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Abstract: The concept of a single server retrial queueing system with delayed repair and feedback
under a working vacation policy, along with the asymmetric transition representation, is discussed in
this article. In addition, consumers are entitled to balk and renege in some situations. The steady-state
probability generating function for system size and orbit size is derived by using the approach of
supplementary variables. Discussions include key metrics of the system and a few significant special
conditions. Moreover, the impact of system parameters is examined through the analysis of some
numerical examples.
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1. Introduction

In queueing theory, research on vacation queues and retrial queues has been ongoing
for a while. An arriving consumer is instructed to leave the service area and join a retrial
queue called “orbit” when they find the server is busy. This is known as a retrial queue
with repeated tries in a retrial queueing system. After some time, the consumers in the
orbit may retry their service request. Moreover, the consumers in the orbit are free to make
repeated requests for the same service without having an impact on the other consumers.
Generalized models can be found in retrial queues from Artalejo and Gomez-Corral [1] and
in vacation queues from Ke et al. [2]. These queues have a unique function in computer
and communication systems.

In the case of a vacation queueing model, the system offers its service to the consumers
at a slower pace during the working vacation (WV) time, whereas the system ceases its
service to the consumers altogether during the usual vacation period. Such models may
be used to provide internet service, data transfer service, and mail delivery, among other
things. Finn and Servi [3] presented an M/M/1 queueing model in 2002, which included
WVs. The M/M/1/WV queue was expanded by Wu and Takagi [4] to an M/G/1/WV
queue. Wang [5] probed an M/G/1 RQ with a FIFS, board retrial time, 2-stage service
and system collapse. Arivudainambi et al. [6] discovered a single server retrial queueing
system (SSRQ) with WV, where the server continues to provide service at varying rates
rather than ceasing altogether when on vacation.

In recent years, Chandrasekaran et al. [7] provided a brief description of WV queueing
systems. Varalakshmi et al. [8] studied the steady-state of an M/G/1 RQ model with
2 stages of services and instantaneous feedback under a WV policy, in which the usual busy
system has been impacted by the entry of negative consumers. Revathi [9] investigated
a single server retrial queueing system, with optional re-service, consumer search, and
delayed repair. Rajadurai [10] introduced a novel form, the RQ model that included WV
and breaks. The monotonicity features and stochastic controllability of various behaviour
metrics of an M/G/1 queue with repeated tries and 2-stages of service were investigated
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by Boualem et al. [11].
The phenomenon of feedback is one of the crucial components of communication

systems. When a consumer’s service is not satisfactory, the service might be attempted
once more until it is successful. For instance, retrial queues with feedback can be used
to represent multiple access telecommunication networks, where messages that proved
to be mistakes are transmitted again. Choudhury and Paul [12] used two stages of het-
erogeneous service and Bernoulli feedback to inspect an M/G/1 system. A consumer
who has been identified in this system may receive poor service before trying again until
they receive good service. Under a different vacation strategy, Rajadurai et al. [13–15]
discovered a single server feedback retrial queueing system. Ismailkhan and Rajendran
Paramasivam [16] discussed the encouraged arrival line with feedback, balking, and main-
taining reneged clients.

The goal behind this inquiry is therefore to determine the queue length and orbit
length distributions that will be used to determine the system’s remaining behaviour met-
rics. Our article is outlined as follows: With the necessary conditions in place, we present
a precise explanation of the queueing model in Section 2. The system’s steady-state be-
haviour and the queue size’s probability generating function (PGF) at a random epoch have
been determined explicitly in Section 3. Section 4 provides several key system behaviour
indicators. A few specific instances are described in Section 5. Section 6 contains numerical
results as well as some graphical representations. Finally, Section 7 presents the work’s
conclusion and summary.

2. Model Description and Analysis

Under the working vacations policy, we propose an SSRQ with delayed repair and
feedback. The following is a proper explanation of our model:

• The arrival process: The consumers arrive via a Poisson process with rate ω.
• The retrial process: We presume there is no waiting space; therefore if a consumer

arrives and finds the server empty, the consumer immediately begins his service.
However, if a consumer arrives and the server busy, on vacation, or broken, then
the consumer has two options: they can either depart the service area with prob.,
ᾱ = (1− α) and enroll in a group of blocked consumers who have been blocked,
known as an “orbit” or balk the system with prob., α. Starting from the moment the
server becomes idle, the consumer at the head of the RQ competes with potential
main consumers to choose who will join the service next. If the main consumer comes
first, the retrial consumer has the option of cancelling their request for service and
either return to their place in the retrial queue with prob., β or quit the system with
prob. β̄ = (1 − β). Inter-retrial times have an arbitrary distribution F(x) with a
corresponding “Laplace-Stieltijes transform” (LST) F∗(ϑ).

• The regular service process: The server instantly starts the regular service for the new
or retrial consumers when they arrive at the server in its idle state. The service time
follows a general distribution and it is denoted by the random variable A with the
distribution function A(x) having LST A∗(ϑ).

• The working vacation process: When the orbit goes empty, the server automatically
commences working vacations, which has an exponential dist., with the rate η. If any
consumers show up during a break, the server keeps working, but at a slower pace.
The server will halt the vacation and return to the usual busy period if any orbiting
consumers reach a service completion moment during the vacation time. This results
in a vacation interruption. The vacation persists elsewhere. If there are still consumers
in the orbit after a vacation expires, the server resumes normal operation. If not, the
server starts a new vacation. During the working vacation period, the service time fol-
lows a general random variable Aw with a distribution function Aw(x) and LST A∗w(ϑ).
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• Feedback rule: Unsatisfied consumers have two options after obtaining their normal
services: they may either quit the system with prob., γ̄ = (1− γ)., or rejoin the orbit
as a feedback consumer and receive another service with prob.,γ (0 ≤ γ ≤ 1).

