ln(k, x)− ln−k(k, x), n ≥ k.

Hence, for integers k− 1, 2k− 1, . . . , nk− 1, we get

xlk−1(k, x) = lk(k, x)− l0(k, x)

xl2k−1(k, x) = l2k(k, x)− lk(k, x)

xl3k−1(k, x) = l3k(k, x)− l2k(k, x)

...

xlnk−1(k, x) = lnk(k, x)− l(n−1)k(k, x)

Adding these equalities we have

x
n

∑
i=1

lik−1(k, x) = lnk(k, x)− l0(k, x).

Thus the identity (i) is proved.
Now we prove the identity (ii) by induction on n. If n = 0, then we have xl0(k, x) =

xk = x + xk− x = l1(k, x) + (k− 1). Hence, the identity is true for n = 0. Assume that
n ≥ 1 and the equality (ii) is true for an arbitrary n. We will prove that it holds for n + 1.

By induction hypothesis and the recurrence relation (3) we have

x
n+1

∑
i=0

lik(k, x) = x
n

∑
i=0

lik(k, x) + xl(n+1)k(k, x) = lnk+1(k, x) + (k− 1)x + xl(n+1)k(k, x)

= l(n+1)k+1(k, x) + (k− 1)x.

Thus the identity (ii) is proved.
Analogously we can prove the identity (iii).
To prove the identity (iv) we use the definition of distance Lucas polynomials (3) by

k− 1 times. Then we obtain

ln(k, x) = xln−1(k, x) + ln−k(k, x) = x2ln−2(k, x) + xln−k−1(k, x) + ln−k(k, x)

= x2ln−2(k, x) + xln−k−1(k, x) + ln−k(k, x)

= x3ln−3(k, x) + x2ln−k−2(k, x) + xln−k−1(k, x) + ln−k(k, x) =
...

=
k−1

∑
i=0

xiln−k−i(k, x) + xkln−k(k, x).
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Hence the identity (iv) holds.
Using the recurrence relation (3) once again we can prove the identity (v). Let

n ≥ 2k− 1, k ≥ 2 be integers. Then

x2ln−1(k, x) + ln−k+1(k, x)− ln−2k+1(k, x)

= x2ln−1(k, x) + xln−k(k, x) + ln−2k+1(k, x)− ln−2k+1(k, x)

= x2ln−1(k, x) + xln−k(k, x) = xln(k, x).

Thus the identity (v) is proved.
The last identity (vi) follows from the recursion of the Theorem 2 and the definition

of the Fibonacci polynomials.
Thus the theorem is proved.
Note that for k = 2 we obtain the identities for Lucas polynomials and for x = 1, we

obtain well-known identities for Lucas numbers. Moreover, for x = 1 and n ≥ k, we obtain
some new identities for generalized Lucas numbers L(k, n).

Proving analogously as Theorem 6, we get the following identities for polynomials
l−n(k, x) for negative integers.

Theorem 7. Let n ≥ 1, k ≥ 2 be integers. Then

(vii) x
n
∑

i=1
l−ik(k, x) = −l−nk−k+1(k, x)− (k− 1)x,

(viii) x
n
∑

i=1
l−i(k, x) = −

−n
∑

i=−n−k+1
li(k, x)− (k− 1)x + k,

(ix) x
n
∑

i=1
l−ik+1(k, x) = −l−nk−k+2(k, x) for k ≥ 3.

4. Matrix Generators

In this section we show how to get the distance Lucas polynomials by a matrix method.
We use a notion of general Q- matrix introduced by J. Ivie [23]. The technique described
in [23] originally refered to generalized Fibonacci numbers but it was extended to the
polynomial case by many authors (see for example [7,10,24]).

A general Q-matrix associated with recurrence relation (3) is a square k× k matrix of
the form

Qk(x) =


x 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

.

Now for a fixed integer k ≥ 2 let us define a matrix Bk(x) of order k being the matrix
of initial conditions

Bk(x) =


lk−1(k, x) lk−2(k, x) · · · l1(k, x) l0(k, x)
lk−2(k, x) lk−3(k, x) · · · l0(k, x) l−1(k, x)

...
...

. . .
...

