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Abstract: We derive a novel topological expression for the Hall conductivity. To that degree we
consider the quantum Hall effect (QHE) in a system of interacting electrons. Our formalism is valid
for systems in the presence of an external magnetic field, as well as for systems with a nontrivial band
topology. That is, the expressions for the conductivity derived are valid for both the ordinary QHE
and for the intrinsic anomalous QHE. The expression for the conductivity applies to external fields
that may vary in an arbitrary way, and takes into account disorder. Properties related to symmetry
and topology are revealed in the fractional quantization of the Hall conductivity. It is assumed
that the ground state of the system is degenerate. We represent the QHE conductivity as e2

h ×
N
K ,

where K is the degeneracy of the ground state, while N is the topological invariant composed of the
Wigner-transformed multi-leg Green functions, which takes discrete values.

Keywords: fractional quantum hall effect; Wigner–Weyl calculus

1. Introduction

In this we derive a novel expression for the Hall conductivity. The Hamiltonian of the
system contains a potential term that describes an interaction between two particles. When
this interaction potential is set to zero, the obtained expression for the conductivity reduces
to a known expression valid in the absence of interaction. This stands as a validity check of
our result.

The quantum Hall effect (QHE) is a phenomenon observed in electrons confined to a
plane in a magnetic field. It is perhaps one of the most tangible observations of quantum
theory in experiment. Originally the Hall conductivity was found experimentally to take
integer values of the inverse of the quantum of resistivity or the Klitzing constant, equal to
2πh̄/e2 [1]. Granted the quantization of physical quantities on the atomic scale should not
be surprising, but the Hall conductivity is a macroscopic quantity in a system involving
many particles. This observation of the Hall conductivity being quantized can be explained
theoretically by the role of topology in quantum many-body systems.

Later it was discovered that the QHE has two starkly different types: the first is the inte-
ger quantum Hall effect (IQHE) discussed above. The second is the fractional quantum Hall effect
(FQHE), a phenomenon where the Hall conductivity can take very specific fractional values
of the conductivity quantum. The most prominent fractions found experimentally are
1/3 and 2/5, but many dozens of different fractions have been observed. Such fractional
quantization of the conductivity can be accounted for by interactions between electrons.

To explain the QHE in theoretical terms Thouless, Kohomoto, Nightingale and den
Nijs (TKNN) derived a formula called the TKNN formula for the quantized Hall conductivity
in their seminal paper [2]. The TKNN formula contains an integer factor in front of the
conductivity quantum, given by a sum of Chern numbers commonly referred to as the
TKNN invariant . A pedagogical overview of the theory can be found in references [3–7].

The TKNN formula is the statement that the Hall conductivity is a topological invariant
of the system [2], proposed for systems subject to a constant external magnetic field. In this
case the invariant is the TKNN invariant, related to the Hall conductivity by the TKNN
formula. In [2] the Hall conductivity for lattice models has been expressed as an integral of
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the Berry curvature over the magnetic Brillouin zone. The nontrivial topology makes only
integer multiples of the Hall conductivity possible.

The TKNN invariant has two major drawbacks: (i) it is not defined for systems where
interactions occur, and (ii) it can only be applied to systems subject to a constant magnetic
field, or homogeneous Chern insulators. The first is overcome through an alternate form of
the TKNN invariant applicable to Chern insulators, expressed in terms of the two point
Green function. In this approach the topological invariant for systems with interactions
is obtained. The simplest such topological invariant is composed of a two point Green
function. The invariance property leads to the stability of the Fermi surface in 3 + 1D
systems, and has been shown to be admissible for interacting systems. Nonetheless it is
still not valid for non-homogeneous systems.

Progress has been made towards this goal. It has been shown in references [8–10] that
in the absence of electron interactions the TKNN invariant for the intrinsic anomalous QHE
(AQHE) is expressible in terms of the momentum space Green function, and importantly,
this expression is unchanged when the given system is modified smoothly. While this
representation was derived originally only for non-interacting systems, it has since been
suggested [9,10] that it can be generalized to describe interactions simply by replacing
the non-interacting two point Green function with the full two point Green function that
includes corrections due to interactions.

This has been proven in the framework of 2 + 1D QED [11,12]. The influence of
interactions on the Integer QHE has been investigated recently [13]. It was shown that the
QHE conductivity is the topological invariant composed of the Wigner-transformed two-
point Green’s function of the interacting model. This result refers to the Hall conductivity
in non-homogeneous systems, in particular for systems subject to a varying magnetic
field. The basic expression for the QHE conductivity has been suggested [14] for the Hall
conductivity, constituting a topological invariant containing the Wigner transformed two
point Green functions. Applications to graphene in presence of elastic deformation have
been considered in [15]. Even more, as it was mentioned above, in [13,16] it was proved
that for the systems with interactions the QHE conductivity is expressed as in [14] but with
the complete Green function, which includes loop corrections.

Similar methods can be used to describe the QHE in 3 + 1 D systems, which opens
the door to a number of research goals addressed in this article. The first is to apply these
methods to the QHE in Weyl semi-metals. The machinery developed for the representation
of the QHE current in terms of Green functions has also been extended to the chiral
separation effect (CSE) [17]. However, the question about the role of interactions in the
CSE still remains open. The family of non-dissipative transport effects contains more
members, such as the chiral torsional effect, chiral magnetic effect, chiral vortical effect,
Hall viscosity, and more. An additional research goal is to construct the topological
representation for the conductivity for each of these effects in terms of the Green functions.
A similar representation for the fractional Hall effect also awaits investigation. In the latter
case it might be necessary to build more involved topological invariants, composed of
multi-leg Green functions. Such complicated topological invariants may also be relevant
for considering various other topological phenomena in QCD.

First, to summarize some background theory. In the presence of a magnetic field the
Hall conductivity is given by [3]

σH =
N
2π

,

whereN is related to the number of filled Landau states. (Here the conductivity is expressed
in units of e2/h̄.) A similar expression for the intrinsic QHE conductivity in topological
insulators is derived in [8,9,18] in terms of the two-point Green function G(p) (in the
absence of interactions):

N = −
εijk

3! 4π2

∫
d3 p Tr G(p)

∂G−1(p)
∂pi

∂G(p)
∂pj

∂G−1(p)
∂pk

. (1)
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In [19], the expression in (1) was generalized to include interactions in the case of a
varying magnetic field. In that expression the non-homogeneous nature of the system is
characterized by the full two-point Green function expressed in terms of the Weyl symbol
GW(x, p). Its explicit form is

N = −
Tεijk

A 3! 4π2

∫
d3x

∫
d3 p tr GW(x, p) ?

∂QW(x, p)
∂pi ?

∂GW(x, p)
∂pj ?

∂QW(x, p)
∂pk ,

where T → 0 is temperature, A is the area of the system, GW(x, p) is the Wigner transfor-
mation of the two-point Green’s function Ĝ = Q̂−1, while QW is the Wigner transformation
of Q̂. The star product ? entering the above expression is the Moyal product of the conven-
tional Wigner–Weyl calculus.

In the presence of interactions the conductivity of integer QHE is given by the above
expression, where the complete Green function is substituted. It makes heavy use of the
version of the Wigner–Weyl calculus used in these notes, which is described fully in [20].
However, this treatment is not valid for the FQHE .

The absence of correction terms to the IQHE due to Coulomb interactions and impuri-
ties (in the presence of a constant magnetic field) has been widely discussed some time ago
in refs. [21–24] (see also [25–29]). In particular, in [22] the systems with both inter-electron
interactions and disorder were considered, and the corresponding topological expression
for the Hall conductivity was derived. It may be applied both to the IQHE and to the FQHE.
Although the expression given in [22] was not applied for a practical calculation of the
Hall conductivity, its topological nature itself is proof that the FQHE in the presence of a
constant magnetic field is robust with respect to smooth modifications of the system. This
proof is important for a more practical consideration of materials with the FQHE. Still, a
substantial gap remains between the relevant theoretical models and real experiments in
which magnetic fields are never precisely homogeneous. Rather variations of the magnetic
field are always present. For the latter case, a theoretical proof that the FQHE conductivity
is robust with respect to smooth modifications of the system, has still not been given. In
this article we fill this gap and present this very proof.

In our approach we use a specific version of the Wigner–Weyl (WW) calculus de-
veloped earlier for field theoretical models of solid state physics. Originally the WW
formalism was formulated by Groenewold [30] and Moyal [31] as a way of expressing
results of quantum mechanics in terms of classical functions in phase space instead of
operators. A transformation from a given operator to a classical function exists in general
called the Weyl transformation. Later the WW formalism was applied to quantum field
theory (QFT) and condensed matter physics. This WW calculus allows us to express the
FQHE conductivity through a certain topological invariant composed of multi-particle
Green functions. A number of results from the WW formalism are assumed. For a full
discussion and derivation of these results the reader is recommended to consult [20]. A
summary of the background and essential results are given in Appendix B. For a detailed
description of the fractional QHE we advise the reader to consult [32–47].

This paper is organized as follows. In Section 2 we state the main result of the paper,
namely the derived expression for the Hall conductivity in the presence of interactions.
We also summarize in this section some of the notation used throughout this paper. In
Section 3 the Hall conductivity of a system in the presence of a varying magnetic field is
derived, but for a system with a fixed number of N different particles, and it is shown that
the obtained expression is a topological invariant of the system. Section 4 contains the full
derivation of the main result of this paper: an expression for the Hall conductivity for a
system with a varying number of particles, but a fixed chemical potential. We also show
in this section that the expression reduces to the analogous conductivity in the absence of
interactions given in Section 3, when the interaction piece of the Hamiltonian is neglected.
In Section 5 we summarize our results and discuss the implications of our findings in the
wider context of related results on the Hall conductivity, topological quantum field theory
and condensed matter physics.
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2. Statement of the Main Result

We consider a system that has a varying number of particles but fixed chemical
potential. A number of identities that involve creation and annihilation operators are used
in this section. Their derivations can be found in Appendix A.

The Hamiltonian operator for the whole interacting system is

Ĥ =
∫

d2x a†(x)H0 a(x) +
∫

d2x d2y a†(x)a(x)V (x− y)a†(y)a(y) + ∆ . (2)

Here H0 is the one-particle Hamiltonian defined with respect to the Fermi level, i.e.,
it is equal to the true one particle Hamiltonian minus a chemical potential, µ. The term
V (x− y) is a potential term representing an inter-particle interaction. If ∆ is a constant, its
presence in Ĥ does not affect observable quantities. With this freedom, ∆ is chosen in a
way that the ground state of the system has negative energy while all excited states carry
positive energy values. It is easily verified that

Ĥa†(x1) . . . a†(xN)|∅〉 =
(

N

∑
a=1

H0(xa) +
N

∑
a,b=1

V (xa − xb) + ∆

)
a†(x1) . . . a†(xN)|∅〉 .

Note that the particle-number operator, N̂ commutes with the Hamiltonian. Therefore,
Ĥ and N̂ share common eigenstates. As a result, the ground state in particular corresponds
to a definite value for the number of particles in the state. The ground state may be
degenerate. However, at least in non-marginal cases, a degenerate ground state does not
correspond to different eigenvalues for N̂.

The statement immediately below is the main result of this paper: For a system with a
Hamiltonian of the form of Equation (2), the Hall conductivity in the units of e2/h̄ averaged
over the system area A is

σxy =
N

2πK
, (3)

where K is the degeneracy of the ground state while N is a topologically invariant quantity
given by

N = − 1
2A ∑

N=0,...

1
(2π)2N

N

∑
b,c=1

∫
dω

(
N

∏
a=1

d2 pa d2xa

)
εjk

tr

[
G(N)

W (ω, {pa}, {xa}) ?
∂Q(N)

W (ω, {pa}, {xa})
∂ω

?
∂G(N)

W (ω, {pa}, {xa})
∂pj

b

?
∂Q(N)

W (ω, {pa}, {xa})
∂pk

c

]

= − 1
2A

1
(2π)2N0

N0

∑
b,c=1

∫
dω

(
N0

∏
a=1

d2 pa d2xa

)
εjk

tr

[
G(N0)

W (ω, {pa}, {xa}) ?
∂Q(N0)

W (ω, {pa}, {xa})
∂ω

?
∂G(N0)

W (ω, {pa}, {xa})
∂pj

b

?
∂Q(N0)

W (ω, {pa}, {xa})
∂pk

c

]
. (4)

Here, N0 is the number of particles in the ground state of the system. The ? operator is
defined as

AW({xa}, {pa}) ? BW({xa}, {pa})

=AW({xa}, {pa}) exp

[
i
2

N

∑
a=1

2

∑
i=1

(←−
∂

∂xi
a

−−→
∂

∂pi
a
−
←−−

∂

∂pi
a

−→
∂

∂xi
a

)]
BW({xa}, {pa}) .
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The Weyl symbols Q(N)
W (ω, {pa}, {xa}) and G(N)

W (ω, {pa}, {xa}) that appear in (4) are

functions of 2N + 1 variables ω, p1, x1, . . . , pN , xN . Specifically, Q(N)
W (ω, {pa}, {xa}) is the

Weyl symbol of the operator Q̂(N) defined by

Q(N)
W (ω, {pa}, {xa}) =

1
N!

∫ ( N

∏
a=1

dqaeiqaxa

)
〈{pa + qa/2}|Q̂(N)|{pa − qa/2}〉

where |{pa}〉 denotes the multi-particle state defined by

|{pa}〉 ≡ a†
1(p1) . . . a†

N(pN) |∅〉 ,

and the operator Q̂(N) is defined by

Q̂(N) = (iω− Ĥ)Π̂N , (5)

with Ĥ given explicitly in (2) being the field-theoretical Hamiltonian. Its matrix elements
〈{pa}|Ĥ|{qa}〉 are between states with N particles having momenta that belong to the sets
{pa} and {qa}. Here Π̂N is the projection operator onto N particle states defined by

Π̂N =
1

N!