• Delayed repair policy: Exogenous Poisson stream with mean breakdown rates as
stated by ξ for regular service when the work fails. For regular service, the delay
time is determined by an arbitrary distribution Q(t) and LST Q∗(ϕ). The moments of
delaying repair on normal service are denoted by q1.

• Repair policy: When a server breaks down, it is immediately dispatched for repair.
During this time, the server stops serving consumers who are arriving and waits
for the repair to be completed. The repair period is determined by a probability
distribution H(t), LST H∗(ϕ) and first moments denoted by h1.

The system’s many stochastic processes are considered to be independent of one
another. In our model, the transition between all the state spaces is possible and hence the
transition representation is asymmetric.

Practical Application of the Model

The suggested paradigm has real-world applications in telephone consultation medical
care systems. We take into account a system for telephone consultations with a head doctor
(primary server) and a doctor assistant (working breakdown server). Only when the
lead doctor is on working vacation, the doctor assistant offer service, and even then,
the doctor assistant’s service pace is often slower than that of the head doctor. After
each patient’s usual service is completed, the dissatisfied patient may re-enter the orbit
(feedback). Normally, there is a phone operator who either records the sequence of the calls
or is in charge of establishing connections between patients and doctors. When a patient
calls, if the line is busy, he cannot wait in line and must try again later (retrial); if not, the
head doctor or the medical assistant will attend to him right away.

The patient’s call will be disconnected if there is no network coverage during the
consultation time. They might have to wait longer for the service if they want to prevent
phone malfunctions (delayed repair). The system is once more regarded as good as new for
service after the signal strength is fully restored (repaired). The consumer who is in orbit
under FCFS, on the other hand, will be called (or searched for) by the phone operator as
soon as the service is finished, and the search time is considered to be generally distributed,
which is compatible with the general retry time policy. This is conducted to reduce the
chief doctor’s idle time.

3. Analysis of the Steady State Probabilities

The steady-state equations for the retrial system are initially developed in this
division by treating the elapsed retrial times, the elapsed times of normal service, the
elapsed lower-speed service times, elapsed delay times and the elapsed repair times as
supplementary variables. The orbit size generating functions (GFs) for various server states,
as well as the PGF of the no. of consumers in the system and orbit, are then calculated.

3.1. The Steady State Equations

In steady state, we presume that F(0) = 0, F(∞) = 1, A(0) = 0, A(∞) = 1 and
Aw(0) = 0, Aw(∞) = 1 are continuous at x = 0 and Q(0) = 0, Q(∞) = 1, and H(0) = 0,
H(∞) = 1, are continuous at y = 0. Therefore, we define the hazard rate functions f (x),
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χ(x), χw(x), χD(y) and ζ(y), for retrial, normal service, lower rate service, delayed repair
and repair, respectively.

f (x)dx =
dF(x)

1− F(x)

χ(x)dx =
dA(x)

1− A(x)

χw(x)dx =
dAw(x)

1− Aw(x)

χD(y)dy =
dQ(y)

1−Q(y)

ζ(y)dy =
dH(y)

1− H(y)

Let F0(t),A0(t),A0
w(t),Q0(t) and H0(t) be the elapsed retrial times, the elapsed times

of normal service, the elapsed lower-speed service times, elapsed delay times and the
elapsed repair times, respectively, at time t. Furthermore, generate the random variable,

∆(t) =



0, if the server is free and in working vacation period
1, if the server is free and in regular service period
2, if the server is busy and in regular service period at time t
3, if the server is busy and in slower pace service period at time t
4, if the server is under delayed repair period at time t.
5, if the server is under regular repair period at time t.

Thus, the SV F0(t),A0(t),A0
w(t),Q0(t) and H0(t) are compelled to create a bivariate

Markov procedure {∆(t), S(t); t ≥ 0 }, where ∆(t) signifies the server state (0, 1, 2, 3, 4, 5)
depending on whether the server is free or busy on both normal service and working
vacation periods, delayed repair and repair periods. S(t) denotes the number of consumers
in the orbit. If ∆(t) = 1 and F(t) > 0, then F0(t) is equivalent to the elapsed retrial time.
If ∆(t) = 2 and S(t) ≥ 0, then A0(t) is equivalent to the elapsed time of the consumer
served in normal busy period. If ∆(t) = 3 and S(t) ≥ 0, then A0

w(t) is equivalent to
the elapsed time of the consumer being served in lower rate service period. If ∆(t) = 4
and S(t) ≥ 0, then Q0(t) is equivalent to the elapsed time of the server being delayed or
repaired. If ∆(t) = 5 and S(t) ≥ 0, then H0(t) is equivalent to the elapsed time of the
server being repaired.

Theorem 1. The embedded Markov chain {Vn; nεN} is ergodic if Γ < 1 for our system to be stable,
where Γ = β(1− F∗(ω))− αω[1 + ξ(q1 + h1)]E(A) + γ̄.

Proof. It is quite straightforward to utilise Foster’s criteria [17] to verify the necessary
condition of ergodicity, which asserts that the chain {Vn; n ∈ N} is an irreducible and
aperiodic chain. If there is a non-negative function e(l), l ∈ N and ε > 0, the Markov chain
is ergodic, and average drift ηl = E[e(vn+1)− e(vn)/vn = l] except for a finite no. of l′s,
l ∈ N and ηl ≤ − ∈ for all l ∈ N. In this example, we are thinking about the function
e(l) = l. Then, we have

ηl =

{
αω[1 + ξ(q1 + h1)]E(A) + γ̄− 1, if l = 0
β(1− F∗(ω))− αω[1 + ξ(q1 + h1)]E(A) + γ̄− 1, if l = 1,2, . . .

