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Abstract: Innovations in technology assist the manufacturing processes in producing high-quality
products and, hence, become a greater challenge for quality engineers. Control charts are frequently
used to examine production operations and maintain product quality. The traditional charting
structures rely on a response variable and do not incorporate any auxiliary data. To resolve this
issue, one popular approach is to design charts based on a linear regression model, usually when the
response variable shows a symmetric pattern (i.e., normality). The present work intends to propose
new generalized linear model (GLM)-based homogeneously weighted moving average (HWMA) and
double homogeneously weighted moving average (DHWMA) charting schemes to monitor count
processes employing the deviance residuals (DRs) and standardized residuals (SRs) of the Poisson
regression model. The symmetric limits of HWMA and DHWMA structures are derived, as SR and
DR statistics showed a symmetric pattern. The performance of proposed and established methods
(i.e., EWMA charts) is assessed by using run-length characteristics. The results revealed that SR-based
schemes have relatively better performance as compared to DR-based schemes. In particular, the
proposed SR-DHWMA chart outperforms the other two, namely SR-EWMA and SR-HWMA charts,
in detecting shifts. To illustrate the practical features of the study’s proposal, a real application
connected to the additive manufacturing process is offered.

Keywords: DHWMA; Poisson regression model; HWMA; standardized residuals; deviance residuals;
statistical process monitoring

1. Introduction

For the surveillance of a process, the samples from a manufacturing line are taken and
examined to guarantee that the product’s standard is satisfactory. Commonly, the variations
in the quality aspects of any process are of two types. One is assignable cause variation,
which can be detected and eliminated. Another is common cause variation, which is the
inherent part of a manufacturing process and cannot be removed [1,2]. Control charts are
conventional real-time statistical process control (SPC) tools utilized to differentiate such
variations in the quality characteristics of a process. One simple control chart incorporates
two horizontal lines showing the lower and upper control limits (i.e., LCL and UCL). If the
plotted sample points are between the two limits, the process is deemed to be in control
(IC), while if they are beyond the limits, the process is regarded as being out of control
(OOC) [2,3]. Some production processes generate count data or the data which take only
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discrete and non-negative integers. The most common method to model the count data
is the Poisson distribution [4], which can be employed to find how often the independent
events are likely to happen within a specific time frame.

In the literature, many procedures have been recommended to examine Poisson dis-
tributed counts. The classical c and u control charts are the most commonly used techniques
to surveil the Poisson distributed process [5]. For the count of nonconformities, Khoo [6]
discussed the Poisson moving average (MA) control chart and found a new approach better
than the c chart. Several researchers introduced different versions of the Poisson Exponen-
tially Weighted Moving Average (EWMA) control chart (i.e., PEWMA chart) and revealed
that the PEWMA chart’s ARL capabilities were more satisfactory than the Shewhart c
chart’s [7–9]. The PEWMA chart’s idea is further extended to the Poisson double EWMA
(PDEWMA) structure by Zhang et al. [10]. Shu et al. [11] originated the one-sided Poisson
EWMA chart that spots upward shifts in Poisson rates. Shewhart- and EWMA-based
control charts were proposed by Yamauchi et al. [12] for examining the ratio of two Poisson
rates. Weiß [13] presented a s-EWMA chart to observe the serially dependent Poisson
counts. Zhou et al. [14] and Zhou et al. [15] discussed EWMA charts for Poisson procedures
in relation to unequal sample sizes. Sheu et al. [16] created generally weighted moving aver-
age (GWMA) charts to supervise Poisson observations. Chiu et al. [17] extended the Poisson
GWMA chart to the Poisson double GWMA chart with rapid initial response properties.
An EWMA control chart formed on ranked set-sampling techniques to observe Poisson
processes were discussed by Abujiya et al. [18]. Lucas [19] and White et al. [20] suggested
a Poisson cumulative sum (CUSUM) chart to spot small changes in the Poisson process
mean level, and found it excellent relative to the c chart. Abujiya et al. [21] developed
CUSUM control charts to evaluate the location parameter of a Poisson procedure exerting
ranked set sampling. Jiang et al. [22] discussed a class of weighted CUSUM schemes for
supervising Poisson processes in relation to unequal sample sizes. Moreover, for effective
monitoring of non-confirming objects, Abbasi [23] proposed a Poisson progressive mean
(PPM) control chart, which was further continued by Alevizakos et al. [4], utilizing the
double progressive mean statistic. The literature on multivariate Poisson processes can be
found in References [24–27].

