
����������
�������

Citation: Liu, H.; van de Walle, A.

Rapid Geometric Screening

of Low-Energy Surfaces in Crystals.

Symmetry 2022, 14, 2067. https://

doi.org/10.3390/sym14102067

Academic Editor: Natalie Baddour

Received: 30 August 2022

Accepted: 29 September 2022

Published: 4 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Rapid Geometric Screening of Low-Energy Surfaces in Crystals
Helena Liu and Axel van de Walle *

School of Engineering, Brown University, Box D, Providence, RI 02912, USA
* Correspondence: avdw@alum.mit.edu

Abstract: A high-throughput approach to determine the equilibrium shape of a crystal by brute
force is impractical due to the vast number of density functional theory (DFT) calculations required
along just a single crystallographic direction. We propose a screening method that allows the bypass
of performing DFT calculations for each candidate surface. Using a series of physically-motivated
simplifications, we are able to consider the relative surface energy of each of the large number
of candidate surfaces required to solve the surface energy minimization problem in 3 dimensions.
Application of this technique to calculate the surface energy landscapes of a set of well-known crystal
structures demonstrates high accuracy in the prediction of stable planes and validates its potential
as a valuable tool in ab initio determination of equilibrium crystal shapes.
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1. Introduction

The surface energy landscape of a material drives many aspects of its behavior and
properties. For instance, surface energies play an important role in determining (i) the mi-
crostructures arising during solidification [1] and precipitation from liquid phases [2]
and (ii) colloidal nanocrystal shapes [3]. As a result, surface energies provide valuable
inputs into the materials design and optimization processes in addition to furthering our
understanding of morphologies observed in natural processes.

In recent decades, it has become possible to compute surface energies entirely from first
principles, starting from quantum mechanics [4–9]. The computational infrastructure
is well-equipped to solve the “forward problem”, namely: given a surface, what is its
energy? However, truly predicting equilibrium crystal shapes would, in principle, involve
calculating a very large number of candidate surface energies in search of those that are
sufficiently low to actually form in thermodynamic equilibrium, a process that is com-
putationally intensive. It is therefore of considerable benefit to develop simple screening
methods to systematically identify candidate low-energy surfaces in order to selectively
focus the expensive quantum mechanical calculation efforts. This is the aim of this paper.

2. Methods
2.1. A Simple Model of Surface Energy

The classical broken bond method, which relates the energy of a surface to the number
of bonds broken to cut the surface out of a bulk, is simple yet generally accurate enough
to reveal the relative stability of a set of planes [10]. A quantitative surface energy value can be
estimated by assigning to each bond its appropriately-scaled, experimentally-determined heat
of sublimation. Due to its simplicity, this method’s predictive power is best suited for crystals
without strong directional bonds. Attempts to improve the accuracy of the broken bond
method have explored added complexity to the bonds or the consideration of interactions
beyond the first nearest neighbor. Examples have included the addition of atomic species labels
to bonds [11], empirical potentials to describe bonds [12], neighbor distance weighting [13], and
bonds beyond the nearest neighbor such as between sublattices [14,15].

Symmetry 2022, 14, 2067. https://doi.org/10.3390/sym14102067 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14102067
https://doi.org/10.3390/sym14102067
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-9970-1741
https://orcid.org/0000-0002-3415-1494
https://doi.org/10.3390/sym14102067
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14102067?type=check_update&version=2


Symmetry 2022, 14, 2067 2 of 7

Having reduced the surface energy screening problem to a purely geometric problem,
we still face a challenge in enumerating all the possibilities:

1. There are an infinite number of possible surface directions.
2. For a given direction, there are an infinite number of possible locations at which to cut

the crystal to make a surface.

Fortunately, simple considerations can reduce both sets of infinite possibilities
to a manageable finite number. For direction, we can use the fact that it is empirically found
that low-energy surfaces are typically associated with low-Miller index planes. In addition,
integral Miller indices imply periodic surface termination and these are the only types
of surfaces that can be computed using standard periodic-boundary-condition electronic
structure codes. For cut plane location, we exploit the fact that different cut planes can be
grouped into a finite number of sets, each containing cut planes that necessarily induce
the same number of broken bonds. It is then sufficient to compute the number of broken
bonds for one representative member of each of those sets, thus resulting in a finite number
of possibilities.