Here β(1− F∗(ω))− αω[1 + ξ(q1 + h1)]E(A) + γ̄ < 1 is clearly a necessary require-
ment for ergodicity.
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According to Humblett et al. [18], if the Markov chain {Vn; nεN} meets Kaplan’s
status, notably ηl < ∞ for all l ≥ 0 and ∃ l0 ∈ N s.t ηl ≥ 0 for l ≥ l0, the required condition
is met. M = (mkl) is the the one-step transition matrix of {Vn; n ∈ N} for l < k− i and
k > 0. The non-ergodicity of the Markov chain is implied by Γ ≥ 1.

Let {tn; n = 1, 2, . . . } be the series of epochs, where either a service period completion
or a shorter service period happens. Vn = {∆(tn+), S(tn+)} is the sequence of random
vectors which forms a Markov chain, embedded in the RQ system. As a result of Theo-
rem (3.1) Vn; n ∈ N is ergodic if Γ < 1, in order for our system to remain stable, where
Γ = β(1− F∗(ω))− αω[1 + ξ(q1 + h1)]E(A) + γ̄.

For the procedure {S(t), t ≥ 0},, we define the probabilities Ω0(t) = P{∆(t) =
0, S(t) = 0}, and the prob. densities are

Ωn(x, t)dx = P{∆(t) = 1, S(t) = n, x ≤ F0(t) < x + dx},
for t ≥ 0, x ≥ 0 and n ≥ 1.

Υn(x, t)dx = P{∆(t) = 2, S(t) = n, x ≤ A0(t) < x + dx},
for t ≥ 0, x ≥ 0 and n ≥ 0.

Ψn(x, t)dx = P{∆(t) = 3, S(t) = n, x ≤ A0
w(t) < x + dx},

for t ≥ 0, x ≥ 0 and n ≥ 0.
Φn(x, y, t)dy = P{∆(t) = 4, S(t) = n, y ≤ Q0(t) < y + dy/A0(t) = x},

for t ≥ 0, x ≥ 0 and n ≥ 0.
Πn(x, y, t)dy = P{∆(t) = 5, S(t) = n, y ≤ H0(t) < y + dy/A0(t) = x},

for t ≥ 0, x ≥ 0 and n ≥ 0.
We presume that the stability requirement is satisfied in the sequel, so we may assign

Ω0 = limt→∞Ω0(t), and the limiting densities are

Ωn(x) = limt→∞Ωn(x, t); Υn(x) = limt→∞Υn(x, t);

Ψw,n(x) = limt→∞Ψw,n(x, t); Φn(x, y) = limt→∞Φn(x, y, t)

Πn(x, y) = limt→∞Πn(x, y, t)

We construct the following system of equations using the supplementary variable
approach.

ωΩ0 = γ̄
∫ ∞

0
Υ0(x)χ(x)dx + γ̄

∫ ∞

0
Ψw,0(x)χ(x)dx (1)

+
∫ ∞

0
Π0(x)ηb(y)dy

d
dx

Ωn(x) + (ω + f (x))Ωn(x) = 0, n ≥ 1 (2)
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d
dx

Υ0(x) + (ω + ξ + χ(x))Υ0(x) = ωᾱΥ0(x) +
∫ ∞

0
Π(x, y)ζ(y)dy, n = 0 (3)

d
dx

Υn(x) + (ω + ξ + χ(x))Υn(x) = ωαΥn−1(x) + ωᾱΥn(x) (4)

+
∫ ∞

0
Π(x, y)ζ(y)dy, n ≥ 1

d
dx

Ψw,0(x) + (ω + η + χw(x))Ψw,0(x) = ωᾱΨw,0(x), n = 0 (5)

d
dx

Ψw,n(x) + (ω + η + χw(x))Ψw,n(x) = ωαΨw,n−1(x) + ωᾱΨw,n(x), n ≥ 0 (6)

d
dy

Φ0(x, y) + (ω + χD(y))Φ0(x, y) = ωᾱΦ0(x, y), n = 0 (7)

d
dy

Φn(x, y) + (ω + χD(y))Φn(x, y) = ωαΦn−1(x, y) + ωᾱΦn(x, y), n ≥ 1 (8)

d
dy

Π0(x, y) + (ω + ζ(y))Π0(x, y) = ωᾱΠ0(x, y), n = 0 (9)

d
dy

Πn(x, y) + (ω + ζ(y))Πn(x, y) = ωαΠn−1(x, y) + ωᾱΠn(x, y), n ≥ 1 (10)

At x = 0, y = 0 the steady-state boundary conditions are as follows:

Ωn(0) = γ
∫ ∞

0
Υn(x)χ(x)dx + γ̄

∫ ∞

0
Υn−1(x)χ(x)dx (11)

+ γ
∫ ∞

0
Ψw,n(x)χw(x)dx + γ̄

∫ ∞

0
Ψw,n−1(x)χw(x)dx, n ≥ 1

Υn(0) =
∫ ∞

0
Ωn+1(x) f (x)dx + ωβ

∫ ∞

0
Ωn(x)dx + ω(1− β)

∫ ∞

0
Ωn+1(x)dx (12)

+ η
∫ ∞

0
Ψw,n(x)dx, n ≥ 1

Υ0(0) =
∫ ∞

0
Ω1(x) f (x)dx + ω(1− β)

∫ ∞

0
Ω1(x)dx + η

∫ ∞

0
Ψw,0(x)dx + ωβΩ0, n = 0 (13)

Ψw,n(0) =

{
ωΩ0, n = 0
0, n ≥ 1

(14)

Φn(x, 0) = ξΥn(x), n ≥ 0 (15)

Πn(x, 0) =
∫ ∞

0
Φn(x, y)χD(y)dy, n ≥ 0 (16)

The normalizing condition is

Ω0 +
∞

∑
n=1

∫ ∞

0
Ωn(x)dx +

∞

∑
n=0

(∫ ∞
0 Υn(x)dx +

∫ ∞
0 Ψw,n(x)dx

+
∫ ∞

0

∫ ∞
0 Φn(x, y)dxdy +

∫ ∞
0

∫ ∞
0 Πn(x, y)dxdy

)
= 1 (17)