There are some processes in which the quality is explained by a relationship between
the variable of interest and a covariate known as a profile. The Poisson regression model
is utilized to fit the data with covariates when the variable of interest follows the Poisson
distribution. In this favor, Amiri et al. [28] evaluated the T2 based methods for supervising
Poisson response profiles. The influence of parameterization on the surveillance of Poisson
regression profiles was analyzed by Maleki et al. [29]. Kuo et al. [30] presented a chart
for the multivariate Poisson process by using a multiple linear regression model. Poisson
regression based EWMA control chart was studied by Wen et al. [31]. Some other GLM-
based control charts are presented in References [32–36]. In the literature, most of the
control charts are derived from the residuals calculated by GLM modeling. For instance,
Park et al. [37] studied control chart systems formed on estimated randomized quantile
residuals of a fitted regression model. Mammadova et al. [38] proposed the control charts
that use ridge deviance residuals as a basis for assessing both Poisson and COM-Poisson
profiles. Marcondes Filho et al. [39] and Park et al. [40] studied deviance residual control
charts for supervising count data by incorporating GLM together with principal component
analysis. Jamal et al. [41] designed EWMA and CUSUM structures formulated on deviance
and randomized quantile residuals of the COM-Poisson regression model.

Skinner et al. [42] examined a semiconductor process using control charts comprising
generalized linear models. They studied complex datasets through multiple inputs and
outputs and showed that GLM-based control charts outperform multiple traditional c
charts to detect changes in the mean of counts. Skinner et al. [43] suggested a control
chart that depends on a generalized linear model known as R-chart to examine deviance
residuals resulting from a Poisson regression model. Furthermore, a novel link function
for the Poisson regression model is offered by Asgari et al. [44]. They developed Shewhart
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and EWMA control charts to monitor standardized residuals of Poisson regression (that is,
SR-Shewhart and SR-EWMA charts). They found the SR-EWMA chart to be superior to the
SR-Shewhart chart.

Moreover, Asgari et al. [44] also extended the R-chart proposed by Skinner et al. [43]
into the EWMA structure and called it the R-EWMA chart. The aforementioned GLM-
based strategies have focused on Shewhart, EWMA and CUSUM structures. In order to
improve the surveillance of the manufacturing process, we designed new homogeneously
weighted moving average (HWMA) and double homogeneously weighted moving average
(DHWMA) type control charts to monitor deviance and standardized residuals of the
Poisson regression model (that is, R/SR-HWMA and R/SR-DHWMA charts). Many
researchers have recently discovered that the HWMA structure has a superior detection
ability to the EWMA chart [45–51]. Moreover, another advantage of R/SR-HWMA and
R/SR-DHWMA charts is that they have symmetric limits, as deviance and standardized
residuals show symmetric behavior. Furthermore, the proposed control charts’ ability is
assessed by means of Run Length (RL) and compared with existing R-EWMA and SR-
EWMA charts. In addition, the suggested procedures are applied to a real-life dataset that
belongs to the 3D manufacturing process.

The remainder of the article is arranged as follows: The count model used in this study
is described in Section 2. The formation of the suggested control charts that depend on
Poisson model’s deviance residuals and standardized residuals is covered in Section 3. In
Section 4, the performance evaluations of the proposed schemes based on a comprehensive
simulation study are provided. Moreover, Section 5 comprises an application of proposed
schemes to a real-life dataset that belongs to the 3D manufacturing process. Section 6
concludes with a summary, conclusion and recommendations for the future.

2. The Poisson Regression Model

The ordinary least square (OLS) technique is regarded as the root for control charts
that are based on a model, but the use of OLS declines when the variable of interest is not
normally distributed. The control charts that originated from the generalized linear model
come in handy when the variable of interest is a part of the exponential family. Binomial,
Gaussian, Gamma, Poisson, Inverse Gaussian and Exponential distributions are all part of
the exponential family. If Y is a random variable with a Poisson distribution, the probability
mass function for a specified value of Yj = yj is defined as follows [52]:

pr
(
Yj = yj

)
=

e−µj µj
yj

yj!
; y = 0, 1 , 2, . . . , ; j = 1, 2, . . . , n, (1)

where µj > 0 denotes the mean rate. Following the property of equi-dispersion, the Poisson
distribution’s mean and variance are defined as follows [53]:

E
(
Yj
)
= Var

(
Yj
)
= µj. (2)

In Poisson regression, the mean of the dependent variable is linked to a linear mixture
of covariates by a link function. Let

(
yj, xj

)
be an observation and yj, given xj has Poisson

distribution. Thus, the model can be expressed as follows [54]:

ln
(
µj
)
= X′jβ; µj = eX′j β, (3)

where µj is the mean vector, X′j indicates the transpose of the covariate vector, and β repre-
sents the unknown parameter’s vector. The log-likelihood function of Poisson regression is
defined as follows:

ln(l(Y, β)) = ∑n
j=1

(
yj
(
X́J β

)
− exp( ´XJ β− ln yj!