∫
dp1...dpN |{pa}〉 〈{pa}| ,

or equivalently

Π̂N =
1

N!

∫
dx1 . . . dxN a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1) .

G(N)
W (ω, {pa}, {xa}) is the Weyl symbol of the operator Ĝ(N) defined by

G(N)
W (ω, {pa}, {xa}) =

1
N!

∫ ( N

∏
a=1

dqaeiqaxa

)
〈{pa + qa/2}|Ĝ(N)|{pa − qa/2}〉 ,

where
Ĝ(N) =

1
iω− Ĥ

Π̂N .

3. Fixed Number of Different Particles
3.1. Derivation of the Expression for Hall Conductance

In this section, the Hall conductivity of a system in the presence of a varying magnetic
field is discussed. We seek an expression for the Hall conductivity for a system of N
different particles. By different it is meant that the particles themselves are different, and
to that extent neither symmeterization or anti-symmeterization is applied to the state. To
that degree the results obtained in this section are intermediate, however the techniques
developed are crucial for obtaining the main result in the next section, where a system of
identical fermions is considered. In all expressions from now on, h̄ = c = 1 is assumed
unless stated explicitly otherwise.

Let the operator Q̂ be defined as

Q̂ = iω− Ĥ , (6)

where Ĥ is the multi-particle Hamiltonian inclusive of interaction terms:

Ĥ =
N

∑
a=1

Ĥ0(xa,−i∂xa) +
1
2

N

∑
a,b=1
a 6=b

V(xa − xb) , (7)
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where Ĥ0 is the free-particle Hamiltonian and indices a, b = 1, . . . , N label the particles
themselves. We assume that the ground state (either degenerate or unique) corresponds to
a negative value of energy, while all excited states have positive values of energy. This may
always be achieved simply by adding a constant to the single particle Hamiltonian Ĥ0 that
appears in Equation (7). The inverse operator of Q̂ is

Ĝ =
1

iω− Ĥ
, (8)

where the notation on the right of Equation (8) is intended to denote the inverse of the
operator iω− Ĥ.

The Wigner transformation of the operator Q̂ is defined as a function of the 2N + 1
variables ω, {pa}, {xa} (a = 1, ..., N) in terms of its matrix elements in momentum space as

QW(ω, {pa}, {xa}) =
∫ ( N

∏
a=1

dqa eiqaxa

)
〈{pa +

qa
2 }|Q̂|{pa − qa

2 }〉 . (9)

Here, |{pa − qa
2 }〉 refers to a state comprised of N different fermions, defined by

|{pa}〉 ≡ a†
1(p1) . . . a†

N(pN) |0〉 , (10)

where the suffix 1, 2, . . . , N labels the particle, following the convention in [48] (See [48]
§59 p. 225. Here the discussion is about boson states but the notation, described in detail
here, applies also to fermion states, as described later on in [48] §65 pp. 248–259. Dirac
writes |αa

1 αb
2 . . . α

g
u′〉, each α corresponding to a particle, where the suffixes 1, 2, 3, . . . , u′

label the particles themselves, while a, b, c . . . , g denote the indices (1), (2), (3), . . . in the
basic kets for one particle, or in equivalent terms a, b, c . . . , g label the actual states in which
the particles lie). The operators themselves are creation and annihilation operators of a
single fermion that satisfy the familiar anticommutation relations

{ar(p), a†
s (p′)} = δ(p− p′)δrs , {ar(p), as(p′)} = {a†

r (p), a†
s (p′)} = 0 . (11)

In a precisely analogous way, the Wigner symbol of Ĝ is

GW(ω, {pa}, {xa}) =
∫ ( N

∏
a=1

dqa eiqaxa

)
〈{pa +

qa
2 }|Ĝ|{pa − qa

2 }〉 . (12)

The goal of this paper is two fold. Firstly, to show that the Hall conductivity averaged
over the system area A is given by

σxy =
N

2πK
, (13)

where K is the degeneracy of the ground state, N is given by

N =− 1
2A

1

(2π)2N

N

∑
b,c=1

∫
dω

(
N

∏
a=1

d2 pa d2xa

)

εjk tr
[

GW(ω, {pa}, {xa}) ?
∂QW(ω, {pa}, {xa})

∂ω
?

∂GW(ω, {pa}, {xa})
∂pj

b

?
∂QW(ω, {pa}, {xa})

∂pk
c

]
, (14)

and

? = exp

(
i
2

N

∑
a=1

←→
∆ a

)
,

←→
∆ a =

←−
∂

∂xi
a

−−→
∂

∂pa,i
−
←−−

∂

∂pi
a

−−→
∂

∂xa,i
, (i = 1, 2) .
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The second goal is to show that N is topologically invariant.
The identity GW ? QW = 1 that shall be proven below, together with the product rule

of differentiation and the commutative property of derivatives, allows ordinary derivatives
and the ? operator to be interchanged. In particular,

∂

∂pb
GW ? QW + GW ?

∂QW
∂pb

= 0 (b = 1, . . . , N) ,

such that the following relation holds:

∂GW
∂pb

= −GW ?
∂QW
∂pb

? GW , (b = 1, . . . , N) . (15)

By substituting (15) in (14) it is obtained that

N =
1

2A
1

(2π)2N

N

∑
b,c=1

∫
dω

(
N

∏
a=1

d2 pa d2xa

)

εjk tr
(

GW(ω, {pa}, {xa}) ?
∂QW(ω, {pa}, {xa})

∂ω
? GW(ω, {pa}, {xa})

?
∂QW(ω, {pa}, {xa})

∂pj
b

? GW(ω, {pa}, {xa}) ?
∂QW(ω, {pa}, {xa})

∂pk
c

)
. (16)

By (6) and (9),

∂QW(ω, {pa}, {xa})
∂pj

b

=
∫ ( N

∏
a=1

dqa eiqaxa

)
∂

∂pj
b

〈{pa +
qa
2 }|iω− Ĥ|{pa − qa

2 }〉 . (17)

The following identities from the standard bra-ket formalism may be invoked:

− i
∂

∂pb
j
|p〉 = x̂j

b|p〉, −i
∂

∂pb
j
〈p| = −〈p|x̂j

b . (18)

For an explanation of the origins the identities quoted in Equation (18), the reader may
consult ref. [48] for example. Accordingly (17) becomes

∂QW(ω, {pa}, {xa})
∂pj

b

=
∫ ( N

∏
a=1

dqa eiqaxa

)
i〈{pa +

qa
2 }|[x̂

j
b, Ĥ]|{pa − qa

2 }〉

=−
∫ ( N

∏
a=1

dqa eiqaxa

)
〈{pa +

qa
2 }| Ĵ

j
b|{pa − qa

2 }〉 . (19)

where in the last step the relation [x̂j
b, Ĥ] = i Ĵ j

b was substituted, where Ĵ j
b is the operator

associated with the j component of the electric current. Note that in our calculations we define
electric current in units of electric charge e, and we use natural units where c = h̄ = 1.

Let (19) be the definition of the Weyl symbol J j
b W , such that (16) can be cast in the form

N =
1

2A
1

(2π)2N

N

∑
b,c=1

∫
dω

(
N

∏
a=1

d2 pa d2xa

)

εjk tr
(

GW(ω, {pa}, {xa}) ?
∂QW(ω, {pa}, {xa})

∂ω
? GW(ω, {pa}, {xa})

? J j
b W ? GW(ω, {pa}, {xa}) ? Jk

c W

)
.
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After invoking the relation

AW(x, p) ? BW(x, p) := (AB)W(x, p) = AW(x, p) exp
(

i
2

(←−
∂x
−→
∂p −

←−
∂p
−→
∂x

))
BW(x, p) ,

we obtain

N =
1

2A(2π)2N

N

∑
b,c=1

∫
dω

(
N

∏
a=1

d2 pa d2xa

)
εjktr

(
Ĝ

∂Q̂
∂ω

Ĝ Ĵ j
b Ĝ Ĵk

c

)
W

.

Next, by substituting the formal definition of a Weyl symbol we find that

N =
1

2A(2π)2N

N

∑
b,c=1

∫
dω

(
N

∏
a=1

d2 pa d2qa d2xa eiqaxa

)

εjktr〈{pa +
qa

2
}| Ĝ ∂Q̂

∂ω
Ĝ Ĵ j

b Ĝ Ĵk
c |{pa −

qa

2
〉} , (20)

where |{pa +
qa
2 }〉 is the N fermion state defined in (10) but with {pa} replaced with

{pa + qa/2}. Equation (20) can be expressed using a complete set of antisymmetric N
fermion states, using the result proved in (A8), as

N =
1

2A(2π)2N

N

∑
b,c=1

∫
dω

(
N

∏
a=1

d2 pa d2qa d2xa d2 pa,1 d2 pa,2 d2 pa,3 eiqaxa

)
(21)

εjk tr〈{pa +
qa
2 }| Ĝ

∂Q̂
∂ω

Ĝ |{pa,1}〉〈{pa,1}| Ĵ
j
b |{pa,2}〉〈{pa,2}| Ĝ |{pa,3}〉〈{pa,3}| Ĵk

c |{pa − qa
2 }〉.

The outcome from evaluating the x integrals is a product of δ functions, namely one
factor of (2π)δ(qa) corresponding to each integrand labeled by a. These δ functions make
each qa integral trivial. In all, after evaluating the xa and subsequently the qa integrals,
(21) reduces to

N =
1

2A

N

∑
b,c=1

∫
dω

(
N

∏
a=1

d2 pa d2 pa,1 d2 pa,2 d2 pa,3

)

εjktr〈{pa}| Ĝ
∂Q̂
∂ω

Ĝ |{pa,1}〉〈{pa,1}| Ĵ
j
b |{pa,2}〉〈{pa,2}| Ĝ |{pa,3}〉〈{pa,3}| Ĵk

c |{pa}〉 .

The next steps are first to plug in the explicit forms in (6) and (8), from which
∂Q̂/∂ω = i. Subsequently complete sets of eigenstates of Ĥ are inserted into the expression,
assuming that each set is discrete and belongs to discrete eigenvalues. This yields

N =
i

2A

N

∑
b,c=1

∫
dω

(
N

∏
a=1

d2 pa d2 pa,1 d2 pa,2 d2 pa,3

)

εjk tr ∑
E,E′ ,E′′

〈{pa}|
1

iω− Ĥ
|E〉 〈E| 1

iω− Ĥ
|E′′〉 〈E′′|p1〉 〈{pa,1}| Ĵ

j
b |{pa,2}〉

〈{pa,2}|
1

iω− Ĥ
|E′〉 〈E′|{pa,3}〉 〈pa,3| Ĵk

c |{pa}〉 . (22)
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By their very definition of being eigenstates of Ĥ it stands to reason that the inverse
operator (iω− Ĥ)−1, denoted as 1/(iω− Ĥ) in the expression above, has the eigenvalue

equation (iω− Ĥ)−1 |E〉 = 1
iω− E

|E〉. To that extent (22) becomes

N =
i

2A

N

∑
b,c=1

∫
dω

(
N

∏
a=1

d2 pa d2 pa,1 d2 pa,2 d2 pa,3

)
∑

E,E′ ,E′′

1
iω− E

1
iω− E′

1
iω− E′′

εjk tr 〈{pa}|E〉 〈E|E′′〉 〈E′′|{pa,1}〉 〈{pa,1}| Ĵ
j
b |{pa,2}〉

〈{pa,2}|E′〉 〈E′|{pa,3}〉 〈{pa,3}| Ĵk
c |{pa}〉 ,

and since the trace operator allows the freedom to change the order of inner products
cyclically, this can be written equally as

N =
i

2A

N

∑
b,c=1

∫
dω

(
N

∏
a=1

d2 pa d2 pa,1 d2 pa,2 d2 pa,3

)
∑

E,E′ ,E′′

1
iω− E

1
iω− E′

1
iω− E′′

εjk tr 〈E|E′′〉 〈E′′|{pa,1}〉 〈{pa,1}| Ĵ
j
b |{pa,2}〉

〈{pa,2}|E′〉 〈E′|{pa,3}〉 〈{pa,3}| Ĵk
c |{pa}〉 〈{pa}|E〉 .