3.2. The Steady State Solution

The steady-state solution of the RQ model is obtained using the generating function
strategy. To calculate the above equations, the GFs for |ž| < 1 are defined as follows:

Ω(x, ž) =
∞

∑
n=1

Ωn(x)žn; Ω(0, ž) =
∞

∑
n=1

Ωn(0)žn;

Υ(x, ž) =
∞

∑
n=0

Υn(x)žn; Υ(0, ž) =
∞

∑
n=0

Υn(0)žn;
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Ψw(x, ž) =
∞

∑
n=0

Ψw,n(x)žn; Ψw(0, ž) =
∞

∑
n=0

Ψw,n(0)žn;

Φ(x, y, ž) =
∞

∑
n=0

Φn(x, y)žn; Φ(x, 0, ž) =
∞

∑
n=0

Φn(x, 0)žn;

Π(x, y, ž) =
∞

∑
n=0

Πn(x, y)žn; Π(x, 0, ž) =
∞

∑
n=0

Πn(x, 0)žn;

Multiplying Equations (2)–(16) by zn and summing over n, we obtain the following partial
differential equations

∂

∂x
Ω(x, ž) + (ω + f (x))Ω(x, ž) = 0 (18)

∂

∂x
Υ(x, ž) + (ωα(1− ž) + ξ + χ(x))Υ(x, ž)−

∫ ∞

0
Π(x, y, ž)ζ(y)dy = 0 (19)

∂

∂x
Ψw(x, ž) + (ωα(1− ž) + η + χw(x))Φw(x, ž) = 0 (20)

∂

∂x
Φ(x, y, ž) + (ωα(1− ž) + χD(y))Φ(x, y, ž) = 0 (21)

∂

∂x
Π(x, y, ž) + (ωα(1− ž) + ζ(y))Π(x, y, ž) = 0 (22)

Ω(0, ž) = (γ + γ̄ž)
∫ ∞

0
Υ(x, ž)χ(x)dx + (γ + γ̄ž)

∫ ∞

0
Ψw(x, ž)χw(x)dx−ωΩ0 (23)

Υ(0, ž) =
1
ž

∫ ∞

0
Ω(x, ž) f (x)dx + ωβ

∫ ∞

0
Ω(x, ž)dx +

ω(1− β)

z

∫ ∞

0
Ω(x, ž)dx (24)

+ η
∫ ∞

0
Ψw(x, ž)dx

Ψw(0, ž) = ωΩ0 (25)

Φ(x, 0, ž) = ξΥ(x, z) (26)

Π(x, 0, ž) =
∫ ∞

0
Φn(x, y, ž)χD(y)dy (27)

By solving the partial differential Equations (18)–(22), we obtain

Ω(x, ž) = Ω(0, ž)[1− F(x)]e−ωx (28)

Υ(x, ž) = Υ(0, ž)[1− A(x)]e−D1(ž)x (29)

Ψw(x, ž) = Ψw(0, ž)[1− Aw(x)]e−D2(ž)x (30)

Φ(x, y, ž) = Φ(x, 0, ž)[1−Q(y)]e−D(ž)y (31)

Π(x, y, ž) = Π(x, 0, ž)[1− H(y)]e−D(ž)y (32)

where D(ž) = ωα(1− ž), D1(ž) = D(ž) + ξ − ξQ∗(D(ž))H∗(D(ž)) and D2(ž) = η + D(z)
Inserting the Equations (28) to (32) and (23) to (26) in (24) and making some calcula-

tion, finally, we obtain

Υ(0, ž) =
Ω(0, ž)

ž
{F∗(ω) + (1− β + βž)[1− F∗(ω)]}+ ωΩ0B(ž) (33)
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where B(ž) = η
η+αω(1−ž) (1− A∗w(D2(ž))),

Ω(0, ž) = (γ + γ̄ž)Υ(0, ž)A∗(D1(ž)) + (γ + γ̄ž)A∗w(D2(ž))Ψw(0, ž)−ωΩ0 (34)

Combining (26) and (33) in (34), we obtain

Ω(0, ž){ž− (γ + γ̄ž){F∗(ω) + (1− β + βž)[1− F∗(ω)]}A∗(D1(ž))} (35)

= žωΩ0{(γ + γ̄ž)[B(ž)A∗(D1(ž)) + A∗w(D2(ž))]− 1}

From the above equation, we all know that the most important factor in gaining Ω(0, ž)
is to find the zeros of p(ž) = ž− (γ+ γ̄ž){F∗(ω)+ (1− β+ βž)[1− F∗(ω)]}A∗(D1(ž)) = 0
within the scope 0 < ž < 1 for the equation p(ž) = 0 (from [19]). To this end, the next
lemma is given.

Lemma 1. If Γ < 1, the eqn. ž− (γ + γ̄ž){F∗(ω) + (1− β + βž)[1− F∗(ω)]}A∗(D1(ž)) has
no roots in the scope of 0 < ž < 1 and has the minimal non-negative root ž = 1.

Proof. We merely need to prove that

v(ž) , (γ + γ̄ž){F∗(ω) + (1− β + βž)[1− F∗(ω)]}A∗(D1(ž))

is a PGF of the no. of consumers that enter in the system. Indicate V as the time interval
between the epoch when a service completion happens, departing from the orbit non-empty,
and NV as the no. of main consumers that enters during V and define

Vj(t)dt = P(t < V < t + dt, M(V) = j).