)
.
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The overall deviance can be formulated as follows:

D = 2
n

∑
j=1

[
yj log

(
yj

exp
( ´XJ β

))− (yj − exp
( ´XJ β

))]
. (4)

Thus, the deviance residuals can be obtained as follows [43]:

rj = sign
[
yj − exp

(
X′ jβ

)]{
2

[
yj ln

(
yj

exp
(
X′ jβ

))− [yj − exp
(
X′ jβ

)]]} 1
2

. (5)

The deviance residuals are asymptotically normally distributed [55]. Furthermore, the
Poisson regression model’s standardized residuals can be given by the following [44]:

SRj =
yj − eX′j β√

eX′j β
. (6)

3. Monitoring Methods Based on Poisson Model

We provide the description of existing structures named by R-EWMA and SR-EWMA
charts in this section. Moreover, we describe the design of the newly suggested methods
formed on deviance residuals and standardized residuals of the Poisson regression model
(expressed by Equations (5) and (6)).

3.1. Existing Methods Based on the Poisson Model

Asgari et al. [44] presented model-based EWMA control charts to examine deviance
residuals (r) and standardized residuals (SR) of the Poisson process. The notation “R”
is used throughout the text to represent Poisson residuals, such as R = r for deviance
residuals, and R = SR is used for standardized residuals. The EWMA statistic for observing
R is given as follows:

Zj = λRj + (1− λ)Zj−1, (7)

where λ represents the smoothing parameter chosen between zero and one. The target
mean that is, Z0 = E(R) will be used as the initial value for Zj. The control limits of the
EWMA model-based control chart are given by the following:

LCL = E(R)− LE1

√(
λ

2−λ

)
Var(R),

UCL = E(R) + LE2

√(
λ

2−λ

)
Var(R),

(8)

where LE1 and LE2 are the control limit constants that are set based on the value of λ and
desired in-control average run length, ARL0. When any plotting statistic goes beyond the
limits, the chart declares an out-of-control condition; otherwise, the process is stated as
being in control. It is noticed that the above EWMA charting structure is known by the
R-EWMA chart for R = r, while it is said to be the SR-EWMA chart for R = SR.

3.2. Suggested Methods Based on the Poisson Model

The EWMA chart is one of the memory control charts, as it takes advantage of past
information, together with present information [56,57], and is designed to identify small-to-
moderate alterations rapidly in the process [58]. For a control chart, one expects to have
the smallest viable value of IC average run length, ARL1, for a fixed level of OOC average
run length (ARL0). To achieve this goal, various modifications of the EWMA chart were
suggested [59–63]. Recently, Abbas [64] proposed an enhancement regarding the EWMA
control chart named the homogeneously weighted moving average (HWMA) control chart.
Later, to improve the functionality of the HWMA chart, Alevizakos et al. [65] presented a
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double homogeneously weighted moving average (DHWMA) chart. As we always keep
searching for improvements in examining the small and moderate alterations in the process.
Therefore, we developed HWMA and DHWMA model-based control charts, and they are
discussed in the subsequent section.

3.2.1. R/SR-HWMA Control Charts

The HWMA statistic for the Poisson regression derived from the residuals R (that is
R = r or R = SR) stated by Equations (5) and (6) is:

Hj = λRj + (1− λ)Rj−1, (9)

where Rj is the jth residual; λ indicates the smoothing parameter, such that 0 < λ ≤ 1; and
Rj−1 represents the mean of residuals of preceding (j− 1) residuals. The value of R0 is the
same as the target mean, i.e., E(R). Furthermore, for any value of j, the mean of Hj statistic
is equal to E(R), and the variance is stated as follows:

Var
(

Hj
)
=


√

λ2Var(R), i f j = 1,√(
λ2 + (1−λ)2

j−1

)
Var(R) , i f j > 1.

Hence, the HWMA model-based control chart’s control limits would be as follows:

LCL = E(R)− Lh1

√
Var

(
Hj
)
,

UCL = E(R) + Lh2

√
Var

(
Hj
)
,

(10)

where Lh1 and Lh2 are the charting constants and are set out according to the required
value of ARL0. When R = r, the chart is called the R-HWMA control chart, whereas, when
R = SR, the chart is known as the SR-HWMA control chart. The HWMA chart detects the
OOC situation when any plotting statistic

(
Hj
)

lies beyond the limits, or else the process is
stated as IC.

3.2.2. R/SR-DHWMA Control Charts

The charting statistic of DHWMA that makes use of current and past values of residu-
als is defined as follows: {

Hj = λRj + (1− λ)Rj−1,
DHj = λHj + (1− λ)H j−1,

(11)

where λ denotes the smoothing parameter, Rj is the jth residual and R0 = H0 = E(R). For
any value of j, the mean of DHj statistic equals E(R), and the variance is defined as follows:

Var
(

DHj
)
=



λ4Var(R), i f j = 1,
λ2(λ2 + 4(1− λ)2Var(R), i f j = 2,[

λ4 + 4λ2(1−λ)2

(j−1)2 +

(1−λ)2

(j−1)2

j−2
∑

u=1

(
2λ + (1− λ)

j−2
∑

k=u

1
k

)2
Var(R), i f j > 2.