The integrals are simplified using the identity derived in (A8), which fixes each of the
intermediate outer products to be the identity operator, namely

∫ ( N

∏
a=1

dpa

)
|{pa}〉 〈{pa}| =1 ,

∫ ( N

∏
a=1

dpa,1

)
|{pa,1}〉 〈{pa,1}| =1 ,

∫ ( N

∏
a=1

dpa,2

)
|{pa,2}〉 〈{pa,2}| =1 ,

∫ ( N

∏
a=1

dpa,3

)
|{pa,3}〉 〈{pa,3}| =1 .

As well the relation 〈E|E′′〉 = δE,E′′ eliminates the sum over E′′. Putting
everything together,

N =
i

2A

N

∑
b,c=1

∑
E,E′

∫
dω

1

(iω− E)2(iω− E′)
tr εjk 〈E| Ĵ j

b |E
′〉 〈E′| Ĵk

c |E〉 .

The ω integral, with the line of the integration range [−∞, ∞], is evaluated by extend-
ing l to be a closed semi-circle, C in the upper complex plane. Two possibilities arise: (i) C
encloses both of the points iE and iE′ on the imaginary axis if E > 0 and E′ > 0, or (ii)
C encloses only one of them, if say E > 0 E′ < 0, or the converse. If E < 0 and E′ < 0,
integrating over the variable −ω (namely minus ω) instead, produces the same integral
described in (i) with the same contour C. In both cases the integral can be evaluated using
Cauchy’s integral formula. For case (i) the integral vanishes, but for case (ii) there is a
non-zero contribution. The result is

N = −2πi
A

N

∑
b,c=1

∑
E,E′

θ(−E)θ(E′)

(E− E′)2 εjk tr 〈E| Ĵ j
b |E
′〉 〈E′| Ĵk

c |E〉 . (23)

Just as the presence of the term θ(E)θ(−E′) indicates, the integral was solved assuming
that E > 0, E′ < 0. Had the converse been assumed, precisely the same formula in (23)
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would hold, seeing as interchanging E and E′, given the trace operator in front, leaves the
expression unaltered.

Appropriately the sum over the labels b and c gets absorbed by replacing ∑N
b=1 Ĵ j

b = Ĵ j

and ∑N
c=1 Ĵk

c = Ĵk, resulting in

N =− 2πi
A ∑

E,E′

θ(−E)θ(E′)

(E− E′)2 εjk tr 〈E| Ĵ j|E′〉 〈E′| Ĵk|E〉

=− 2πi
KA ∑

E,E′

θ(−E)θ(E′)

(E− E′)2 tr
(
〈E| Ĵx|E′〉 〈E′| Ĵy|E〉 − 〈E| Ĵy|E′〉 〈E′| Ĵx|E〉

)
. (24)

Here, the ket |E〉 with E < 0 is an N fermion eigenstate of Ĥ.
There are two separate cases to consider. The first applied when there is only one

such state: the ground state of the system. In this case K = 1. Let this state be denoted
by |0〉 instead, and let the eigenvalue of Ĥ that it belongs to be denoted by E0, such that
Ĥ |0〉 = E0 |0〉. Correspondingly (24) reads

N = −2πi
A ∑

E

1

(E− E0)
2 tr
(
〈0| Ĵx|E〉 〈E| Ĵy|0〉 − 〈0| Ĵy|E〉 〈E| Ĵx|0〉

)
.

However, as stated in (13), σxy = N/2π (in natural units), thus

σxy =
i
A ∑

E

1

(E− E0)
2 tr
(
〈0| Ĵy|E〉 〈E| Ĵx|0〉 − 〈0| Ĵx|E〉 〈E| Ĵy|0〉

)
, (25)

which is the conventional expression for Hall conductivity.
Now assume that there are K degenerate ground states. In this case the system at zero

temperature does not remain in a pure quantum state. Instead, the true state is described
by a density matrix. In such a state, with a diagonal density matrix (corresponding to
the probabilities of all ground states being equal) the conventional expression for the Hall
conductivity of Equation (25) has the modified form

σxy =
i

KA ∑
n

∑
E

1

(E− E0)
2 tr
(
〈n| Ĵy|E〉 〈E| Ĵx|n〉 − 〈n| Ĵx|E〉 〈E| Ĵy|n〉

)
.

Here the sum is over the degenerate ground states |n〉. This expression can be rewritten

as σxy =
N

2πK
with N given by Equation (24).

3.2. Proof of Topological Invariance

In this section, the fact that Equation (14) is a topological invariant is proved. Let it be
written in compact form as

N =− 1

2A(2π)2N

∫
dω

∫ ( N

∏
a=1

d2 pad2xa

)
trε3jk

[
GW(ω, {pa}, {xa}) ?

∂QW(ω, {pa}, {xa})
∂ω

? ∑
a

∂GW(ω, {pa}, {xa})
∂pj

a

? ∑
b

∂QW(ω, {pa}, {xa})
∂pk

b

]
. (26)

We introduce a convenient notation

D3 =
∂

∂ω
, Di = ∑

a

∂

∂pi
a

, (i = 1, 2),
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and write Equation (26) as

N =− 1

6A(2π)2N

∫
dω

∫ ( N

∏
a=1

d2 pad2xa

)

tr εijk
[

GW(ω, {pa}, {xa}) ? DiQW(ω, {pa}, {xa}) ? DjGW(ω, {pa}, {xa})

? DkQW(ω, {pa}, {xa})
]

. (27)

It is instructive to write (27) using the identity DjGW(ω, {pa}, {xa}) = −GW ? DjQW ?
GW , to obtain a more symmetric form for N as

N =
1

6A(2π)2N

∫
dω

∫ ( N

∏
a=1

d2 pad2xa

)
tr εijkGW(ω, {pa}, {xa}) ? DiQW(ω, {pa}, {xa}) ? GW(ω, {pa}, {xa}) ? DjQW(ω, {pa}, {xa})
? GW(ω, {pa}, {xa}) ? DkQW(ω, {pa}, {xa})

=
1

6A(2π)2N

∫
dω

∫ ( N

∏
a=1

d2 pad2xa

)
tr εijk

[
Ki,W(ω, {pa}, {xa}) ? Kj,W(ω, {pa}, {xa})

? Kk,W(ω, {pa}, {xa})
]

,

where Ki,W ≡ GW(ω, {pa}, {xa}) ? DiQW(ω, {pa}, {xa}). Now it is straightforward to
apply an arbitrary variation of the Green function G → G + δG. The resulting variation of
N is

δN =
3

6A(2π)2N

∫
dω

∫ ( N

∏
a=1

d2 pad2xa

)
tr εijk

[
Ki,W(ω, {pa}, {xa}) ? Kj,W(ω, {pa}, {xa})

? Kk,W(ω, {pa}, {xa})
]

=
3

6A(2π)2N

∫
dω

∫ ( N

∏
a=1

d2 pad2xa

)
tr εijk

[
δKi,W(ω, {pa}, {xa}) ? Kj,W(ω, {pa}, {xa})

? Kk,W(ω, {pa}, {xa})
]

,

where δKi,W(ω, {pa}, {xa}) = δGW ? DiQW + GW ? DiδQW = −GW ? δQW ? GW ? DiQW +
GW ? DiδQW . Putting everything together we find that

δN =− 3

6A(2π)2N

∫
dω

∫ ( N

∏
a=1

d2 pad2xa

)
tr εijk

[
(−GW ? δQW ? GW ? DiQW + GW ? DiδQW) ? GW ? DjQW ? GW ? DkQW

]
. (28)
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The trace can be re-ordered as

tr εijk
[
(−GW ? δQW ? GW ? DiQW + GW ? DiδQW) ? GW ? DjQW ? GW ? DkQW

]
=tr εijk

[
(−δQW ? GW ? DiQW + DiδQW) ? GW ? DjQW ? GW ? DkQW ? GW

]
=tr εijk

[
(−δQW ? GW ? DiQW ? GW + DiδQW ? GW) ? DjQW ? GW ? DkQW ? GW

]
=− tr εijk

[
(δQW ? DiGW + DiδQW ? GW) ? DjQW ? DkGW

]
=− tr εijk

[
Di(δQW ? GW) ? DjQW ? DkGW

]
=− tr εijkDi

[
(δQW ? GW) ? DjQW ? DkGW

]
.

Finally, by substituting this back into (28) we end up with

δN =+
3

6A(2π)2N

∫
dω

∫ ( N

∏
a=1

d2 pad2xa

)
tr εijkDi

[
(δQW ? GW) ? DjQW ? DkGW

]
.

This is of course zero, since the integrand comprises a total derivative. In conclusion,

δN = 0 .

The implication is that N is topologically invariant.

4. System with Varying Number of Identical Particles and Fixed Chemical Potential
4.1. Derivation of the Topological Expression

Suppose that the system has a varying number of particles but a fixed chemical
potential. If the ground state of the system is non-degenerate, the Hall conductivity is still
given by the familiar Kubo expression

σ12 =
i
A ∑

n 6=0

〈0| Ĵ2|n〉〈n| Ĵ1|0〉 − 〈0| Ĵ1|n〉〈n| Ĵ2|0〉
(En − E0)2 . (29)

If the ground state is degenerate, then the linear response of the system (remaining
in thermal equilibrium at zero temperature) to an external electric field gives rise to the
following expression for the Hall conductivity:

σ12 =
i

KA

K

∑
k=1

∑
n

〈0k| Ĵ2|n〉〈n| Ĵ1|0k〉 − 〈0k| Ĵ1|n〉〈n| Ĵ2|0k〉
(En − E0)2 .

Here the sum
K
∑

k=1
is over the K degenerate ground states |0k〉, while the sum ∑

n
is over

excited states of the system.
For a sufficiently weak magnetic field,

Ĵi =
1
i
[x̂i, Ĥ] . (30)

Here the Hamiltonian operator for the case of varying particle number is

Ĥ =
∫

d2x a†(x)(H0 − µ) a(x) +
∫

d2x d2y a†(x)a(x)V (x− y)a†(y)a(y) ,+∆ (31)
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with ∆ a constant term chosen in such a way that the ground states (i.e., the states with
minimal values of the total energy) have negative energy, while all excited states belong to
energy eigenvalues that are positive. The position operator is

x̂i =
∫

d2x a†(x)xia(x) . (32)

The physical meaning of this operator is that it is a measure of spatial inhomogeneity.
Namely, for a system in which particles are distributed homogeneously in space, its value
is equal to zero. At the same time, the value of this operator is nonzero if the particles
are distributed in a non-uniform way. In the marginal case, when N particles are placed
around the coordinates of vector Xi, the corresponding eigenvalue of x̂i is close to NXi.

In the following we denote
H0 = H0 − µ ,

where µ is the chemical potential. These forms for Ĥ and x̂ in (31) and (32) are justified as
follows. From the expression in (31), the operator Ĥ acts on states comprised of N quanta
of energy as described by (33) below:(

Ĥ −∆
)
a†(x1) . . . a†(xN)|∅〉 =

∫
d2x a†(x)H0(x) a(x)a†(x1) . . . a†(xN)|∅〉

+
∫

d2x d2y a†(x)a(x)V (x− y)a†(y)a(y)a†(x1) . . . a†(xN)|∅〉 . (33)

The right-hand side can be recast by re-arranging the order of creation and annihilation
operators. Repeated use of the anticommutation relation in (11), namely {a(x), a†(x1)} =
δ(x− x1), leads to

a†(x) a(x)a†(x1) . . . a†(xN) |∅〉

=δ(x− x1)a†(x)a†(x2) . . . a†(xN) |∅〉 − δ(x− x2)a†(x)a†(x1)a†(x3) . . . a†(xN) |∅〉+ · · ·

· · ·+ (−1)N−1δ(x− xN)a†(x)a†(x1)a†(x2) . . . a†(xN−1) |∅〉

=

(
N

∑
a=1

δ(x− xa)(−1)a−1

)
a†(x1)a†(x2) . . . a†(xN) |∅〉 . (34)

This in turn implies that

a†(x) a(x)a†(y) a(y)a†(x1) . . . a†(xN) |∅〉

=

(
N

∑
a,b=1

δ(x− xa)δ(y− xb)(−1)a+b

)
a†(x1)a†(x2) . . . a†(xN) |∅〉 . (35)

Thus, by substituting (34) and (35) in (33) the outcome is the eigenvalue equation

Ĥa†(x1) . . . a†(xN)|∅〉 =

=

(
N

∑
a=1

H0(xa) +
N

∑
a,b=1

V (xa − xb) + ∆

)
a†(x1) . . . a†(xN)|∅〉 . (36)
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Based on the expression in (32) the operator x̂ acts on N particle states as

x̂ia†(x1) . . . a†(xN)|∅〉 =
∫

dx xia†(x)a(x)a†(x1) . . . a†(xN)|∅〉

=
∫

dx xi
N

∑
a=1

(−1)aδ(x− xa)a†(x1) . . . a†(xN)|∅〉

=
N

∑
a=1

xi
aa†(x1) . . . a†(xN)|∅〉 , (37)

where in the second step the identity in (34) was used. Equation (37) can be re-cast as

x̂ia†(x1) . . . a†(xN)|∅〉 = xia†(x1) . . . a†(xN)|∅〉 ,

where xi ≡ ∑N
a=1 xi

a is the i component of the vector sum of the position vectors of all of the
N particles.