These considerations suggest the following approach. First, standard algorithms exist
to enumerate all nearest neighbor bonds in a crystal structure and have been implemented
in open-source codes [16]. Essentially, one can construct a Voronoi tessellation [17] using
atomic coordinates as input points and each face in the resulting tessellation will be as-
sociated with the nearest-neighbor bond intersecting it orthogonally. For a given surface
orientation, we can also construct a supercell of the crystal’s unit cell consisting of (i)
the two shortest non-colinear unit cell lattice vectors lying in the plane of the surface and
(ii) the shortest third unit cell vector not lying the surface plane. The use of this supercell
simplifies the calculation of the number of broken bonds per unit of surface area.

We then project all nearest neighbor bonds within the above supercell onto a one-
dimensional space perpendicular to the surface to yield a set of (possibly overlapping)
intervals, with each bond being now represented by an interval. Since nearest neighbor
bonds may extend past the bounds of the supercell, some bonds need to be periodically
repeated to properly represent their “wrap-around” in a system with periodic boundary
conditions. Representing all nearest neighbor bonds entirely within one supercell in this
fashion facilitates the determination of candidate cut planes for a given direction vector.

With this representation, it also becomes clear that, for a given direction vector, one
only needs to consider a discrete set of representative candidate cut plane locations.
This set consists of the locations between interval endpoints that originated from any
interval. Indeed, the number of intervals that overlap in a region between two endpoints
is always constant. Thus, without loss of generality, it is sufficient to only focus on the mid-
points between all distinct consecutive endpoints. It is then straightforward to count
the number of overlapping intervals at each of the candidate cut plane locations and de-
termine the minimum in order to identify the candidate lowest-energy cut plane location.
The resulting number of broken bonds is then normalized by the surface of the intersection
of the unit cell with the surface plane to allow comparison with other surface directions.

Of course, this approach does exhibit some limitations. First, different types of chemi-
cal bonds may have different intrinsic energies, but it is easy to extend this method to allow
for bonds with different bond-breaking energy penalties. More importantly, surfaces often
re-construct to minimize the number of broken bonds. This limitation could be addressed
by structure prediction algorithms [18–21]. Finally, at high temperature, modeling a surface
structure by a single geometry is a significant approximation. A more realistic model,
for instance based on molecular dynamics, should properly account for the fact that in-
terface stability is also governed by entropic factors, due to structural fluctuations [22].
These improvements unfortunately entail significantly increased computational require-
ments, thus reducing their appeal as part of a simple screening step.
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2.2. Wulff Construction

Given a set of surface orientations and associated surface energies, a well-established
method to determine which surfaces are thermodynamically stable is the Wulff construc-
tion [23–25]. This construction yields a convex polyhedron consisting of all stable surfaces,
which is called the Wulff shape. Here we recall how this construction can be easily implemented
using standard convex hull calculations.

For a set of candidate facets indexed by i ∈ {1, . . . , I}, let si denote facet i’s surface
normal unit vector and let σi denote the associated surface energy, as determined in the pre-
vious section. As the number of candidate facets is finite in our setting, the Wulff shape
will necessarily consist of flat surfaces. The case in which some parts of the Wulff shape
consist of curved surfaces is obtained in the limiting case where I −→ ∞.

We seek to determine:

1. The crystal’s Wulff shapeW , alternatively described by:

(a) The set of facets of W , encoded as vectors wk ∈ R3, k = 1, . . . , K (with K
as small as possible) defining the convex hullW = ∩K

k=1{x : wk · x ≤ 1}. Note
that wk/‖wk‖ gives the facet k’s unit normal and ‖wk‖−1 gives its surface
energy.

(b) The set of vertices ofW , denoted vj ∈ R3, j = 1, . . . , J.

2. The full orientation-dependence of the surface energy, encoded as a function σ(u)
of a normal unit vector u.

The algorithm to obtainW from (si, σi)
I
i=1 is as follows:

1. Construct the convex hull V of the points σ−1
i si and express it in terms of the minimal

number of vectors vj such that V = ∩J
j=1

{
x : vj · x ≤ 1

}
.

2. Compute the convex hullW of the points vj and express it in terms of the minimal
number of vectors wk such thatW = ∩K

k=1{x : wk · x ≤ 1}.
3. For any given unit vector u, compute σ(u) = maxj∈J vj · u.

Note that the resulting surface energy σ(u), when u is not parallel to one of the stable
surface normals, has the interpretation of the surface energy of a microscopically faceted
surface, where the facets are sufficiently small to be invisible at the macroscopic scale but
are sufficiently large that edge energy contributions are negligible [26].

The above algorithm has been implemented as the command surfbond in the Alloy
Theoretical Automated Toolkit (ATAT) [27].