The derivation of the variance of DHWMA statistic is given in the appendix of Ale-
vizakos et al. [65]. Moreover, the control limits of the suggested DHWMA-model-based
control charts are expressed as follows:

LCL = E(R)− Ldh1

√
Var

(
DHj

)
,

UCL = E(R) + Ldh2

√
Var

(
DHj

)
,

(12)
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where Ldh1 and Ldh2 are the charting constants, which are carefully selected according to
the pre-specified value of ARL0. When R = r, the chart is called the R-DHWMA control
chart, whereas when R = SR, the chart is known as the SR-DHWMA control chart. If any
value of the charting statistic (DHj) surpasses the limits, the procedure is declared to be
OOC; otherwise, the procedure is considered to be IC.

4. Assessment of Suggested Methods Using Simulation

This section provides the design of the simulated Poisson model and algorithm for
obtaining coefficients of control limits against a pre-specified choice of ARL0. Moreover,
this section also includes a comparison of the proposed charts to existing R-EWMA and
SR-EWMA charts.

4.1. The Simulated Poisson Model

The simulated data are initiated by using the following Poisson model:

yj ∼ Poisson
(
µj
)

(13)

where µj = exp
(

β0 + β1X1j
)
; j = 1, 2, . . . n delineates the mean function. Firstly, 1000 ob-

servations (i.e., n = 1000) for the independent variable X1 are generated by normal distribu-
tion (e.g., X1 ∼ N(3, 1)), with the parameters β0 and β1 being equal to 3 and 2, respectively.
As µj is the Poisson model parameter, and the key objective is to find an increase in the
mean, the ability of the suggested charts is assessed by imposing different shifts in the
process mean, µj. The choice of shifts consists of the following:

(a) Additive and ablative shifts in the process mean through changing β0 to β0 ± δ and
β1 to β1 ± δ.

(b) Simultaneous positive and negative shifts in β0 and β1. For example, β0 changes to
β0 + δ, and, at the same time, β1 changes to β1 − δ.

To analyze the detection ability of control charts, several evaluation measures have
been suggested in previous studies. Mahmood [2], Kinat et al. [34] and Jamal et al. [41]
utilized run-length (RL) features, including the average of run length (ARL), median of
run length (MDRL) and standard deviation of run length (SDRL) to evaluate the control
charts emanated from models under COM-Poisson, Inverse Gaussian and Zero-inflated
models. This work also analyzes the proposed HWMA and DHWMA charts, utilizing
ARL and SDRL measures. The mean number of points prior to a prompt is known as the
ARL. An in-control average run length is indicated by ARL0, and ARL1 is used to denote
out-of-control average run-length, ARL0 is assumed to be fixed when comparing the two
charts, while the ARL1 is compared. The chart with smaller values of ARL1 is taken into
consideration as a superior chart, while the SDRL is utilized to define the dispersion in a
run length.

4.2. Algorithm for Control Limit Constants

All charts’ control limits, as described in Section 3, rely on constants, including LE1,
LE2, Lh1, Lh2, Ldh1 and Ldh2. The steps for obtaining the control-limit constants for each
chart at fixed ARL0 = 200 are as follows:

a. Firstly, use the simulated Poisson model described in Section 4.1 to create a sample
data collection of size n.

b. Run the Poisson regression model to the simulated dataset and calculate the deviance
residuals (r) by Equation (5) and standardized residuals (SR) by using Equation (6).
Moreover, determine the mean and standard error of r and SR.

c. For all EWMA charts, specify the arbitrary values of LE1 and LE2 and decide on Lh1
and Lh2 for the HWMA charts. In the same way, set the arbitrary values of Ldh1 and
Ldh2 for the DHWMA charts. Furthermore, get the control chart statistics and control
limits by utilizing the calculations of step b and fixed values.
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d. For EWMA charts, use the particular r and SR for the calculation of EWMA statis-
tics given in Equation (7) and plot them over the specific control limits stated in
Equation (8). For HWMA charts, exert the specific r and SR to obtain HWMA statis-
tics given by Equation (9) and plot them against their respective control limits in
Equation (10). Likewise, for DHWMA control charts, utilize the specific r and SR for
getting DHWMA statistics from Equation (11) and plot them against the control limits
in Equation (12).

e. Iterate steps a–d several times to obtain the desired ARL0.
f. If the desired ARL0 is not attained, then change the prior random values and perform

steps a–e repeatedly until the desired ARL0 is achieved.

The control limit constants with respect to fixed ARL0 = 200 and smoothing parameter
λ = 0.25 are described in Table 1.

Table 1. Control limit constants for existing and proposed control charts.