By substituting (30) in (29) we arrive at

σ12 =
1

iKA

K

∑
k=1

∑
n 6=0k

〈0k|[x̂2, Ĥ]|n〉〈n|[x̂1, Ĥ]|0k〉 − 〈0k|[x̂1, Ĥ]|n〉〈n|[x̂2, Ĥ]|0k〉
(En − E0)2 . (38)

Say that the ground states of the system, |0k〉 is a sum over states containing
N = 0, 1, 2, . . . particles, with the form

|0k〉 ≡∑
N

1√
N!

∫
d2x1 . . . d2xNψ

(0k)
N (x1, . . . , xN)a†(x1) . . . a†(xN)|∅〉 , (39)

where |∅〉 denotes the vacuum state, in which there are no particles at all. Since the number
operator commutes with the Hamiltonian, it is reasonable to suppose that ψ

(0k)
N (x1, . . . , xN)

is non-zero only for the value of N = N0k . Moreover, N0k does not depend on k except
when the marginal case is encountered, when a particle can be added to the system without
changing the energy of the system. Excited states are decomposed in a similar fashion:

|n〉 ≡∑
N

1√
N!

∫
d2x1 . . . d2xNψ

(n)
N (x1, . . . , xN)a†(x1) . . . a†(xN)|∅〉. (40)

In the same way, only one value of N contributes to this sum. Nevertheless in the dis-
cussion to follow, sums over N are retained in the expressions in order to have expressions
in a forms that are easily generalized to the cases where the Hamiltonian does not conserve
particle number.

The normalization condition 〈n|n〉 = 1 is assumed, implying that

∑
N,N′

1√
N!
√

N′!

∫
d2x1 . . . d2xN d2x′1 . . . d2x′N′ψ

(n)†
N′ (x′1, . . . , x′N′)ψ

(n)
N (x1, . . . , xN)

〈∅|a(x′N′) . . . a(x′1)a†(x1) . . . a†(xN)|∅〉
=1 .

We invoke (A5) in order to write this as

∑
N

1
N!

∫
d2x1 . . . d2xN d2x′1 . . . d2x′Nψ

(n)†
N (x′1, . . . , x′N)ψ

(n)
N (x1, . . . , xN)

∑
i1 ...iN

εi1 ...iN δ(x1 − x′i1) . . . δ(xN − x′iN
)

=1 ,
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or equally

∑
N

1
N! ∑

i1 ...iN

∫
d2x1 . . . d2xN ψ

(n)†
N (xi1 , . . . , xiN )ψ

(n)
N (x1, . . . , xN)ε

i1 ...iN = 1 .

The factor 1/N! is canceled by the antisymmetric sum over N! identical terms, through
the contraction with the Levi-Civita symbol, to finally yield

∑
N

∫
d2x1 . . . d2xN ψ

(n)†
N (x1, . . . , xN)ψ

(n)
N (x1, . . . , xN) = 1 .

The total Fock space, H of the system may be decomposed into a direct sum of
sub-spaces H(N), each containing a fixed number of particles as

H = H(0) ∪ . . .H(N) ∪ . . .

The functions ψ
(n)
N are defined on H(N). In a case where only one value of N con-

tributes to |n〉, the latter may be denoted as |ψ(n)
N 〉. In line with the convention of no-

tation in standard quantum mechanics, the coordinate representation of the functions
ψ
(n)
N (x1, . . . , xN) may be expressed as the inner product of |ψ(n)

N 〉 with a basis of coordinate
eigenstates as

ψ
(n)
N (x1, . . . , xN) =

1√
N!
〈x1, . . . , xN |ψ

(n)
N 〉 .

In the framework of this structure of the Fock space, the goal is to derive a new
expression for the Hall conductivity, starting from (39), as a sum over terms where each
term is the contribution coming from a state with N particles. For this purpose let the N
-particle Hamiltonian be defined as

ĤN = ∑
a
(H0(xa,−i∂xa)− µ) +

1
2 ∑

a 6=b
V (xa − xb) + ∆ ,

such that (36) reads

Ĥa†(x1) . . . a†(xN)|∅〉 = ĤN a†(x1) . . . a†(xN)|∅〉 .

By a similar set of steps as Section 3.1, it can be shown that σ12 =
N

2πK
where N is

given by

N = − 1
2A ∑

N=0,...

1
(2π)2N

N

∑
b,c=1

∫
dω

(
N

∏
a=1

d2 pa d2xa

)
εjk

tr
[

G(N)
W (ω, {pa}, {xa}) ?

∂Q(N)
W (ω, {pa}, {xa})

∂ω
?

∂G(N)
W (ω, {pa}, {xa})

∂pj
b

?
∂Q(N)

W (ω, {pa}, {xa})
∂pk

c

]
=− 1

2A
1

(2π)2N0

N0

∑
b,c=1

∫
dω

(
N0

∏
a=1

d2 pa d2xa

)
εjk

tr
[

G(N0)
W (ω, {pa}, {xa}) ?

∂Q(N0)
W (ω, {pa}, {xa})

∂ω
?

∂G(N0)
W (ω, {pa}, {xa})

∂pj
b

?
∂Q(N0)

W (ω, {pa}, {xa})
∂pk

c

]
, (41)
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where ? is given by (A22), while Q(N)
W (ω, {pa}, {xa}) and G(N)

W (ω, {pa}, {xa}) are functions
of 2N + 1 variables ω, p1, x1, . . . , pN , xN . These functions are the Weyl symbols of the
corresponding operators:

Q(N)
W (ω, {pa}, {xa}) =

1
N!

∫ ( N

∏
a=1

dqaeiqaxa

)
〈{pa + qa/2}|Q̂(N)|{pa − qa/2}〉 , (42)

where the multi-particle state |{pa}〉 is defined above in (10), and similarly

G(N)
W (ω, {pa}, {xa}) =

1
N!

∫ ( N

∏
a=1

dqaeiqaxa

)
〈{pa + qa/2}|Ĝ(N)|{pa − qa/2}〉 ,

where
Q̂(N) = (iω− Ĥ)Π̂N , Ĝ(N) =

1
iω− Ĥ

Π̂N ,

and where

Π̂N =
1

N!

∫ ( N

∏
a=1

dpa

)
|{pa}〉 〈{pa}| (43)

is the projector onto N-particle states, with Ĥ given explicitly in (31), being the field-
theoretical Hamiltonian. Its matrix elements 〈{pa}|Ĥ|{qa}〉 are between states with N
particles having momenta that belong to the sets {pa} and {qa}. The proof that (38) is
equivalent to (41) is the topic of Section 4.2. The proof that the given expression for N
is a topological invariant closely follows the proof given in Section 3.2 for the case of
different particles. The presence of identical particles results in extra factors 1/N! and an
antisymmetric basis of states, but this does not affect the logic behind the derivation.

4.2. The Proof of the Statement That (38) Is Equivalent to (41)

The proof of this statement that Equation (38) is equivalent to Equation (41) proceeds
along analogous lines to the argument in Section 3.1 as mentioned above.

From the definition of GW given in (8) with (12), its derivative with respect to pj
b is

∂GW(ω, {pa}, {xa})
∂pj

b

=
1

N!

∫ ( N

∏
a=1

dqa eiqaxa

)
∂

∂pj
b

〈{pa +
qa
2 }|(iω− Ĥ)−1|{pa − qa

2 }〉 . (44)

For a one-particle state we have [48]

−i
∂

∂pj
|p〉 = x̂j|p〉, −i

∂

∂pj
〈p| = −〈p|x̂j ,

At the same time a multi-particle state has the form

|{p}〉 = 1√
N!

∑
i1 ...iN

εi1 ...iN |pi1〉 ⊗ . . .⊗ |piN 〉 = a†
1 . . . a†

N |∅〉 . (45)

The action of an annihilation operator on a multi-particle state of the form (45) is

al |{p}〉 = 1√
N!

∑
k=1...N

(−1)k+1 ∑
i1 ...iN

εi1 ...iN |pi1〉 ⊗ . . .⊗ 〈pl |pik 〉 ⊗ . . .⊗ |piN 〉 ,

while a creation operator acts on (45) as
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a†
l |{p}〉 = 1√

(N + 1)!
∑

k=1...N
(−1)k+1

∑
i1 ...iN

εi1 ...iN |pi1〉 ⊗ . . .⊗ |pl〉 ⊗ |pik 〉 ⊗ . . .⊗ |piN 〉

= a†
l a†

1 . . . a†
N |∅〉 , (46)

(here |p〉 ⊗ |∅〉 ≡ |p〉). It follows that a derivative acts on (45) as

∑
b=1...N

∂

∂pj
b

|{p}〉 = 1√
N!

∑
k=1...N

∑
i1 ...iN

εi1 ...iN . . .⊗ ∂

∂pj
ik

|pik 〉 ⊗ . . .⊗ |piN 〉 = ix̂j|{p}〉 .

The last equality is established as follows:

ix̂j|{p}〉 = 1√
N!

∫
dpa†(p)

(
−i

∂

∂pj

)
a(p) ∑

i1 ...iN

εi1 ...iN . . .⊗ |pik 〉 ⊗ . . .⊗ |piN 〉

=
1√
N!

∫
dpa†(p)

(
−i

∂

∂pj

)
∑

k=1...N
(−1)k+1 ∑

i1 ...iN

εi1 ...iN . . .⊗ 〈p|pik 〉 ⊗ . . .⊗ |piN 〉

=
1√
N!

∫
dpa†(p) ∑

k=1...N
(−1)k+1 ∑

i1 ...iN

εi1 ...iN . . .⊗

i
∂

∂pj
ik

〈p|pik 〉 ⊗ . . .⊗ |piN 〉

=
1√
N!

∑
k=1...N

(−1)k+1

i
∂

∂pj
ik

a†(pik ) ∑
i1 ...iN

εi1 ...iN . . .⊗ |pik−1
〉 ⊗ |pik+1

〉 ⊗ . . .⊗ |piN 〉

=
1√
N!

∑
k=1...N

∑
i1 ...iN

εi1 ...iN . . .⊗ ∂

∂pj
ik

|pik 〉 ⊗ . . .⊗ |piN 〉 . (47)

After summation over b Equation (44) becomes

∑
b=1...N

∂GW(ω, {pa}, {xa})
∂pj

b

=
1

N!

∫ ( N

∏
a=1

dqa eiqaxa

)
i〈{pa +

qa
2 }| [ x̂j , (iω− Ĥ)−1 ] |{pa − qa

2 }〉 . (48)

Based on the identity

[B̂, Â−1]Â = −Â−1[B̂, Â] ⇔ [B̂, Â−1] = −Â−1[B̂, Â]Â−1 ,

then
[ x̂j , (iω− Ĥ)−1 ] = −(iω− Ĥ)−1[ x̂j , (iω− Ĥ) ] (iω− Ĥ)−1,

or equivalently

[ x̂j , (iω− Ĥ)−1 ] = −Ĝ [ x̂j , Q̂ ] Ĝ = Ĝ [ x̂j , Ĥ ] Ĝ . (49)

By substituting (49) in (48) we obtain

∑
b=1...N

∂GW(ω, {pa}, {xa})
∂pj

b

=
1

N!

∫ ( N

∏
a=1

dqa eiqaxa

)
i〈{pa +

qa
2 }| Ĝ [ x̂j , Ĥ ] Ĝ |{pa − qa

2 }〉

=i
(

Ĝ [ x̂j , Ĥ ] Ĝ
)

W
, (50)

where the term
(
Ĝ [ x̂j , Ĥ ] Ĝ

)
W in Equation (50) is defined to be the Weyl symbol of the

operator Ĝ [ x̂j , Ĥ ] Ĝ. Using a similar argument it may be derived that
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∑
b=1...N

∂QW(ω, {pa}, {xa})
∂pj

b

=
1

N!

∫ ( N

∏
a=1

dqa eiqaxa

)
i〈{pa +

qa
2 }| [ x̂j , Ĥ ] |{pa − qa

2 }〉

=i
(
[ x̂j , Ĥ ]

)
W

, (51)

where the term
(
[ x̂j , Ĥ ]

)
W in Equation (51) is defined to be the Weyl symbol of the

operator [ x̂j , Ĥ ] .
We conclude that

∑
b=1...N

∂GW(ω, {pa}, {xa})
∂pj

b

= −GW(ω, {pa}, {xa}) ?

∑
b=1...N

∂QW(ω, {pa}, {xa})
∂pj

b

? GW(ω, {pa}, {xa}) . (52)

This means, in particular, that

∑
b=1...N

∂1W(ω, {pa}, {xa})
∂pj

b

= 0 .

The last identity is verified by calculating the Weyl symbol of unity operator:

1W(ω, {pa}, {xa}) =
1

N!