Then,

vj(t)dt = e−ωtx(t) ∗ dj(t) + (1− σj,0)ωe−ωt(1− F(t)) ∗ dj−1(t), j = 0, 1, 2...

where * denotes convolution, γ(t) represents the PDF of inter-retrial times, c(t) represent

the PDF of regular service durations and dj(t)dt = e−ωt (ωt)j

j! c(t). Denoted by MV(ž) the
PGF of MV , We have that

MV(ž) =
∞

∑
j=0

žj
∫ ∞

0
vj(t)dt

=
∞

∑
j=0

žj
∫ ∞

0

(
e−ωtx(t) ∗ dj(t) + (1− σj,0)ωe−ωt(1− F(t)) ∗ dj−1(t)

)
=(γ + γ̄ž){F∗(ω) + (1− β + βž)[1− F∗(ω)]}A∗(D1(ž))

=v(ž),

which demonstrates the desired outcome that v(ž) , (γ + γ̄ž){F∗(ω) + (1− β + βž)[1−
F∗(ω)]}A∗(D1(ž)) is specifically a PGF. From premise Γ < 1, we have E[Mv] =

d
dž v(ž)|ž=1 =

1− {β(1− F∗(ω))− αω[1 + ξ(q1 + h1)]E(A) + γ̄} < 1 and the convex function v(ž) is a
monotonically increasing function of ž for 0 ≤ ž ≤ 1, and v(0) = P(MV = 0) < 1, v(1) = 1.
Thus, we can simply verify Lemma 1’s predicted conclusion.

Then, for Γ < 1, ž − (γ + γ̄ž){F∗(ω) + (1 − β + βž)[1 − F∗(ω)]}A∗(D1(ž)) never
fades in the range 0 < ž < 1.
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From (35), we obtain

Ω(0, ž) =
Ne(ž)
De(ž)

(36)

Ne(ž) =žωΩ0{(γ + γ̄ž)[B(ž)A∗(D1(ž)) + A∗w(D2(ž))]− 1}
De(ž) =ž− (γ + γ̄ž){F∗(ω) + (1− β + βž)[1− F∗(ω)]}A∗(D1(ž))

Utilising an Equations (36) in (33), we obtain

Υ(0, ž) =
ωΩ0

De(ž)
{žB(ž) + [(γ + γ̄ž)A∗w(D2(ž))− 1][F∗(ω) + (1− β + βž)[1− F∗(ω)]]} (37)

Thus, by substituting (36) & (37) in (28) & (29) we obtain the limiting PGFs Ω(x, ž),
Υ(x, ž), and also by using (25)–(27) & (37) in (30)–(31) we obtain the limiting PGFs
Ψw(x, ž), Φ(x, ž) and Π(x, ž). Following that, we want to look at the marginal orbit size
discrepancy caused by the server’s current system state, which is investigated in the
following theorem.

Theorem 2. Under the stability condition Γ < 1, the stationary dist., of the no. of consumers in
the orbit when the server is empty, regular busy, low speed service is given by

Ω(ž) =
Ne(ž)
De(ž)

(38)

Ne(ž) =žΩ0(1− F∗(ω)){(γ + γ̄ž)[B(ž)A∗(D1(ž)) + A∗w(D2(ž))]− 1}
De(ž) =ž− (γ + γ̄ž){F∗(ω) + (1− β + βž)[1− F∗(ω)]}A∗(D1(ž))

Υ(ž) =
ωΩ0(1− A∗(D1(ž)))

D1(ž)Dr(ž)

{
žB(ž) + [(γ + γ̄ž)A∗w(D2(ž))− 1]
[F∗(ω) + (1− β + βž)[1− F∗(ω)]]

}
(39)

Ψw(ž) =
ωΩ0

D2(ž)
(1− A∗w(D2(ž))) (40)

Φ(ž) =
ωξΩ0(1− A∗(D1(ž)))(1−Q∗(D(ž))))

D(ž)D1(ž)Dr(ž)

{
žB(ž) + [(γ + γ̄ž)A∗w(D2(ž))− 1]
[F∗(ω) + (1− β + βž)[1− F∗(ω)]]

}
(41)

Π(ž) =
ωξΩ0(1− A∗(D1(ž)))(1− H∗(D(ž)))(Q∗(Dz(ž)))

D(ž)D1(ž)Dr(ž)
(42){

žB(ž) + [(γ + γ̄ž)A∗w(D2(ž))− 1]
[F∗(ω) + (1− β + βž)[1− F∗(ω)]]

}
where
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Ω0 =

1− β(1− F∗(ω)) + αω[1 + ξ(q1 + h1)]E(A)− γ̄

1− β(1− F∗(ω))[1 + ω
η (1− A∗w(η)] +

ω
η (1− A∗w(η)){α(1− F∗(ω))

+αω(1 + ξ(q1 + h1)E(A)− γ̄ + 1)} − F∗(ω)[γ̄− αω(1 + ξ(q1 + h1)E(A))]
+A∗w(η)(1− F∗(ω)(1 + ξ(q1 + h1)E(A))−ωE(A)(1 + ξE(Q)(1− αωE(H)))

{γ̄ + (A∗w(η))[β(1− F∗(ω))− αω
η ]− A∗w(η) + 1}

(43)

Proof. Taking the Eqations (28)–(32) and integrating them with regard to x and determine
the partial PGFs as Ω(ž) =

∫ ∞
0 Ω(x, ž)dx, Υ(ž) =

∫ ∞
0 Υ(x, ž)dx, Ψw(ž) =

∫ ∞
0 Ψw(x, ž)dx,

Φ(ž) =
∫ ∞

0 Φ(x, ž)dx, Π(ž) =
∫ ∞

0 Π(x, ž)dx. Therefore, we can finally determine the
prob.that the server is free when there is no consumer in the orbit using the normalisation
condition (Φ0) by setting, ž = 1 in (38)–(42) and by utilizing the rule of l’Hospital’s
whenever needed, we obtain Ω0 + Ω(1) + Υ(1) + Ψw(1) + Φ(1) + Π(1) = 1.