EWMA HWMA DHWMA

R
LE1 3.783 Lh1 7 Ldh1 8.807

LE2 3.783 Lh2 4.936 Ldh2 8.807

SR
LE1 2.686 Lh1 2.766 Ldh1 1.7385

LE2 2.686 Lh2 2.766 Ldh2 1.7385

4.3. Analysis and Evaluation

This section compares the efficiency of the suggested and existing chart structures. We
used the findings of a large-scale simulation study with 104 repetitions under two sorts of
shifts to compare the charts (see Section 4.2). Tables 2–4 shows the results of evaluating all
charts by using the ARL and SDRL criteria.

Table 2. ARLs and SDRLs for control charts under changes in β0.

Shift

EWMA HWMA DHWMA

R SR R SR R SR

ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

β0 + δ

0 200.30 197.56 200.11 192.53 200.72 155.21 201.48 183.24 200.18 28.16 200.73 95.50

0.0000005 198.89 194.83 145.74 142.73 198.89 153.03 134.17 122.36 200.46 28.62 133.08 76.71

0.000001 204.99 201.90 95.91 94.36 200.68 154.80 85.38 77.62 200.07 28.65 76.00 45.75

0.0000025 201.42 197.27 42.48 41.66 204.36 162.10 37.75 33.30 200.32 29.07 27.28 16.14

0.000005 201.98 197.45 21.66 20.48 198.69 152.78 20.47 17.48 200.42 28.82 10.77 6.38

0.00001 199.27 193.77 11.23 9.92 199.02 152.93 11.05 9.36 199.83 28.67 4.19 2.25

0.00005 199.98 198.76 3.68 2.81 198.01 152.17 3.64 2.85 200.19 28.42 1.59 0.50

0.0005 185.27 182.98 1.50 0.79 184.90 140.58 1.44 0.81 195.80 27.75 1.20 0.40

β0 − δ

0 196.43 194.35 202.66 193.58 200.98 155.92 198.10 181.73 199.99 28.68 199.82 96.20

0.0000005 201.47 197.90 146.90 142.62 197.77 153.54 132.18 121.61 199.41 28.35 131.76 76.82

0.000001 201.21 197.32 97.14 95.43 199.06 154.11 85.01 76.44 200.29 28.74 76.11 46.67

0.0000025 202.73 198.56 42.41 41.40 197.94 155.06 38.32 33.85 200.46 28.34 27.27 16.38

0.000005 202.70 196.03 21.85 20.24 201.45 153.51 19.77 17.15 200.32 28.55 10.86 6.37

0.00001 200.78 195.53 11.32 10.20 199.34 156.31 10.97 9.25 200.12 28.67 4.24 2.24

0.00005 199.72 195.51 3.68 2.73 199.56 156.37 3.67 2.88 200.41 28.75 1.58 0.50

0.0005 184.43 180.99 1.49 0.78 186.49 142.91 1.44 0.81 195.59 27.78 1.21 0.40



Symmetry 2022, 14, 122 8 of 14

Table 3. ARLs and SDRLs for control charts under changes in β1.

Shift

EWMA HWMA DHWMA

R SR R SR R SR

ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

β1 + δ

0 200.14 196.16 201.74 191.29 201.90 156.34 200.78 183.48 199.94 28.83 199.87 97.03

0.00000005 203.31 199.50 175.05 167.66 202.61 155.76 164.11 149.41 199.88 28.65 171.99 91.65

0.0000001 202.51 200.28 138.87 135.78 198.28 153.52 126.51 115.16 200.50 28.99 129.64 77.71

0.00000015 200.51 196.32 112.28 111.56 201.04 158.15 99.76 90.61 200.41 28.83 97.03 61.19

0.0000003 198.69 196.46 67.03 65.81 199.21 155.28 60.56 54.37 199.69 28.51 50.54 32.26

0.000001 199.89 194.59 23.30 21.69 198.74 153.55 21.89 18.98 200.30 28.34 11.48 7.12

0.00001 201.19 196.18 4.39 3.50 202.03 157.18 4.47 3.62 200.18 28.16 1.66 0.50

0.0001 183.82 181.25 1.75 1.04 184.40 142.18 1.73 1.10 195.74 27.70 1.31 0.46

β1 − δ

0 198.39 192.64 201.09 194.72 197.18 153.36 201.01 184.64 200.16 28.73 199.19 95.66

0.00000005 203.13 200.23 172.29 170.78 200.93 154.26 163.21 152.95 200.18 28.23 171.51 91.44

0.0000001 202.01 197.53 137.85 135.22 202.95 157.51 123.82 113.51 200.06 28.36 131.38 76.47

0.00000015 199.36 194.81 112.78 110.66 199.94 154.91 100.46 91.45 199.74 28.52 96.65 61.40

0.0000003 199.37 194.32 66.90 64.74 201.29 155.11 59.67 54.14 199.67 28.69 50.25 31.29

0.000001 203.90 201.18 23.99 22.84 198.49 152.52 22.13 19.49 200.50 28.58 11.52 7.04

0.00001 200.41 196.42 4.47 3.56 198.20 153.96 4.37 3.57 199.89 28.55 1.66 0.50

0.0001 182.13 178.22 1.76 1.07 187.37 144.56 1.69 1.09 195.53 27.80 1.30 0.46

Table 4. ARLs and SDRLs for control charts under simultaneous changes in β0 and β1.