∫ ( N

∏
a=1

dqa eiqaxa

)
〈{pa +

qa
2 }| {pa − qa

2 }〉 .

For its derivative we obtain

∑
b=1...N

∂1W(ω, {pa}, {xa})
∂pj

b

=
1

N!

∫ ( N

∏
a=1

dqa eiqaxa

)
i〈{pa +

qa
2 }| [ x̂j , 1̂ ] |{pa − qa

2 }〉

=i
(
[ x̂j , 1̂ ]

)
W

= 0 .

Now we substitute Equations (50) and (51) in (41) to obtain

N =− 1
2A ∑

N=0,...

1
(2π)2N

∫
dω

(
N

∏
a=1

d2 pa d2xa

)
εjk

tr
[

G(N)
W (ω, pa, xa) ?

∂Q(N)
W (ω, {pa}, {xa})

∂ω
?
(

Ĝ [ x̂j , Ĥ ] Ĝ
)

W
?
(
[ x̂k , Ĥ ]

)
W

]
. (53)

Next (A13) can be invoked to replace the star product of Weyl symbols with a single
Weyl symbol corresponding to a product of operators as

N =
1

2A ∑
N=0,...

1
(2π)2N

∫
dω

(
N

∏
a=1

d2 pa d2xa

)
εjk

(
Ĝ(N) ∂Q̂(N)

∂ω
Ĝ(N) i[x̂j, Ĥ] Ĝ(N) i[x̂k, Ĥ]

)
W

.

Next we substitute the formal definition of a Weyl symbol given above in (9), (where
in the case of varying particle number |{pa ± qa

2 }〉 = a†
1± . . . a†

N± |0〉) to find

N =
1

2A ∑
N=0,...

1
(2π)2N N!

∫
dω

(
N

∏
a=1

d2 pa d2qa d2xa eiqaxa

)

εjk 〈{pa +
qa
2 }| Ĝ

(N) ∂Q̂(N)

∂ω
Ĝ(N) i[x̂j, Ĥ] Ĝ(N) i[x̂k, Ĥ] |{pa +

qa
2 }〉 .
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This can be expressed using a complete set of antisymmetric N fermion states, using
the result proved in (A8). Even more, this particular result is valid for varying particle
numbers, due to the fact that all states are deliberately expressed in terms of creation and
annihilation operators. The implication, after invoking (A8), is that

N =
1

2A ∑
N=0,...

1
(2π)2N

1
N!4

∫
dω

(
N

∏
a=1

d2 pa d2qa d2xa d2 pa,1 d2 pa,2 d2 pa,3 eiqaxa

)

εjk 〈{pa +
qa
2 }| Ĝ

(N) ∂Q̂(N)

∂ω
Ĝ(N) |{pa,1}〉 〈{pa,1}| i[x̂j, Ĥ] |{pa,2}〉

〈{pa,2}| Ĝ(N) |{pa,3}〉 〈{pa,3}| i[x̂k, Ĥ] |{pa − qa
2 }〉 . (54)

The x integrals yield a product of δ functions, namely one factor of (2π)δ(qa) for each
a, which render the qa integrals trivial. To that extent (54) reduces to

N =
1

2A ∑
N=0,1,...

1
N!4

∫
dω

(
N

∏
a=1

d2 pa d2 pa,1 d2 pa,2 d2 pa,3

)
εjk tr

〈{pa}| Ĝ(N) ∂Q̂(N)

∂ω
Ĝ(N) |{pa,1}〉 〈{pa,1}| i[x̂j, Ĥ] |{pa,2}〉

〈{pa,2}| Ĝ(N) |{pa,3}〉 〈{pa,3}| i[x̂k, Ĥ] |{pa}〉 .

By Substituting the explicit forms in (5), from which ∂Q̂(N)/∂ω = i, and inserting
complete sets of eigenstates of Ĥ assuming that each set is discrete belonging to discrete
eigenvalues, we obtain

N = − i
2A ∑

N=0,1,...

1
N!4

∫
dω

(
N

∏
a=1

d2 pa d2 pa,1 d2 pa,2 d2 pa,3

)

εjk tr ∑
E,E′ ,E′′

〈{pa}|
1

iω− Ĥ
Π̂N |E〉 〈E|

1
iω− Ĥ

Π̂N |E′′〉 〈E′′|{pa,1}〉 〈{pa,1}| [x̂j , Ĥ]Π̂N |{pa,2}〉

〈{pa,2}|
1

iω− Ĥ
Π̂N |E′〉 〈E′|{pa,3}〉 〈{pa,3}| [x̂k , Ĥ]Π̂N |{pa}〉 . (55)

Here by |E〉 we denote the eigenstates of the Hamiltonian corresponding to the eigen-
value E. We assume here for simplicity that all eigenvalues are not degenerate. However,
the extension to the case of degenerate eigenvalues is straightforward. For the next step of
the argument it is necessary to show that the Hamiltonian Ĥ commutes with the projection
operator onto N particle states, Π̂N . The form of the projection operator assumed is

Π̂N =
1

N!

∫
dx1 . . . dxN a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1) . (56)

This is consistent with the requirement that, given a state |ψ〉 = |x1 . . . xN′〉 =
a†(x1) . . . a†(x′N) |0〉, then Π̂N |ψ〉 = δNN′ |ψ〉, which is easily shown to be true by invoking
Theorem A1. Based on (56) and the form of the Hamiltonian in (31), then it can be shown
that the two commute:

[Ĥ, Π̂N ] = 0.

To show that they commute substitute their explicit forms:
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[Ĥ, Π̂N ] =
∫

dX H0(X)
1

N!

∫
dx1 . . . dxN [a†(X)a(X), a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1)]

+
∫

dX dY V (X−Y)
1

N!

∫
dx1 . . . dxN

[a†(X)a(X)a†(Y)a(Y), a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1)]

=
∫

dX H0(X)
1

N!

∫
dx1 . . . dxN

{
a†(X)a(X)a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1)

− a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1)a†(X)a(X)

}
+
∫

dX dY V (X−Y)
1

N!

∫
dx1 . . . dxN{

a†(X)a(X)a†(Y)a(Y)a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1)

− a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1)a†(X)a(X)a†(Y)a(Y)
}

. (57)

By substituting (A11)–(A12) into (57) and integrating over X and Y the result is

[Ĥ, Π̂N ] =
N

∑
i=1

H0(xi)
1

N!

∫
dx1 . . . dxN{

a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1)− a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1)

}
+

N

∑
i,j=1
i 6=j

V (xi − xj)
1

N!

∫
dx1 . . . dxN

{
a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1)− a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1)

}
= 0 .

Even more, by their very definition of being eigenstates of Ĥ, the inverse operator
(iω− Ĥ)−1 [denoted in (55) as 1/(iω− Ĥ)] has the eigenvalue equation (iω− Ĥ)−1 |E〉 =

1
iω− E

|E〉. Importantly, the energy eigenstates correspond to definite values of the particle

number N. We denote this number by N(E). Hence, this fact and the fact that Π̂N and Ĥ
commute, mean that (55) becomes

N =− i
2A ∑

N=0,1,...

1
N!4

∫
dω

(
N

∏
a=1

d2 pa d2 pa,1 d2 pa,2 d2 pa,3

)
∑

E,E′ ,E′′

1
iω− E

1
iω− E′

1
iω− E′′

εjk tr 〈{pa}|E〉 〈E|E′′〉 〈E′′|{pa,1}〉 〈{pa,1}| [x̂j , Ĥ] |{pa,2}〉

〈{pa,2}|E′〉 〈E′|{pa,3}〉 〈{pa,3}| [x̂k , Ĥ] |{pa}〉 ,

and since the trace is unaffected by a change in order of inner products, this can equally be
written as

N =− i
2A ∑

N=0,1,...

1
N!4

∫
dω

(
N

∏
a=1

d2 pa d2 pa,1 d2 pa,2 d2 pa,3

)
∑

E,E′ ,E′′

1
iω− E

1
iω− E′

1
iω− E′′

tr εjk 〈E|E′′〉 〈E′′|{pa,1}〉 〈{pa,1}| [x̂j , Ĥ] |{pa,2}〉

〈{pa,2}|E′〉 〈E′|{pa,3}〉 〈{pa,3}| [x̂k , Ĥ] |{pa}〉 〈p|E〉 .
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The integrals simplify through the identities in (A8), and the relation 〈E|E′′〉 = δE,E′′

eliminates the sum over E′′. Ergo

N = − i
2A ∑

N=0,1,...
∑
E,E′

∫
dω

1

(iω− E)2(iω− E′)
tr εjk 〈E| [x̂j , Ĥ] |E′〉 〈E′| [x̂k , Ĥ] |E〉 .

Here, both states with energies E and E′ correspond to the same value of particle
number N = N(E). The ω integral over the integration range l = [−∞, ∞], is evaluated
by deforming l to the closed contour being a semi circle, C in the upper complex plane.
Two possibilities arise: (i) C encloses both of the points iE and iE′ on the imaginary axis if
E > 0 and E′ > 0, or (ii) C encloses only one of them, if say E > 0 E′ < 0, or the converse.
If E < 0 and E′ < 0, integrating over the variable −ω (minus ω) instead, produces the
same integral described in (i) with the same contour C. In both cases the integral can be
evaluated using Cauchy’s integral formula. For case (i) the integral vanishes, but for case
(ii) the contribution is non-zero. The result is

N =
−i
A ∑

N=0,1,...
2π ∑

E,E′

θ(E)θ(−E′)

(E− E′)2 εjk tr 〈E| [x̂j , Ĥ] |E′〉 〈E′| x̂k , Ĥ] |E〉 . (58)

As the term θ(E)θ(−E′) itself indicates, the integral was solved assuming that E > 0,
E′ < 0. Had the converse been assumed, precisely the same formula in the form (58) would
hold, since interchanging E and E′ (noting the trace operator in front) leaves the expression
unaltered.

According to our choice of value for the constant term ∆ entering the field Hamiltonian
of Equation (31), only the ground states have negative energy E′ < 0. Let the ground states
be denoted by |0k〉, k = 1, ..., K instead, and let the eigenvalue of Ĥ that they belong to be
denoted by E0, such that Ĥ |0k〉 = E0 |0k〉. Accordingly (58) reads

N =
−i
A

K

∑
k=1

2π ∑
E 6=E0

1

(E− E0)
2 εij tr 〈0k| [x̂j , Ĥ] |E〉 〈E| x̂i , Ĥ] |0k〉 ,

where in the last step the two inner products inside the trace were swapped, since this is
the order that the Hall conductivity is conventionally written. The eigenstates |E〉 and can
be identified with |n〉 in the coordinate representation defined above in (39) and (40):

N = −2πi
A

K

∑
k=1

∑
n

1

(E− E0)
2 εij tr 〈0k| [x̂j , Ĥ] |n〉 〈n| x̂i , Ĥ] |0k〉 . (59)

Equation (59) is precisely analogous to the result in (38).
This completes the proof. It is clear in the sum over N in Equation (41) that only the

term with N = N0 remains. This is a direct consequence of our choice for the value of ∆,
according to which only the ground state has negative energy.

4.3. The Case of a Non-Interacting System

The aim of this subsection is to show that the expression derived in Equation (14) is
equivalent to an analogous formula but with two-point Green functions instead of N-point
Green functions.

It was shown in Section 4.2 that the expression for the Hall conductivity (53), viz
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N =
1

2A ∑
N=0,...

1
(2π)2N

N

∑
b,c=1

∫
dω

(
N

∏
a=1

d2 pa d2xa

)

εjk tr
[

G(N)
W (ω, {pa}, {xa}) ?

∂Q(N)
W (ω, {pa}, {xa})

∂ω

? G(N)
W (ω, {pa}, {xa}) ?

∂Q(N)
W (ω, {pa}, {xa})

∂pj
b

? G(N)
W (ω, {pa}, {xa}) ?

∂Q(N)
W (ω, {pa}, {xa})

∂pk
c

]
, (60)

with G(N) and Q(n)
W given by (42) and (43) and Ĥ given by (31) without the interaction

term, is equivalent to (58). To emphasize that the Hamiltonian in (58) is the field theoretical
Hamiltonian, let it be written in the notation

H = ∑
q

a†
q aqEq , (61)

and let the field theoretical position operator be denoted by

Xj = ∑
k,n

akXkna†
n . (62)

The reader may consult [48] for an explanation of the origins of the right-hand side of
Equation (62).

Here by aq we denote the annihilation operator corresponding to the one particle
state with energy Eq. For convenience in this section we do not define the field theoretical
Hamiltonian with a chemical potential subtracted from Eq. This redefinition does not
change the expressions given below. At any rate in the absence of interactions, we set ∆ = 0.
The conductivity in (60) was shown in Section 4.2 to be equivalent to (58), which in the
notation of (61) and (62) is given by

N =− 2πi
A ∑

n 6=0

1

(E− E0)
2 εij tr〈〈0|[Xj , H]|n〉〉〈〈n|Xi , H]|0〉〉 .