Theorem 3. Under the stability constraint Γ < 1, the PGF of the no. of consumers in the system
and the orbit size dist., are given by

Ks(ž) =
Nes(ž)
Des(ž)

(44)

Nes(ž) =Ω0{D(ž){{ž− (γ + γ̄ž){F∗(ω) + (1− β + βž)[1− F∗(ω)]}A∗(D1(ž))

[1 +
ω

D2(ž)
(1− A∗w(Dz(ž)))]}+ ž(1− F∗(ω)){(γ + γ̄ž)[B(ž)A∗(D1(ž))

+ A∗w(D2(ž))]− 1}}+ žω(1− A∗(D1(ž))){žB(ž) + [(γ + γ̄ž)A∗w(D2(ž))− 1]

[F∗(ω) + (1− β + βž)[1− F∗(ω)]]}}

Des(ž) =D(ž){ž− (γ + γ̄ž){F∗(ω) + (1− β + βž)[1− F∗(ω)]}A∗(D1(ž))}

K0(ž) =
Ne0(ž)
Des(ž)

(45)

Ne0(ž) =Ω0{D(ž){{ž− (γ + γ̄ž){F∗(ω) + (1− β + βž)[1− F∗(ω)]}A∗(D1(ž))

[1 +
ω

D2(ž)
(1− A∗w(Dz(ž)))]}+ ž(1− F∗(ω)){(γ + γ̄ž)[B(ž)A∗(D1(ž))

+ A∗w(D2(ž))]− 1}}+ ω(1− A∗(D1(ž))){žB(ž) + [(γ + γ̄ž)A∗w(D2(ž))− 1]

[F∗(ω) + (1− β + βž)[1− F∗(ω)]]}}

where Ω0 is denoted by Equation (43).

Proof. The PGF of the no.of consumer in the system (Ks(ž)) and in the orbit (K0(ž))
is determined by using Ks(z) = Ω0 + Ω(ž) + Υ(ž) + Ψw(ž) + Φ(ž) + Π(ž). When the
Equations (38)–(43) are substituted in the previous findings, the Equations (44) and (45)
may be calculated directly.

4. System Performance Measures

In this section, different system states are used to derive a variety of pertinent sys-
tem probabilities, system efficiency metrics, and the model’s mean busy time and mean
busy cycle.
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4.1. System State Probabilities

We obtain the following results using Equations (38)–(42) giving ž→ 1 and utilising
l’Hospital’s rule unless possible.

(i) Let Ψ be the steady-state prob. of the server being free for the duration of the re-
trial,

Ω = Ω(1) = Ω0(1− F∗(ω))

{
γ̄ + (1− A∗w(η))[

αω
η − αω(1 + ξ(q1 + h1))E(A)]

1− β(1− F∗(ω)) + αω[1 + ξ(q1 + h1)]E(A)− γ̄

}
(ii) Let Υ be the steady-state prob. that the server is busy,

Υ = Υ(1) = ωΩ0E(A)

{
A∗w(η)− γ̄− (A∗w(η)− 1)[β(1− F∗(ω))− αω

η ]− 1

1− β(1− F∗(ω)) + αω[1 + ξ(q1 + h1)]E(A)− γ̄

}
(iii) Let Ψw be the steady-state prob. that the server is on working vacation,

Ψw = Ψw(1) =
ωΩ0

η
[1− A∗w(η)]

(iv) Let Φ be the steady-state prob. that the server is under delaying repair,

Φ = Φ(1) = ωΩ0ξE(A)E(Q)

{
γ̄− A∗w(η) + (A∗w(η)− 1)[β(1− F∗(ω))− αω

η ] + 1

1− β(1− F∗(ω)) + αω[1 + ξ(q1 + h1)]E(A)− γ̄

}
(v) Let Π be the steady-state prob. that the server is under repair,

Π = Π(1) = α(ω)2Ω0E(A)E(H)E(Q)

{
A∗w(η)− γ̄− (A∗w(η)− 1)[β(1− F∗(ω))− αω

η ]− 1

1− β(1− F∗(ω)) + αω[1 + ξ(q1 + h1)]E(A)− γ̄

}

4.2. Average Size of A System and the Size of Its Orbit

When the system is in a steady state,
(i) With regard to ž, by differentiating (45) and giving ž = 1 yields the expected no. of
consumers in the orbit (Lq)

Lq = K
′
0(1) = lim

ž→1

d
dž

K0(ž) = Ω0

[
Ne
′′′
q (1)De

′′
q (1)− De

′′′
q (1)Ne

′′
q (1)

3(De′′q (1))2

]
(46)

Ne
′′
q (1) =− 2αω{[1 + ω

η
(1− A∗w(η))][1− β(1− F∗(ω)) + αω[1 + ξ(q1 + h1)]E(A)− γ̄]

+ (1− F∗(ω))[γ̄ + (1− A∗w(η))[
αω

η
− αω(1 + ξ(q1 + h1))E(A)]]

−ω(1 + ξ(q1 + h1))E(A)[γ̄− A∗w(η) + (A∗w(η)− 1)[β(1− F∗(ω))− αω

η
] + 1]}

De
′′
q (1) =− 2αω{1− β(1− F∗(ω)) + αω[1 + ξ(q1 + h1)]E(A)− γ̄}
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Ne
′′′
q (1) =− 6αω[

ω

η2 (ηE(Aw))− A∗w(η) + 1]{1− β(1− F∗(ω)) + αω[1 + ξ(q1 + h1)]E(A)− γ̄}

+ Dr
′′′
(1)[1 +

ω

η
(1− A∗w(η))]− 3αωβ(1− F∗(ω)){2[γ̄ + (1− A∗w(η))[

αω

η

− αω(1 + ξ(q1 + h1))E(A)]] + 2γ̄[
αω

η
− αω(1 + ξ(q1 + h1))E(A)]

+ [
αω

η
(ηE(Aw))− A∗w(η) + 1](γ̄− 2αω[1 + ξ(q1 + h1)]E(A))