Shift

EWMA HWMA DHWMA

R SR R SR R SR

ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

β0 + δ, β1 − δ

0 199.59 197.78 200.86 189.18 198.53 155.62 196.38 180.34 200.46 28.75 200.76 96.81

0.0000005 199.05 194.44 36.97 35.47 198.58 153.84 33.16 29.02 199.90 28.76 22.38 13.65

0.000001 203.53 200.27 19.89 18.82 199.57 153.63 18.79 16.52 200.03 28.72 8.83 5.33

0.000005 199.21 193.84 5.77 4.76 199.33 157.21 5.82 4.79 200.02 28.62 1.93 0.72

0.00005 194.40 189.60 2.00 1.29 193.47 146.96 1.91 1.30 198.66 28.34 1.35 0.48

0.0005 44.50 39.63 1.21 0.49 53.00 35.83 1.16 0.44 122.78 23.60 1.09 0.29

β0 − δ, β1 + δ

0 199.26 195.76 200.67 191.52 201.09 154.94 199.70 181.95 200.19 29.03 199.03 96.55

0.0000005 204.28 198.90 36.98 35.66 198.95 153.08 33.38 29.48 199.58 28.92 22.47 13.81

0.000001 200.66 199.06 20.03 18.55 198.39 153.35 18.85 16.13 200.07 28.63 8.69 5.36

0.000005 199.27 195.16 5.85 4.94 201.82 157.47 5.80 4.88 200.30 28.41 1.92 0.72

0.00005 194.31 190.36 2.01 1.28 194.14 152.72 1.93 1.33 198.41 28.35 1.37 0.48

0.0005 43.86 39.51 1.21 0.47 53.16 35.78 1.17 0.48 122.61 23.59 1.09 0.29

4.3.1. Evaluation Based on Alterations in β0

For all charts, the outcomes of the indirect shifts through altering β0 to β0 ± δ are
reported in Table 2. The results show that charts extracted by standardized residuals (i.e.,
SR-EWMA, SR-HWMA and SR-DHWMA) are better at identifying indirect shifts in the
process mean because of changes in β0. When δ = +0.000001, for instance, the ARL of the
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R-EWMA chart is delineated around 204.99, a higher value in contrast to the ARL value
of the SR-EWMA chart, i.e., 95.91. Moreover, a shift of δ = −0.00005 may result in 0.44
and 196.33 decreases in the ARL of the R-HWMA and SR-HWMA charts, respectively.
Similarly, the ARLs of the R-DHWMA and SR-DHWMA charts show a 4.2 and 198.8 drop,
respectively, due to shifting δ = +0.0005. Moreover, the SR-DHWMA chart is noticed to
surpass the SR-EWMA and SR-HWMA procedures in detecting the shifts. For instance,
when shift δ = 0.0000025, the ARL of the SR-EWMA chart is reported as 42.48, while for
SR-HWMA and SR-DHWMA, the ARL values are observed as 37.75 and 27.28, respectively.
Similarly, with a shift δ = −0.0005, the ARL of the SR-EWMA chart is reported as 1.49,
while the ARL values for SR-HWMA and SR-DHWMA are noted as being around 1.44 and
1.21, respectively. Hence, the results confirm that SR-DHWMA performs better among all
other charts.

4.3.2. Evaluation Based on Alterations in β1

For all charts, Table 3 consists of the results of the indirect shifts through changing β1 to
β1 ± δ. The findings indicate that standardized residual-based techniques (i.e., SR-EWMA,
SR-HWMA and SR-DHWMA) perform better than the deviance residual-based schemes
(i.e., R-EWMA, R-HWMA and R-DHWMA) for the identification of indirect shifts in the
mean because of changes in β1. For instance, for shift δ = +0.00000015, the R-EWMA
chart’s ARL is around 200.51, whereas the SR-EWMA chart’s ARL is 112.28. For the shift
δ = −0.0000001, the R-HWMA chart’s ARL and SR-HWMA chart’s ARL are reported as
202.95 and 123.82, accordingly. Similarly, a change of δ = −0.0001 may result in reductions
of 4.47 and 198.7 in the ARLs of R-DHWMA and SR-DHWMA control charts, respectively.
Moreover, the results give evidence that the SR-DHWMA procedure performs well under
changes in β1 as compared with SR-EWMA and SR-HWMA procedures. For instance,
if δ = +0.0000003, the ARL of SR-EWMA is found at 67.03, whereas the ARL values of
SR-HWMA and SR-DHWMA are noted as 60.56 and 50.52, individually. In a similar way, a
change of δ = −0.00001 can lead to a 97.7, 98 and 99 percent drop in the ARLs of SR-EWMA,
SR-HWMA and SR-DHWMA control charts, respectively. Thus, SR-DHWMA outperforms
all other procedures.