=− 2πi
A ∑

n 6=0

〈〈0|[X2,H]|n〉〉〈〈n|[X1,H]|0〉〉 − 〈〈0|[X1,H]|n〉〉〈〈n|[X2,H]|0〉〉
(En − E0)2 , (63)

where here, to distinguish from single particle bra and ket vectors, |0〉〉 denotes the non-
degenerate multi-particle ground state

|0〉〉 = a†
1 . . . a†

N |∅〉〉 ,

where |∅〉〉 denotes the true vacuum and

a†
k =

∫
dx ψk(x)a†(x) .

Here ψk(x) is the wave function of the kth one-particle state. We enumerate one-
particle states in such a way that E1 ≤ E2 ≤ ... ≤ EN < µ, where µ is the chemical potential.
By |n〉〉 we denote the excited multi-particle states that have the same number of particles,
but which have total energy larger than that of the ground state. Using the anticommutation
relations in (11),
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[
∑
k,n

a†
k Xknan, ∑

q
a†

qEqaq

]
=∑

k,n
∑
q

a†
k Xknana†

qEqaq − a†
qEqaqa†

k Xknan

=∑
k,n

∑
q

XknEq

(
a†

k ana†
q aq − a†

q aqa†
k an

)
=∑

k,n
∑
q

XknEq

(
a†

k δnqaq − a†
k a†

q anaq − a†
q aqa†

k an

)
=∑

k,n
∑
q

XknEq

(
a†

k δnqaq + a†
q a†

k anaq − a†
q aqa†

k an

)
=∑

k,n
∑
q

XknEq

(
a†

k δnqaq − a†
q a†

k aqan − a†
q aqa†

k an

)
=∑

k,n
∑
q

XknEq

(
a†

k δnqaq − a†
qδkqan + a†

q aqa†
k an − a†

q aqa†
k an

)
=∑

k,n
∑
q

XknEq

(
a†

k δnqaq − a†
qδkqan

)
=∑

k,n

(
XknEna†

k an − XknEka†
k an

)
.

The right-hand side is precisely the matrix elements of the commutator [x̂, Ĥ], where
x̂ and Ĥ are the ordinary one-particle position and Hamiltonian operators. Hence[

∑
k,n

a†
k Xknan, ∑

q
a†

qEqaq

]
= ∑

k,n
a†

k [x̂, Ĥ]knan . (64)

After combining Equations (61), (62) and (64) it follows that

[Xi,H] = ∑
k,n

a†
k [x̂i, Ĥ]knan . (65)

With the result (65) an expression may be derived for 〈〈0k|[Xi,H]|n〉〉. The ground state
|0k〉〉 consisting of N particles has the form

|0〉〉 = a†
1 . . . a†

N |∅〉 . (66)

The state |n〉〉 is taken to be the state that differs from the ground state (66) by one out of
the N particles, say particle j (j = 1, . . . N), which gets excited and jumps to a state of higher
energy. Correspondingly the creation operator a†

j is replaced with a†
l , l = N + 1, . . . , ∞,

such that |n〉〉 has the form

|n〉〉 = a†
1 . . . a†

j−1a†
j+1 . . . a†

N a†
l |∅〉 =: |l, j〉〉 , (j = 1, . . . , N , l ≥ N + 1) . (67)

Then, by (65), (66) and (67),

〈〈0|[Xi,H]|n〉〉 = 〈∅| aN . . . a1 ∑
k,n

a†
k [x̂i, Ĥ]knana†

1 . . . a†
j−1a†

j+1 . . . a†
N a†

l |∅〉

=∑
k,n

[x̂i, Ĥ]kn 〈∅| aN . . . a1a†
k ana†

1 . . . a†
j−1a†

j+1 . . . a†
N a†

l |∅〉

=∑
k,n
〈k| [x̂i, Ĥ] |n〉 〈∅| aN . . . a1a†

k ana†
1 . . . a†

j−1a†
j+1 . . . a†

N a†
l |∅〉 .

The operator a†
l may be anticommuted to the left past the N − 1 operators standing in

front of it to obtain
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〈〈0|[Xi,H]|n〉〉 =(−1)N−1 ∑
k,n
〈k| [x̂i, Ĥ] |n〉 〈∅| aN . . . a1a†

k ana†
l a†

1 . . . a†
j−1a†

j+1 . . . a†
N |∅〉 . (68)

Note two important observations of the inner product in (68). First, there stands one
annihilation operator aj to the right of the bra of the vacuum state 〈0k|, so for it not to
vanish there must be present one creation operator a†

j . Since j = 1, . . . , N and l ≥ N + 1,

then a†
l is never equal to a†

j but a†
k is equal to a†

j corresponding to the k = j term in the

sum. Secondly, the creation operator a†
l will act on the vacuum to create one particle

in the state l. Consequently the inner product will vanish without the presence of one
annihilation operator al , which forces an = alδnl . Putting all this together, the non-vanishing
contribution to (68) is found to be
〈〈0|[Xi,H]|j, l〉〉 =(−1)N−1 ∑

k,n
δk,jδn,l 〈k| [x̂i, Ĥ] |n〉

〈∅| aN . . . a1a†
k ana†

l a†
1 . . . a†

j−1a†
j+1 . . . a†

N |∅〉

=(−1)N−1 〈j| [x̂i, Ĥ] |l〉 〈∅| aN . . . a1a†
j ala†

l a†
1 . . . a†

j−1a†
j+1 . . . a†

N |∅〉 .

Further, since l 6= j (l ≥ N + 1 and j = 1, . . . N), a†
j and al can be anticommuted past

each other to yield

〈〈0|[Xi,H]|j, l〉〉 =(−1)N 〈j| [x̂i, Ĥ] |l〉 〈∅| aN . . . a1ala†
j a†

l a†
1 . . . a†

j−1a†
j+1 . . . a†

N |∅〉 ,

and subsequently a†
j and a†

l may be anticommuted past each other to bring it to the form

〈〈0|[Xi,H]|j, l〉〉 =(−1)N+1 〈j| [x̂i, Ĥ] |l〉 〈∅| aN . . . a1ala†
l a†

j a†
1 . . . a†

j−1a†
j+1 . . . a†

N |∅〉

=(−1)N+j 〈j| [x̂i, Ĥ] |l〉 〈∅| aN . . . a1ala†
l a†

1 . . . a†
j−1a†

j a†
j+1 . . . a†

N |∅〉 , (69)

where in the last step a†
j was anticommuted past operators to appear between a†

j−1 and a†
j+1.

The inner product on the right-hand side of (69) comprises an inner product of N + 1
different creation operators acting on the ket of the vacuum |∅〉 , with N + 1 corresponding
annihilation operators acting on the bra of the vacuum 〈∅|. It can be shown by induction
to equal unity, namely

〈∅| aN . . . a1a†
1 . . . a†

N |∅〉 = 1 . (70)

To prove (70) by induction, we start with the n = 1 case:

〈∅| a1a†
1 |∅〉 = 〈∅| {a1, a†

1} |∅〉 − 〈∅| a†
1a1 |∅〉 = 〈∅| 1 |∅〉 − 〈∅| 0 |∅〉 = 〈∅|∅〉

by (11). Hence our claim is true for the n = 1 case. For the inductive step, we assume that
it is true for n = N, then we write down (70) for the n = N + 1 case, viz

〈∅| aN+1aN . . . a1a†
1 . . . a†

N a†
N+1 |∅〉 .

By anticommuting aN+1 to the right N places and anticommuting a†
N+1 to the left N

places, we bring it to the form
〈∅| aN . . . a1aN+1a†

N+1a†
1 . . . a†

N |∅〉 = 〈∅| aN . . . a1{aN+1, a†
N+1}a†

1 . . . a†
N |∅〉

− 〈∅| aN . . . a1a†
N+1aN+1a†

1 . . . a†
N |∅〉 ,

then we invoke (11) on the 1st term, and in the second term we anticommute operators
a†

N+1 and aN+1 to obtain
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〈∅| aN . . . a1aN+1a†
N+1a†

1 . . . a†
N |∅〉 = 〈∅| aN . . . a1a†

1 . . . a†
N |∅〉

− 〈∅| a†
N+1aN . . . a1a†

1 . . . a†
N aN+1 |∅〉 .

The second term vanishes and the 1st term is the n = N case, which is unity by
the inductive hypothesis. Therefore, 〈∅| aN . . . a1aN+1a†

N+1a†
1 . . . a†

N |∅〉 = 1 and the claim
is proven.

On the basis of (70) that was just proven, (69) simplifies to

〈〈0|[Xi,H]|j, l〉〉 =(−1)N+j 〈j| [x̂i, Ĥ] |l〉 . (71)

Equation (71) was established on the basis that the state 〈〈n| comprises a single particle
that gets excited from the ground state to a higher state. It can be shown that the analogous
state in which two or more particles are in excited states do not contribute. Consider the
case where the state |n〉〉 is the state that differs from the ground state (66) by two particles
one out of the N particles, say particles j1 and j2 (j1, j2 = 1, . . . N), which get excited and
jump to a state of higher energy. Correspondingly the creation operators a†

j1
, a†

j2
are replaced

with a†
l1

, a†
l2

respectively (l1, l2 = N + 1, . . . , ∞), such that |n〉〉 has the form

|n〉〉 = a†
1 . . . a†

j1−1a†
j1+1 . . . a†

j2−1a†
j2+1 . . . a†

N a†
l1 a†

l2 |∅〉 =: |l1, l2; j1, j2〉〉 , (72)

where in (72), j1, j2 = 1, . . . , N and l1, l2 ≥ N + 1. Then by (65), (72) and (67),

〈〈0|[Xi,H]|n〉〉 = 〈∅| aN . . . a1 ∑
k,n

a†
k [x̂i, Ĥ]knana†

1 . . . a†
j1−1a†

j1+1 . . . a†
j2−1a†

j2+1 . . . a†
N a†

l1 a†
l2 |∅〉

=∑
k,n

[x̂i, Ĥ]kn 〈∅| aN . . . a1a†
k ana†

1 . . . a†
j1−1a†

j1+1 . . . a†
j2−1a†

j2+1 . . . a†
N a†

l1 a†
l2 |∅〉

=∑
k,n
〈k| [x̂i, Ĥ] |n〉

〈∅| aN . . . a1a†
k ana†

1 . . . a†
j1−1a†

j1+1 . . . a†
j2−1a†

j2+1 . . . a†
N a†

l1 a†
l2 |∅〉 .

In this expression a†
k an can be replaced with {a†

k , an} − ana†
k = δnk − ana†

k by (11)
to obtain

〈〈0|[Xi,H]|n〉〉 =∑
k,n
〈k| [x̂i, Ĥ] |n〉 δnk

〈∅| aN . . . a1a†
1 . . . a†

j1−1a†
j1+1 . . . a†

j2−1a†
j2+1 . . . a†

N a†
l1 a†

l2 |∅〉

−∑
k,n
〈k| [x̂i, Ĥ] |n〉

〈∅| aN . . . a1ana†
k a†

1 . . . a†
j1−1a†

j1+1 . . . a†
j2−1a†

j2+1 . . . a†
N a†

l1 a†
l2 |∅〉 .

The first inner product vanishes. The ket on the right comprises two particles corre-
sponding to the creation operators a†

l1
, a†

l2
(l1, l2 ≥ N + 1), but there are no such particles

in the bra on the right, as there are no corresponding annihilation operators al1 , al2 . The
second inner product vanishes for similar reasons. Say that a†

k is identified with a†
j1

and

an with al1 . There would still be a particle created by a†
l2

in the left-hand ket with no
corresponding particle in the bra on the right, and there would still be a particle annihilated
by aj2 in the right-hand bra with no corresponding particle created in the ket on the left.
The argument holds even if the particles are permuted. In conclusion, the inner product
between the ground state and states with two excited particles vanishes. Furthermore, an
analogous argument shows that the inner product between the ground state and states
with more than two excited particles vanishes.
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Finally, (71) may be substituted in (63). The sum over states labeled by n becomes
a sum over j, namely a sum over single particles that jump from the ground state to a
higher excitation. The difference in energy between the state |n〉 and the ground state
|0k〉 (denoted by En − E0 in the denominator), is equal to the difference in energy between
particle j in an excited state and in the ground state, which shall be denoted El − Ej. The
resulting expression for the topological invariant is

N =− 2πi
A

∞

∑
l=N+1

N

∑
j=1

〈j| [x̂1, Ĥ] |l〉 〈l| [x̂2, Ĥ] |j〉 − 〈j| [x̂2, Ĥ] |l〉 〈l| [x̂1, Ĥ] |j〉
(El − Ej)2 ,

and for the conductivity itself

σ =− i
A

∞

∑
l=N+1

N

∑
j=1

〈j| [x̂1, Ĥ] |l〉 〈l| [x̂2, Ĥ] |j〉 − 〈j| [x̂2, Ĥ] |l〉 〈l| [x̂1, Ĥ] |j〉
(El − Ej)2 . (73)

In ref. [14] the expression in (73) has been shown to be equal to

N =
1

2A
1

(2π)2

∫
dωd2 p d2x

εjk tr
[

G(1)
W (ω, p, x) ?