+ (1− A∗w(η))[τ + (αω[1 + ξ(q1 + h1)]E(A))]2 + (αω)2E(A2
w)− 2αωγ̄E(Aw) + B

′′
(1)

+ 3ω{{(−αω[1 + ξ(q1 + h1)]E(A))([
2αω

η
[ηE(Aw)− A∗w(η) + 1]] + B

′′
(1)

+ 2β(1− F∗(ω))[γ̄− αωE(Aw)]− 2γ̄αωE(Aw) + (αω)2E(Aw)
2)}

+ τ{[γ̄− A∗w(η) + (A∗w(η)− 1)[β(1− F∗(ω))− αω

η
] + 1]}}

De
′′′
q (1) =− 3αω{2γ̄αω(1 + ξ(q1 + h1))E(A)− 2γ̄β(1− F∗(ω))

+ 2αωβ(1− F∗(ω))(1 + ξ(q1 + h1))E(A) + τ}

where τ = αω{αω(1 + ξ(q1 + h1))
2E(A2) + αωξ(q2

1 + h2
1 + 2q1h1)E(A)+

(1 + ξ(q1 + h1))
2E(A2)}

B
′′
(1) = (αω)2

η3 {(1 + ηαω− η2)E(Aw)− ηE∗
′

w (η) + αω(1− A∗w(η))}

(ii) With regard to ž, by differentiating (44) and giving ž = 1 yields the expected no.of
consumers in the system (Ls)

Ls = K
′
s(1) = lim

ž→1

d
dž

Ks(ž) = Ω0

[
Ne
′′′
s (1)De

′′
q (1)− De

′′′
q (1)Ne

′′
q (1)

3(De′′q (1))2

]
(47)

Ne
′′′
s (1) =Nr

′′′
q (1) + 6αω[1 + ξ(q1 + h1)]E(A){γ̄− A∗w(η)

+ (A∗w(η)− 1)[β(1− F∗(ω))− αω

η
] + 1}

4.3. Average Busy Period And The Busy Cycle

Under steady-state circumstances, let A(Ty) and A(Tz) be the predicted lengths of
the busy period and busy cycle, respectively. The conclusions are drawn directly from the
reasoning of an alternate renewal process [19], which results to

Ω0 =
A(T0)

A(Ty) + A(T0)
; A(Ty) =

1
ω

(
1

Ω0
− 1
)

; A(Tz) =
1

ϑΩ0
= A(T0) + A(Ty). (48)

where T0 is the time spent in the empty state of the system. Because there is an expo-
nential difference in time between two consumers’ arrivals, with parameter ω, we have
A(T0) = (1/ω). We can retrieve (43) by inserting it into (48), and, using the above findings,
we obtain
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A(Ty) =
1
ω

(49)

×



1− β(1− F∗(ω))[1 + ω
η (1− A∗w(η)] +

ω
η (1− A∗w(η)){α(1− F∗(ω))

+αω(1 + ξ(q1 + h1)E(A)− γ̄ + 1)} − F∗(ω)[γ̄− αω(1 + ξ(q1 + h1)E(A))]
+A∗w(η)(1− F∗(ω)(1 + ξ(q1 + h1)E(A))−ωE(A)(1 + ξE(Q)(1− αωE(H)))

{γ̄ + (A∗w(η))[β(1− F∗(ω))− αω
η ]− A∗w(η) + 1}

1− β(1− F∗(ω)) + αω[1 + ξ(q1 + h1)]E(A)− γ̄
− 1


A(Tž) =

1
ω

(50)

×



1− β(1− F∗(ω))[1 + ω
η (1− A∗w(η)] +

ω
η (1− A∗w(η)){α(1− F∗(ω))

+αω(1 + ξ(q1 + h1)E(A)− γ̄ + 1)} − F∗(ω)[γ̄− αω(1 + ξ(q1 + h1)E(A))]
+A∗w(η)(1− F∗(ω)(1 + ξ(q1 + h1)E(A))−ωE(A)(1 + ξE(Q)(1− αωE(H)))

{γ̄ + (A∗w(η))[β(1− F∗(ω))− αω
η ]− A∗w(η) + 1}

1− β(1− F∗(ω)) + αω[1 + ξ(q1 + h1)]E(A)− γ̄


5. Special Cases

We look at some concrete applications of our approach that are in accord with the
present literature in this segment.
Case (i): No balking, No reneging and No feedback
Let α = β = 1 and γ̄ = 0. Our model reduces to an M/G/1 RQ with WVs. Here, the results
coincides with Gao et al. [19].

Ks(ž) =Ω0

{
Nes(ž)
Des(ž)

}
Nes(ž) =ω(1− ž){{{ž− [A∗(ω(1− ž) + +ξ + ξQ∗(ω(1− ž))H∗(ω(1− ž))))

(F∗(ω) + ž(1− F∗(ω)))]}

[1 +
ω(1− A∗w(η + ω(1− ž)))

η + ω(1− ž)
]}+ ž(1− F∗(ω)){[η(1− A∗w(η + ω(1− ž)))

η + ω(1− ž)
]

[A∗(ω(1− ž) + ξ + ξQ∗(ω(1− ž))H∗(ω(1− ž))) + A∗w(η + ω(1− ž))− 1]}}
+ žω(1− A∗(ω(1− ž) + ξ + ξQ∗(ω(1− ž))H∗(ω(1− ž))))

{[A∗w(η + ω(1− ž))− 1][F∗(ω) + ž(1− F∗(ω))]}
Des(ž) =ω(1− ž){ž− [A∗(ω(1− ž) + ξ + ξQ∗(ω(1− ž))H∗(ω(1− ž)))

(F∗(ω) + ž(1− F∗(ω)))]}
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Case (ii): No balking, No reneging, No vacation and No delaying repair
Let α = β = 1; and η = ξ = 0. Our model reduces to an M/G/1 RQ with general retrial
times. Here, the results coincides with Gomez-Corral [20].