4.3.3. Evaluation Based on Simultaneous Alterations in β0 and β1

The results based on simultaneous positive and negative changes in β0 and β1 are
given in Table 4. Again, the charts produced by standardized residuals (i.e., SR-EWMA,
SR-HWMA and SR-DHWMA) are dominant in detecting concurrent shifts in β0 and β1.
For instance, when δ = ±0.000001, the R-EWMA chart’s ARL is found to be 203.53, while a
lower value of ARL is observed for the SR-EWMA chart, i.e., 19.89. Furthermore, the shift
δ = ±0.00005 may cause a 3.3 and 99 percent drop in the ARL of R-HWMA and SR-HWMA
control charts, individually. Similarly, 39 and 99 percent reductions are found for the
ARL of R-DHWMA and SR-DHWMA charts because of the shift δ = ∓0.0005. Likewise,
to the outcomes of preceding shifts, the SR-DHWMA chart is effective compared to the
SR-EWMA and SR-HWMA procedures. For instance, if δ = ±0.000001, the ARL values of
SR-EWMA, SR-HWMA and SR-DHWMA are reported as 19.89, 18.79 and 8.83, respectively.
Moreover, a shift of δ = ∓0.000005 may result in ARL values of SR-EWMA, SR-HWMA
and SR-DHWMA control charts decreasing by 97, 97.1 and 99 percent, respectively. As a
result, the findings indicate that the SR-DHWMA chart works better than the other charts.

5. Illustrative Example

To demonstrate a potential implementation of the suggested control charts in a real-
life state, we have adopted the example from Mahmood et al. [66]. The example relates
to an additive manufacturing technology of stereolithography; the technique involves
curing a photo-resistant resin by using an ultraviolet (UV) light source to manufacture
prototypes and rapid tooling one layer at a time. As shown in Figure 1, the module consists
of ultraviolet light, a vat of photocurable liquid resin and a monitoring system.



Symmetry 2022, 14, 122 10 of 14

Symmetry 2021, 13, x FOR PEER REVIEW 10 of 15 
 

 

the ARLs of SR-EWMA, SR-HWMA and SR-DHWMA control charts, respectively. Thus, 
SR-DHWMA outperforms all other procedures. 

4.3.3. Evaluation Based on Simultaneous Alterations in β0 and β1 
The results based on simultaneous positive and negative changes in 𝛽𝛽0 and 𝛽𝛽1 are 

given in Table 4. Again, the charts produced by standardized residuals (i.e., SR-EWMA, 
SR-HWMA and SR-DHWMA) are dominant in detecting concurrent shifts in 𝛽𝛽0 and 𝛽𝛽1. 
For instance, when 𝛿𝛿 = ±0.000001,  the R-EWMA chart’s ARL is found to be 203.53, 
while a lower value of ARL is observed for the SR-EWMA chart, i.e., 19.89. Furthermore, 
the shift 𝛿𝛿 = ±0.00005 may cause a 3.3 and 99 percent drop in the ARL of R-HWMA and 
SR-HWMA control charts, individually. Similarly, 39 and 99 percent reductions are found 
for the ARL of R-DHWMA and SR-DHWMA charts because of the shift 𝛿𝛿 = ∓0.0005. 
Likewise, to the outcomes of preceding shifts, the SR-DHWMA chart is effective com-
pared to the SR-EWMA and SR-HWMA procedures. For instance, if 𝛿𝛿 = ±0.000001, the 
ARL values of SR-EWMA, SR-HWMA and SR-DHWMA are reported as 19.89, 18.79 and 
8.83, respectively. Moreover, a shift of 𝛿𝛿 = ∓0.000005 may result in ARL values of SR-
EWMA, SR-HWMA and SR-DHWMA control charts decreasing by 97, 97.1 and 99 per-
cent, respectively. As a result, the findings indicate that the SR-DHWMA chart works bet-
ter than the other charts. 

5. Illustrative Example 
To demonstrate a potential implementation of the suggested control charts in a real-

life state, we have adopted the example from Mahmood et al. [66]. The example relates to 
an additive manufacturing technology of stereolithography; the technique involves cur-
ing a photo-resistant resin by using an ultraviolet (UV) light source to manufacture pro-
totypes and rapid tooling one layer at a time. As shown in Figure 1, the module consists 
of ultraviolet light, a vat of photocurable liquid resin and a monitoring system. 

 
Figure 1. Basic working principle of projection based stereolithography. 