∂Q(1)
W (ω, p, x)

∂ω
? G(1)

W (ω, p, x) ?
∂Q(1)

W (ω, p, x)
∂pj

? G(1)
W (ω, p, x) ?

∂Q(1)
W (ω, p, x)

∂pk

]
.

5. Conclusions

To conclude, in this paper we propose a topological description of the fractional Hall
effect. The corresponding conductivity (averaged over the system area) in units of e2/h̄ has
the form

σH =
1

2π

N
K

,

where K is the degeneracy of the ground state while N is the topological invariant com-
posed of the multi-particle Green functions. While the original expression for N contains a
summation over all possible numbers of fermionic legs, in actual fact only the term with
2N0 legs contributes, where N0 is the number of electrons in the ground state of the system.

The expression for the topological invariantN contains a generalization of the Wigner
transformation of multi-leg Green functions, and a generalization of Moyal product. The
form of this expression resembles that of the integer Hall effect. The main difference
between the two is that now N is expressed in terms of multi-particle Green functions
instead of one-particle Green functions. We have demonstrated that in the absence of
interactions, our expression for the conductivity reduces to that of the IQHE (in terms
of one-particle Green functions). In the general case of an interacting system, the value
of N is discrete and is likely also to be given by an integer. This result is an alternative
proof of the topological nature of the FQHE. Moreover, unlike the topological expression in
ref. [22], our result is valid for the case of varying external fields. As well as the expression
in ref. [22], our expressions in Equations (3) and (4) are of no use for practical calculations
of the FQHE conductivity. Nevertheless they stand as a rigorous proof of the robustness of
N with respect to smooth modification of the system.

Topological invariance of the fractional QHE conductivity means that any smooth
modification of the system cannot bring it to a state with a different value for the conduc-
tivity, unless a phase transition is encountered. In simpler terms the transition between
different FQHE states cannot be a crossover. This is a direct consequence implied by
our result.
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It has been proven (see, for example, [16]) that perturbatively inter-electron interactions
cannot drive transitions of the system from an IQHE to a FQHE state. This means that the
FQHE is essentially a non-perturbative phenomenon. Non-perturbative contributions to
the multi-leg Green functions are responsible for the fractional QHE conductivity. It would
be insightful to formulate phenomenological models of interacting electronic systems that
directly yield expressions for the corresponding multi-leg Green functions. Values of the
QHE conductivity could then be calculated directly within these phenomenological models.
How to relate such models to the popular concept of composite fermions [46,47] is worthy
of investigation. This is beyond the scope of this paper.

As commented above, there are two factors entering the expression for QHE conduc-
tivity: the degeneracy of the ground state and a topological invariant composed of Green
functions. The latter has a topological interpretation. An investigation into the relationship
between our invariant to standard algebraic topology is an important task for the future.
The degeneracy of the ground state, at first sight, has no direct geometrical or topological
interpretation. However, this issue also deserves attention.
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Appendix A. Multi Particle States

Appendix A.1. Fermion Creation/Annihilation Operators and One Fermion States

A single-particle state |p〉 is a momentum eigenstate with momentum p, constructed
by acting on |0〉 with a creation operator as

a†(p) |0〉 = |p〉 .

Consistent with this definition the operator
∫

dp |p〉 〈p| behaves like an identity opera-
tor when it acts on one-particle states:(∫

dp |p〉 〈p|
)
|q〉 =

∫
dp a†(p) |0〉 〈0| a(p)a†(q) |0〉

=
∫

dp a†(p){a(p), a†(q)} |0〉 =
∫

dp a†(p) δ(p− q) |0〉

=a†(q) |0〉 = |q〉 .

Appendix A.2. Two Fermion States

A similar reasoning can be used to find an analogous expression for the identity opera-
tor that acts on a two-fermion state, comprising two identical fermions in two distinguishable
states. Re-arranging the fermions to be in different states introduces a minus sign if the
permutation is odd. This is the very antisymmetric property that characterizes states of
more than one fermions. More generally this property guarantees that the number of
fermions in any given state is either zero and one. This phenomenon is the Pauli-exclusion
principle. Accordingly expressions for two-fermion states must be anti-symmetric under
odd-permutations of fermions between states. To that extent the order of terms within ex-
pressions must be preserved as they appear here in the discussion. Below in Appendix A.3
a more sophisticated notation fixes the ordering of fermions between states, such that
attention to the order of terms when writing expressions is redundant. While this notation
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indeed is needed to assign fermions to states in the right order, the proper assignment can
be done for two fermions by merely writing terms in the correct order, with the advantage
that the antisymmetry is more obvious without extra cumbersome notation.

A two-fermion state in the momentum representation has the form

|p1 p2〉 =a†(p1)a†(p2) |0〉 =
1
2
(|p1〉 |p2〉 − |p2〉 |p1〉) ,

〈p1 p2| = 〈0| a(p2)a(p1) .

The first term describes a fermion with momentum p1 in the 1st state and a fermion
with momentum p2 in the 2nd state, while in the second term the two fermions have
swapped states. Acting on |q1 q2〉, a two-fermion state with momenta q1, q2, with the
operator 1

2

∫
dp1 dp2 |p1 p2〉 〈p1 p2| produces

1
2

∫
dp1 dp2 |p1 p2〉 〈p1 p2|q1 q2〉

=
1
2

∫
dp1 dp2 |p1 p2〉 〈0| a(p2)a(p1)a†(q1)a†(q2) |0〉 . (A1)

Generally speaking

a(p2)a(p1)a†(q1)a†(q2) |0〉
=a(p2){a(p1), a†(q1)}a†(q2) |0〉 − a(p2)a†(q1)a(p1)a†(q2) |0〉
={a(p2), a†(q2)}δ(p1 − q1) |0〉 − {a(p2), a†(q1)}{a(p1), a†(q2)} |0〉
=δ(p1 − q1)δ(p2 − q2) |0〉 − δ(p2 − q1)δ(p1 − q2) |0〉

,

such that (A1) becomes

1
2

∫
dp1 dp2 |p1 p2〉 〈p1 p2|q1 q2〉

=
1
2

∫
dp1 dp2 |p1 p2〉 〈0|

(
δ(p1 − q1)δ(p2 − q2)− δ(p2 − q1)δ(p1 − q2)

)
|0〉

=
1
2
(|q1 q2〉 − |q2 q1〉) 〈0|0〉

= |q1 q2〉 ,

where the final step follows from the very antisymmetric property of multi-fermion states,
namely |q1 q2〉 = − |q2 q1〉.

The upshot is that the identity operator for the group of two-fermion states is

1 =
1
2

∫
dp1 dp2 |p1 p2〉 〈p1 p2| .

Appendix A.3. N Fermion States

Before moving on to states of more than two fermions, new notation is needed to
represent the permutation of particles between different states, which closely follows the
convention in [48]. A given state of N fermions is represented by the ket

|ψi1 ψi2 . . . ψiN 〉 = 1
N! ∑

i1 ...iN

εi1 ...iN |ψ
i1〉 ⊗ |ψi2〉 ⊗ · · · ⊗ |ψiN 〉 = A |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψN〉 .

Indices s1 ,s2 ,· · · ,sN = (1),(2),· · · (N) label one-particle base ket-vectors. In the broad
scheme it is an abstract label not necessarily assigned to be any specific physical observable
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(e.g., an eigenvalue of momentum). The base ket-vector labels s1 ,s2 ,· · · ,sN assign an order
to the one-particle kets. This ordering does not refer to any physical configuration of
the particles themselves, rather it enables an antisymmetric sum over configurations for
fermions (and a symmetric sum for bosons) without the need to write the order of terms
explicitly like in Appendix A.2 with just two fermions. On the right the operator A produces
an antisymmetric sum over configurations of N different base ket-vectors.

Such an antisymmetric sum possesses the required properties of fermion states: states
vanish if more than one identical fermion occupies a given state, and a single fermion
state has odd-integer spin. The former is the Pauli exclusion principle and the latter is
a result of the spin-statistics theorem. Conversely, mutli-boson states are represented by
a symmetric sum that carries the required property that any number of identical bosons
can co-exist in a given state, and by the spin-statistics theorem, bosons carry integer spin.
Bosons and fermions do not literally assume a particular order in nature any more than
they are confined to a particular location, like classical particles. The ordering described
here is purely a mathematical ordering of terms to give multi-particle states the correct
properties: Fermi–Dirac statistics for fermions and Bose–Einstein statistics for bosons.

To ensure that at most one fermion lies in any given state, the following anti-commutation
relations are assumed:

{a(p1), a(p2)} = 0, {a†(p1), a†(p2)} = 0, {a(p1), a†(p2)} = δ(p1 − p2) .

An N-fermion state can be expressed as an antisymmetric tensor product of single-
particle momentum eigenstates as

|p1 . . . pN〉 =
1

N! ∑
i1···iN

εi1···iN |pi1〉 ⊗ · · · ⊗ |piN 〉 = a†(p1) · · · a†(pN) |0〉 . (A2)

It is clear from (A2) that having a label for the particle itself and a separate label for the
basis ket means that assigning fermions to basis kets in an antisymmetric way is effortless
with no need to pay attention to the order of terms. The anti-symmetric tensor is contracted
on indices of basis kets. The order of assignment of N particles into N different kets is
different between different terms, where two terms differing by an odd-permutation have
opposite signs.

An operator that behaves like an identity on N fermion states is achieved by the same
approach as Appendix A.2. Suppose that the identity is

1
N!

∫ N

∏
n=1

dpk |p1 . . . pN〉 〈p1 . . . pN | , (A3)

with |p1 . . . pN〉 given by (A2). Acting on the analogous state |q1 . . . qN〉 produces

1
N!

(∫ N

∏
k=1

dpk |p1 . . . pN〉 〈p1 . . . pN |
)
|q1 . . . qN〉

=
1

N!

∫ N

∏
k=1

dpk |p1 . . . pN〉 〈0| a(pN) . . . a(p1)a†(q1) · · · a†(qN) |0〉 . (A4)

A way to write 〈0| a(pN) . . . a(p1)a†(q1) · · · a†(qN) |0〉 that makes the integrals easily
solvable is needed. The following identity can be proved that serves this purpose.

Theorem A1. Inner product of multi-fermion states I

〈0| a(pN) . . . a(p1)a†(q1) · · · a†(qN) |0〉 = ∑
i1 ...iN

εi1 ...iN δ(p1 − qi1)δ(p2 − qi2) . . . δ(pN − qiN ) . (A5)
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Proof. The most straightforward way to prove this statement is by induction. We start by
verifying it for N = 2. The left-hand side is

〈0| a(p2)a(p1)a†(q1)a†(q2) |0〉
= 〈0| a(p2){a(p1), q†(q1)}a†(q2) |0〉 − 〈0| a(p2)a†(q1)a(p1)a†(q2) |0〉

=δ(p1 − q1) 〈0| {a(p2), a†(q2)} |0〉 − 〈0| {a(p2), a†(q1)}{a(p1), a†(q2)} |0〉

=δ(p1 − q1)δ(p2 − q2)− δ(p1 − q2)δ(p2 − q1)

=∑
i1i2

εi1i2 δ(p1 − qi1)δ(p2 − qi2) .

However, this is precisely the right of (A5) for N = 2. The implication is that (A5) is
true for N = 2. Now for the inductive step of the prove. Assume that it is true for N − 1.
We anticommute a(p1) one place to the right to obtain

〈0| a(pN) . . . a(p1)a†(q1) · · · a†(qN) |0〉 = δ(p1 − q1) 〈0| a(pN) . . . a(p2)a†(q2) · · · a†(qN) |0〉
− 〈0| a(pN) . . . a(p2)a†(q1)a(p1)a†(q2) · · · a†(qN) |0〉 .

In the second line we anticommute a(p1) one place to the right again to obtain

〈0| a(pN) . . . a(p1)a†(q1) · · · a†(qN) |0〉
= δ(p1 − q1) 〈0| a(pN) . . . a(p2)a†(q2) · · · a†(qN) |0〉
− δ(p1 − q2) 〈0| a(pN) . . . a(p2)a†(q1)a†(q3) · · · a†(qN) |0〉
+ 〈0| a(pN) . . . a(p2)a†(q1)a†(q2)a(p1)a†(q3) · · · a†(qN) |0〉 ,

and we continue this process to eventually end up with

〈0| a(pN) . . . a(p1)a†(q1) · · · a†(qN) |0〉
= δ(p1 − q1) 〈0| a(pN) . . . a(p2)a†(q2) · · · a†(qN) |0〉
− δ(p1 − q2) 〈0| a(pN) . . . a(p2)a†(q1)a†(q3) · · · a†(qN) |0〉
+ δ(p1 − q3) 〈0| a(pN) . . . a(p2)a†(q1)a†(q2)a†(q4) · · · a†(qN) |0〉
...

+ (−1)N−1δ(p1 − qN) 〈0| a(pN) . . . a(p2)a†(q1)a†(q2) · · · a†(qN−1) |0〉 .