Ks(ž) =Ω0

{
Nes(ž)
Des(ž)

}
Nes(ž) =ω(1− ž){{{ž− [(γ + γ̄ž)A∗(ω(1− ž))(F∗(ω)

+ ž(1− F∗(ω)))]}[1 + (1− A∗w(ω(1− ž)))
(1− ž)

]}

+ ž(1− F∗(ω))[(γ + γ̄ž)A∗w(ω(1− ž))− 1]}+ žω(1− A∗(ω(1− ž)))

{[(γ + γ̄ž)A∗w(ω(1− ž))− 1][F∗(ω) + ž(1− F∗(ω))]}
Des(ž) =ω(1− ž){ž− [(γ + γ̄ž)A∗(ω(1− ž))(F∗(ω) + ž(1− F∗(ω)))]}

where, Ω0 =
F∗(ω) + ωE(A)− γ̄

1− F∗(ω)(γ̄−ωE(A))− γ̄ωE(A)

Case (iii): No balking, No reneging, No retrial, No feedback and No delaying repair
Let α = β = 1, F∗(ω) → 1 and γ = ξ = 0. Our model reduces to an M/G/1 queue with
WVs. Here, the results coincides with Zhang and Hou [21].

Ks(ž) =Ω0

{
Nes(ž)
Des(ž)

}
Nes(ž) =ω(1− ž){[ž− A∗(ω(1− ž))][1 +

ω(1− A∗w(η + ω(1− ž)))
η + ω(1− ž)

]}

+ žω(1− A∗(ω(1− ž))){ž η(1− A∗w(η + ω(1− ž)))
η + ω(1− ž)

+ [A∗w(η + ω(1− z)))− 1]}

Des(ž) =ω(1− ž){ž− A∗(ω(1− ž))}

where, Ω0 =
1 + αωE(A)

1− ω
η (1− A∗w(η))(αωE(A)− γ̄ + 1)−ωE(A)

{γ̄− αω
η (A∗w(η)− 1)− A∗w(η) + 1} − γ̄ + αωE(A)

6. Numerical Results

In this section, we use MATLAB to demonstrate the numerous settings on system be-
haviour measurements. We look into retrial times, service times, slower pace service times,
vacation periods, delayed repair and repair times, which are exponentially distributed.
The numerical measurements are picked at randomly to fulfil the stability criterion. The
estimated values of our model’s many characteristics, such as the probability that the server
is idle (Ω0), the average queue size (Lq), the probability that the server is idle during retrial
time (Ω(1)) and average waiting time in the queue (Wq), are presented in the tables below.

Table 1 clearly displays that as the retrial rate f escalates, Lq, Ω(1), Wq decline.
Table 2 displays that as the feedback rate γ̄ escalates, Lq, Wq, Ω0 decline.
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Table 1. Ω0 and Lq for different Retrial rate ( f ) for the values of α = 0.3, β = 0.8, ω = 0.4, ξ = 0.5,
γ̄ = 0.5, η = 0.5.

Retrial Rate ( f ) Ω0 Lq Ω(1) Wq

5 1.0373 0.0228 0.0281 0.0760

5.05 1.0442 0.0208 0.0280 0.0693

5.1 1.0510 0.0185 0.0279 0.0617

5.15 1.0579 0.0160 0.0278 0.5319

5.2 1.0647 0.0131 0.0277 0.0436

5.25 1.0716 0.0099 0.0276 0.0329

5.3 1.0784 0.0063 0.0271 0.0210

Table 2. Ω0 and Lq for different feedback probabilities (γ̄) for the values of α = 0.3, β = 0.8, ω = 0.4,
ξ = 0.5, f = 3, η = 0.5.

Feedback (γ̄) Ω0 Lq Ω(1) Wq

0.01 2.8400 0.1272 0.0328 0.4240

0.02 2.7976 0.1208 0.0338 0.4028

0.03 2.7552 0.1147 0.0350 0.3825

0.04 2.7129 0.1090 0.0361 0.3631

0.05 2.6705 0.1034 0.0371 0.3446

0.06 2.6281 0.0981 0.0381 0.3269

0.07 2.5857 0.0930 0.0391 0.3100

With the effect of the parameters α, β, ω, ξ, γ̄, η, Figures 1–4 represents a three-
dimensional graph that depict the system’s performance measures. In Figure 1, the surface
displays the escalation of the retrial rate ( f ), as (Lq) and (Wq) decline. In Figure 2, we
found that (Lq) and (Wq) diminishes, while the feedback rate γ̄ increases. Figure 3, shows
that as Ω0 and retrial rate f mounts, (Lq) subsides. Figure 4, shows that as feedback rate γ̄
mounts, Ω0 and (Lq) subsides.

We can identify the effect of characteristics on the system’s evaluation criteria using the
numerical results above, and we can be certain that the results are comparable to real-world
circumstances.

Figure 1. Lq, Wq verses retrial rate f .
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Figure 2. Lq, Wq verses feedback rate γ̄.

Figure 3. Lq, Ω0 verses retrial rate f .

Figure 4. Lq, Ω0 verses feedback rate γ̄.

7. Conclusions

We examined a single-server retrial queue with delayed repair and feedback under
working vacations and breakdowns in this article. The system can be stabilised if the
necessary and adequate criteria is viable. The PGF of the no. of consumers in the system
and its orbit are determined using the PGF approach and supplementary variable approach,
whenever it is ideal, normal busy, and on slower pace service. Some numerical results are
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provided to investigate the impact of system parameters.The novelty of this investigation
is the introduction of delaying repair, impatient consumers in the presence of retrial queues
with working vacation policy. Moreover, the analytical conclusions that are proved with
the aid of numerical examples may be beneficial in various real-world scenarios to con-
struct the outcomes. Furthermore, our model can be observed as a generalised version of
numerous queueing models already in existence, each of which has a variety of features
and applications.
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