In the experiment, a commercialized resin called Spot-HT and an in-house resin were 
employed. However, determining acceptable parameters, such as light energy and cure 
depth, is essential. The issue of getting control or resistance has therefore been studied for 

Figure 1. Basic working principle of projection based stereolithography.

In the experiment, a commercialized resin called Spot-HT and an in-house resin were
employed. However, determining acceptable parameters, such as light energy and cure
depth, is essential. The issue of getting control or resistance has therefore been studied for
both Spot-HT and in-house resins to examine whether the light intensity would increase or
decrease from a UV light source of a specific intensity.

The two datasets are retrieved, each with 1000 sample points. The first dataset concerns
the count of 3D faulty items for in-house resin stuff against light intensity, while the second
dataset deals with the count of 3D faulty items for Spot-HT resin stuff against light intensity.
In the analysis, the first dataset is taken as IC data, and the second dataset is deemed
as OOC data. Further, the count of faulty items is treated as regressand (y), with light
intensity acting as a regressor (x). The regressand (y) in IC data and OOC data follows a
Poisson distribution with rate parameters equal to 2.166 and 2.516, respectively. Moreover,
the model’s fit was evaluated by using the Chi-squared goodness of fit test, and the
Poisson distribution is found to be the best-fitted distribution, according to χ2 = 2.865 with
p-value = 0.72 for IC data and χ2 = 2.516 with p-value = 0.18 for OOC data. Hence, we
ran a Poisson regression model between the count of faulty items and light intensity for
both datasets. The following are the models:

IC Model : y = e−5.846+0.841(x), (14)

OOC Model : y = e−6.540+0.813(x), (15)

It is seen from the simulation study that standardized residuals-based charts are
more powerful charts; hence, the application is limited to SR-EWMA, SR-HWMA and SR-
DHWMA charts for brevity. Control charting constants against ARL0 = 200 are computed
by following Section 4.2. It should be mentioned that the bootstrapping method is used,
and at λ = 0.25, the values are obtained as LE1 = LE2 = 2.7, Lh1 = Lh2 = 3.2 and
Ldh1 = Ldh2 = 2.2.

The plots of the SR-EWMA, SR-HWMA and SR-DHWMA charts that have been
implemented are shown in Figure 2. To distinguish the IC and OOC panes, the IC pane
has a pink shade, whilst the OOC pane has a white shaded region. It is perceived that
the SR-EWMA chart has found 14 OOC signals, while both SR-HWMA and SR-DHWMA
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charts have detected 18 signals. According to this finding, the SR-HWMA and SR-DHWMA
charts have superior detection ability in contrast with the SR-EWMA chart.
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6. Summary, Conclusions and Recommendations

In this modern era, high-quality systems have been implanted in the manufacturing
processes, leading to high-quality products in the markets. The control charts are useful
devices for keeping track of a process’s quality. Control charts for the response variable are
usually generated without taking the covariate into consideration that might be helpful
in monitoring. A variety of linear profiling methodologies have been proposed in several
research to investigate the relationship between the response variable and covariate but
with the assumption of normality. In some processes, the quality characteristic might
be well modeled by Poisson distribution (e.g., the number of breaks or the number of
defects, the number of price changes, the number of accidents and the number of cases
of a certain disease). To attain better outcomes in such instances, a novel technique based
on a generalized linear model (GLM) that provides multiple distribution possibilities for
response variables is necessary. This work produced GLM-based HWMA and DHWMA
kinds of charts for monitoring count processes, using the deviance residuals and standard-
ized residuals of the Poisson regression model. Under different sorts of alterations, the
devised monitoring methods and previous control charts (originated from residuals) are
assessed. The charts created from standardized residuals (i.e., SR-EWMA, SR-HWMA and
SR-DHWMA) have been found to be more effective for shifts in the process mean.

Furthermore, the SR-DHWMA chart has been found to be more successful than the
SR-EWMA and SR-HWMA structures regarding ARL and SDRL. An implementation of the
suggested techniques is also presented by using an actual dataset pertaining to the additive
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manufacturing process where the proposals offered promising outcomes. The findings of
the study may be helpful for quality engineers on appropriate and effective adoption of
light intensity from a UV light source to prevent fault items in additive manufacturing
process. The suggested monitoring methods are the quick ways to detect small changes
in the process and can be used for monitoring and controlling the processes in the field of
environmental sciences, epidemiology, healthcare, economics, highway safety surveillance,
textile industry, etc. For instance, in the semiconductor industry, following fabrication, each
die on a wafer is subjected to a series of tests until one fails or all tests pass, whatever comes
first. The proposed schemes may guide the industry in taking effective steps to control the
failures by considering other crucial factors, such as gas flow, exhaust and temperature.

For future studies, we recommend examining the effect of parameter estimation;
considering two or even more covariates when estimating the Poisson parameter, µj;
extending the proposals to the latest monitoring schemes, such as mixed EWMA–CUSUM,
mixed CUSUM–EWMA; and moving average structures.
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