...
l1(k, x) l0(k, x) · · · l−k+3(k, x) l−k+2(k, x)
l0(k, x) l−1(k, x) · · · l−k+2(k, x) l−k+1(k, x)

.
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Theorem 8. Let k ≥ 2, n ≥ 1 be integers. Then

Bk(x)Qn
k (x) =


ln+k−1(k,x) ln+k−2(k,x) ··· ln+1(k,x) ln(k,x)
ln+k−2(k,x) ln+k−3(k,x) ··· ln(k,x) ln−1(k,x)

...
...

. . .
...

...
ln+1(k,x) ln(k,x) ··· ln−k+3(k,x) ln−k+2(k,x)

ln(k,x) ln−1(k,x) ··· ln−k+2(k,x) ln−k+1(k,x)

. (7)

Proof (by induction on n). Let k ≥ 2 be an integer. If n = 1, then by simple calculations
and recursion (3) we get (7). Assume now that the statement is true for all integers 1, . . . , n.
We will show that it is also true for an integer n + 1.

Since Bk(x)Qn+1
k (x) = Bk(x)Qn

k (x)Qk(x), thus by our assumption and the recurrence
relation (3) we obtain

Bk(x)Qn+1
k (x) =


ln+k−1(k,x) ln+k−2(k,x) ··· ln+1(k,x) ln(k,x)
ln+k−2(k,x) ln+k−3(k,x) ··· ln(k,x) ln−1(k,x)

...
...

. . .
...

...
ln+1(k,x) ln(k,x) ··· ln−k+3(k,x) ln−k+2(k,x)

ln(k,x) ln−1(k,x) ··· ln−k+2(k,x) ln−k+1(k,x)




x 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0



=


xln+k−1(k,x)+ln(k,x) ln+k−1(k,x) ··· ln+1(k,x)

xln+k−2(k,x)+ln−1(k,x) ln+k−2(k,x) ··· ln(k,x)
...

...
. . .

...
xln+1(k,x)+ln−k+2(k,x) ln+1(k,x) ··· ln−k+3(k,x)

xln(k,x)+ln−k+1(k,x) ln(k,x) ··· ln−k+2(k,x)



=


ln+k(k, x) ln+k−1(k, x) · · · ln+2(k, x) ln+1(k, x)

ln+k−1(k, x) ln+k−2(k, x) · · · ln+1(k, x) ln(k, x)
...

...
. . .

...
...

ln+2(k, x) ln+1(k, x) · · · ln−k+4(k, x) ln−k+3(k, x)
ln+1(k, x) ln(k, x) · · · ln−k+3(k, x) ln−k+2(k, x)

.

Theorem 9. Let k ≥ 2, n ≥ 1 be integers. Then

det ( Bk(x)) = (−1)b
k
2 c[(k− 1)k−1xk + kk]. (8)

Proof. By definition of the matrix Bk(x), initial conditions for the distance Lucas polynomi-
als, the recursion (6) and observation (4) follows

Bk(x) =


xk−1 xk−2 · · · x k
xk−2 xk−3 · · · k 0

...
...

. . .
...

...
x k · · · 0 0
k 0 · · · 0 (1− k)x

.

To calculate determinant of the matrix Bk(x) we initially write it in the form

det(Bk(x)) = (−1)b
k
2 c

∣∣∣∣∣∣∣∣∣∣∣

k x · · · xk−2 xk−1

0 k · · · xk−3 xk−2

...
...

. . .
...

...
0 0 · · · k x

(1− k)x 0 · · · 0 k

∣∣∣∣∣∣∣∣∣∣∣
.
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Continuing calculations, by properties of determinants, we finally get the equality 8

Corollary 2. Let k ≥ 2, n ≥ 1 be integers. Then

det (Bk(x) Qn
k (x)) = (−1)n(k+1)+b k

2 c[(k− 1)k−1xk + kk]. (9)

Proof. It follows immediatelly by Theorem 9, Cauchy’s theorem for determinants and the
fact that det Qn

k (x) = (−1)n(k+1).
Note that for k = 2 by Theorem 8, Corollary 2 and the equallity ln(2, x) = ln(x)

we obtain

det
[

ln+1(x) ln(x)
ln(x) ln−1(x)

]
= (−1)n+1(x2 + 4),

that gives the well-known Cassini’s identity for the classical Lucas polynomials

ln+1(x)ln−1(x)− l2
n(x) = (−1)n+1(x2 + 4).
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