3. Results

As an example, we predict the Wulff shape and calculate the associated surface en-
ergy anisotropy for selected crystal structures (see Figure 1). We first consider some
simple structures, such as A1 (fcc) and A3 (hcp), where our results agree qualitatively with
the Wulff shape determined in earlier DFT studies (e.g., [5]). The agreement is less impres-
sive for elements with the A4 (diamond) structure, such Si or Ge, due to significant and
well-documented surface reconstruction effects [28], which are neglected in our simple ap-
proach. As a forecasting exercise, we also predict possible Wulff shapes for metastable and
high-temperature polymorphs, such the A15 (β-W), A5 (β-Sn) and A8 (grey Se) structures.
These last three crystals are examples of more complex structures where the determination
of low-energy orientations and cut plane positions would be extremely difficult to carry
out without an automated software tool.
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(a) Crystal Structure (b) Wulff Shape (c) Surface Energy Anisotropy

A1 (fcc)

A3 (hcp)

A4 (diamond)

A15 (β-W)

A5 (β-Sn)

A8 (grey Se)

Figure 1. (a) Left column: example crystal structures (conventional unit cell shown).
(b) Center column: Wulff shapes derived from the calculated surface energy anisotropies to the right.
(c) Right column: relative surface energy anisotropy surfaces determined by calculating the minimum
energy plane over a mesh of plane vector orientations.



Symmetry 2022, 14, 2067 5 of 7

The surface energy results of this study are compared to those found in the literature
in Figure 2. Plane surface energy ratios are used for comparison instead of absolute energies
because the ratios are sufficient to determine the energy ranking of candidate surfaces
and thus the Wulff shape. Within any given crystal and plane ratio entry, each point
corresponds to results for a different chemical element. Red squares and black circles
denote results from prior DFT surface energy calculations [5] obtained with and without
surface reconstruction, respectively. We find that the surface energy ratios predicted by our
method match well to those calculated using DFT methods. It is useful to note that the prediction
error does not seem to be larger for data points that account for reconstruction effects.

Figure 2. Ratios of surface energies between two planes for various plane, crystal, and element
combinations as found in the literature [5] and calculated in this study. Within each of the seven
configurations labeled on the horizontal axis, each point that uses the same marker type represents
a different chemical element.

Agreement with the DFT data suggests that our method accurately estimates surface
energy ratios between different planes, which would imply that the surface energy rankings are
correct. Rankings of surface energies can act as an initial screen to provide insight into planes
relevant to several practical applications related to surface anisotropy, such as the calculation
of stable crystal morphologies via the Wulff construction. These considerations are discussed
further in the next section.

Both of the hcp ratio entries include two points lower than the rest of the group and in both
cases correspond to the elements Cd and Zn. It is possible that Cd and Zn have particularly low
energy ratios due to electronic structure effects characteristic of Group 12 elements.

4. Discussion

Although the method specifically models interfaces between a solid and the vac-
uum, the results naturally extend to gas-solid or liquid–solid interfaces. The orientation-
dependence of such interfaces have the same symmetry since the non-solid phase is isotropic.
In addition, the isotropic phase in these cases consist of random and dynamically fluctuat-
ing atomic configurations. As a result, the time-average of the variations in the number
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of bonds formed relative to a corresponding solid-vacuum interface is expected to, to first or-
der, simply contribute an orientation-independent correction term to the energy. Of course,
solid–solid interfaces would demand a different treatment, due to additional symmetry
considerations.

Historically, computational high-throughput workflows have primarily focused on ma-
terials properties that can be easily and rapidly computed from first principles [29–35].
Unfortunately, surface energy calculations from first principles are notoriously expensive,
in part because large supercells are needed and in part because a large number of candidate
surfaces need to be considered in search of those with sufficiently low energies to contribute
to the Wulff shape. More recently, high-throughput efforts to quantify a large number
of surface energies have been undertaken [5,6] and these methods could benefit from our
simple pre-screening scheme as more complex crystal structures are being considered.

Since our predicted surface energies are approximate, it is recommended, for screening
purposes, to conservatively not limit oneself to merely the surfaces with lowest predicted
energy. This consideration can be implemented by adding a random noise to each predicted
energy whose magnitude reflects the uncertainty in the predicted energies. One would then
repeat the Wulff construction for many random draws to identify a broader set of surfaces
that may be stable.

Another potential application of our tool is to provide input to phase field model-
ing of microstructure evolution during solidification processes [36,37]. Due to sparsity
of accurate surface energies data, the anisotropy in surface energy in these simulations
is often specified only in a semi-quantitative fashion. Our approach provides an automated
and objective way to assign these parameters. The fact that we obtain relative rather than
absolute surface energies is inconsequential in this application because any multiplicative
factor can be absorbed in the kinetic prefactor of the phase field equation of motion.
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