The term next to the delta functions in each line is precisely the left of (A5) for N − 1,
and since (A5) is assumed true for N − 1, the right-hand side can be substituted to yield
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〈0| a(pN) . . . a(p1)a†(q1) · · · a†(qN) |0〉

= ∑
i2 ...iN

δ(p1 − q1)ε
i2 ...iN δ(p2 − qi2)δ(p3 − qi3) . . . δ(pN − qiN )

∣∣∣∣
ik 6=1

− ∑
i2 ...iN

δ(p1 − q2)ε
i2 ...iN δ(p2 − qi2)δ(p3 − qi3) . . . δ(pN − qiN )

∣∣∣∣
ik 6=2

+ ∑
i2 ...iN

δ(p1 − q3)ε
i2 ...iN δ(p2 − qi2)δ(p3 − qi3) . . . δ(pN − qiN )

∣∣∣∣
ik 6=3

...

+ (−1)N−1 ∑
i2 ...iN

δ(p1 − qN)ε
i2 ...iN δ(p2 − qi2)δ(p3 − qi3) . . . δ(pN − qiN )

∣∣∣∣
ik 6=N

.

The exclusion of a specific ik is excluded from the contraction of the Levi-Civita symbol
can be expressed as, for example,

∑
i2 ...iN

εi2 ...iN δ(p2 − qi2) . . . δ(pN − qiN )
∣∣
ik 6=1 = ∑

i2 ...iN

ε1i2 ...iN δ(p2 − qi2) . . . δ(pN − qiN ),

where the Levi-Civita symbol on the left has N − 1 indices and that on the right has N
indices. Hence (*) becomes

〈0| a(pN) . . . a(p1)a†(q1) · · · a†(qN) |0〉

= ∑
i2 ...iN

δ(p1 − q1)ε
1i2 ...iN δ(p2 − qi2)δ(p3 − qi3) . . . δ(pN − qiN )

− ∑
i2 ...iN

δ(p1 − q2)ε
2i2 ...iN δ(p2 − qi2)δ(p3 − qi3) . . . δ(pN − qiN )

+ ∑
i2 ...iN

δ(p1 − q3)ε
3i2 ...iN δ(p2 − qi2)δ(p3 − qi3) . . . δ(pN − qiN )

...

+ (−1)N−1 ∑
i2 ...iN

δ(p1 − qN)ε
Ni2 ...iN δ(p2 − qi2)δ(p3 − qi3) . . . δ(pN − qiN )

=
N

∑
k=1

(−1)k−1 ∑
i2 ...iN

εki2 ...iN δ(p1 − qk)δ(p2 − qi2)δ(p3 − qi3) . . . δ(pN − qiN ) .

In each term in the sum, we move the index k in the Levi-Civita symbol k − 1 places
to the right and insert the accompanying factor of (−1)k−1, we re-label dummy indices
appropriately and we replace the sum over k with the Einstein summation convention to
end up with

〈0| a(pN) . . . a(p1)a†(q1) · · · a†(qN) |0〉

= ∑
i1 ...iN

εi1i2 ...iN δ(p1 − qi1)δ(p2 − qi2)δ(p3 − qi3) . . . δ(pN − qiN ) . (A6)

This is precisely the right-hand side of (A5). This completes the proof of the assertion in
Equation (A5) by induction.
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Theorem A2. Inner product of multi-fermion states II

〈0| a(pN) . . . a(p1)a†(q1) · · · a†(qN′) |0〉
= ∑i1 ...iN

εi1 ...iN δ(p1 − qi1)δ(p2 − qi2) . . . δ(pN − qiN ) δNN′ . (A7)

Proof. There are three possibilities:
(i) N′ = N
(ii) N′ > N
(iii) N′ < N.
Case (i): If N = N′ the theorem is proved by theorem A1.

Case (ii): N′ > N. The proof of this statement is by induction and follows similar lines
as the proof of theorem A1. We start by proving it for N = 2:

〈0| a(p2)a(p1)a†(q1)a†(q2) . . . a†
N′ |0〉

= 〈0| a(p2){a(p1), q†(q1)}a†(q2) . . . a†
N′ |0〉 − 〈0| a(p2)a†(q1)a(p1)a†(q2) . . . a†

N′ |0〉

=δ(p1 − q1) 〈0| {a(p2), a†(q2)}a†(q3) . . . a†
N′ |0〉

− 〈0| {a(p2), a†(q1)}{a(p1), a†(q2)}a†(q3) . . . a†
N′ |0〉

+ 〈0| {a(p2), a†(q1)}a†(q2)a(p1)a†(q3) . . . a†
N′ |0〉

=δ(p1 − q1)δ(p2 − q2) 〈0| a†(q3) . . . a†
N′ |0〉 − δ(p2 − q1)δ(p1 − q2) 〈0| a†(q3) . . . a†

N′ |0〉
+ δ(p2 − q1) 〈0| a†(q2)a(p1)a†(q3) . . . a†

N′ |0〉

=

{
δ(p1 − q1)δ(p2 − q2)− δ(p2 − q1)δ(p1 − q2) N′ = 2
0 N′ > 2

=

{
εi1i2 δ(p1 − qi1)δ(p2 − qi2) N′ = 2
0 N′ > 2

.

However, this is precisely the right of (A7) for N = 2. The implication is that (A7) is true
for N = 2.

Now for the inductive step of the prove. We assume that it is true for N − 1. We
anticommute a(p1) one place to the right to obtain

〈0| a(pN) . . . a(p1)a†(q1) · · · a†(qN)a†(qN+1) . . . a†(qN′) |0〉
= δ(p1 − q1) 〈0| a(pN) . . . a(p2)a†(q2) · · · a†(qN)a†(qN+1) . . . a†(qN′) |0〉
− 〈0| a(pN) . . . a(p2)a†(q1)a(p1)a†(q2) · · · a†(qN)a†(qN+1) . . . a†(qN′) |0〉 .

In the second line we anticommute a(p1) one place to the right again to obtain

〈0| a(pN) . . . a(p1)a†(q1) · · · a†(qN) |0〉
= δ(p1 − q1) 〈0| a(pN) . . . a(p2)a†(q2) · · · a†(qN)a†(qN+1) . . . a†(qN′) |0〉
− δ(p1 − q2) 〈0| a(pN) . . . a(p2)a†(q1)a†(q3) · · · a†(qN)a†(qN+1) . . . a†(qN′) |0〉
+ 〈0| a(pN) . . . a(p2)a†(q1)a†(q2)a(p1)a†(q3) · · · a†(qN)a†(qN+1) . . . a†(qN′) |0〉 ,

and we continue this process to eventually end up with
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〈0| a(pN) . . . a(p1)a†(q1) · · · a†(qN)a†(qN+1) . . . a†(qN′) |0〉
= δ(p1 − q1) 〈0| a(pN) . . . a(p2)a†(q2) · · · a†(qN)a†(qN+1) . . . a†(qN′) |0〉
− δ(p1 − q2) 〈0| a(pN) . . . a(p2)a†(q1)a†(q3) · · · a†(qN)a†(qN+1) . . . a†(qN′) |0〉
+ δ(p1 − q3) 〈0| a(pN) . . . a(p2)a†(q1)a†(q2)a†(q4) · · · a†(qN)a†(qN+1) . . . a†(qN′) |0〉
...

+ (−1)N−1δ(p1 − qN) 〈0| a(pN) . . . a(p2)a†(q1)a†(q2) · · · a†(qN−1) a†(qN+1) . . . a†(qN′) |0〉 ,

The term next to the delta functions in each line is precisely the left of (A5) for N− 1, N′ − 1
and since (A5) is assumed true for N − 1,N′ − 1 the right-hand side can be substituted to
yield

〈0| a(pN) . . . a(p1)a†(q1) · · · a†(qN)a†(qN+1) . . . a†(qN′) |0〉

= ∑
i2 ...iN

δ(p1 − q1)ε
i2 ...iN δ(p2 − qi2)δ(p3 − qi3) . . . δ(pN − qiN )

∣∣∣∣
ik 6=1

δN−1,N′−1

− ∑
i2 ...iN

δ(p1 − q2)ε
i2 ...iN δ(p2 − qi2)δ(p3 − qi3) . . . δ(pN − qiN )

∣∣∣∣
ik 6=2

δN−1,N′−1

+ ∑
i2 ...iN

δ(p1 − q3)ε
i2 ...iN δ(p2 − qi2)δ(p3 − qi3) . . . δ(pN − qiN )

∣∣∣∣
ik 6=3

δN−1,N′−1

...

+ (−1)N−1 ∑
i2 ...iN

δ(p1 − qN)ε
i2 ...iN δ(p2 − qi2)δ(p3 − qi3) . . . δ(pN − qiN )

∣∣∣∣
ik 6=N

δN−1,N′−1 . (*)

The exclusion of a specific ik from the contraction of the Levi-Civita symbol can be ex-
pressed as, for example, ∑i2 ...iN

εi2 ...iN δ(p2− qi2) . . . δ(pN − qiN )
∣∣
ik 6=1 = ∑i2 ...iN

ε1i2 ...iN δ(p2−
qi2) . . . δ(pN − qiN ), where the Levi-Civita symbol on the left has N − 1 indices and that on
the right has N indices. Hence (*) becomes

〈0| a(pN) . . . a(p1)a†(q1) · · · a†(qN) |0〉

= ∑
i2 ...iN

δ(p1 − q1)ε
1i2 ...iN δ(p2 − qi2)δ(p3 − qi3) . . . δ(pN − qiN )δN,N′

− ∑
i2 ...iN

δ(p1 − q2)ε
2i2 ...iN δ(p2 − qi2)δ(p3 − qi3) . . . δ(pN − qiN )δN,N′

+ ∑
i2 ...iN

δ(p1 − q3)ε
3i2 ...iN δ(p2 − qi2)δ(p3 − qi3) . . . δ(pN − qiN )δN,N′

...

+ (−1)N−1 ∑
i2 ...iN

δ(p1 − qN)ε
Ni2 ...iN δ(p2 − qi2)δ(p3 − qi3) . . . δ(pN − qiN )δN,N′

=
N

∑
k=1

(−1)k−1 ∑
i2 ...iN

εki2 ...iN δ(p1 − qk)δ(p2 − qi2)δ(p3 − qi3) . . . δ(pN − qiN )δN,N′ .

In each term in the sum, we move the index k in the Levi-Civita symbol k − 1 places
to the right, we insert the accompanying factor of (−1)k−1, we re-label dummy indices



Symmetry 2022, 14, 2095 34 of 41

appropriately and we replace the sum over k with the Einstein summation convention to
end up with

〈0| a(pN) . . . a(p1)a†(q1) · · · a†(qN) |0〉
= ∑

i1 ...iN

εi1i2 ...iN δ(p1 − qi1)δ(p2 − qi2)δ(p3 − qi3) . . . δ(pN − qiN )δN,N′ .

This is precisely the right-hand side of (A7). This completes the proof of the assertion
in (A7) by induction.

Having verified (A5), we substitute it in (A4) to obtain

1
N!

(∫ N

∏
k=1

dpk |p1 . . . pN〉 〈p1 . . . pN |
)
|q1 . . . qN〉

=
1

N!

∫ N

∏
k=1

dpk |p1 . . . pN〉 ∑
i1 ...iN

εi1i2 ...iN δ(p1 − qi1)δ(p2 − qi2)δ(p3 − qi3) . . . δ(pN − qiN ) .

As promised, in this form it is now a straightforward matter to evaluate the pk integrals.
The result is

1
N!

(∫ N

∏
k=1

dpk |p1 . . . pN〉 〈p1 . . . pN |
)
|q1 . . . qN〉 =

1
N! ∑

i1 ...iN

εi1i2 ...iN |qi1 . . . qiN 〉 .

From the definition in (A2), namely |q1 . . . qN〉 = a†(q1) . . . a†(qN) |0〉, it is obvi-
ous, that

∑
i1 ...iN

εi1i2 ...iN |qi1 . . . qiN 〉 = ∑
i1 ...iN

εi1i2 ...iN a†(qi1) . . . a†(qiN ) |0〉 = N! |q1 . . . qN〉 ,

i.e., the contraction of the Levi-Civita on |qi1 . . . qiN 〉, which is already completely anti-
symmetric by definition, simply results in a sum over N! permutations. The conclusion
is that

1
N!

(∫ N

∏
k=1

dpk |p1 . . . pN〉 〈p1 . . . pN |
)
|q1 . . . qN〉 = |q1 . . . qN〉 , (A8)

i.e., the operator 1
N!

∫
∏N

k=1 dpk |p1 . . . pN〉 〈p1 . . . pN | acts as an identity on N fold multi-
fermion states defined in (A2).

A corollary of (A5) is that

〈q1 . . . qN |p1 . . . pN〉 = 〈0| a(qN) . . . a(q1)a†(p1) . . . a†(pN) |0〉

= ∑
i1 ...iN

εi1 ...iN δ(p1 − qi1) . . . δ(pN − qiN ) .

Theorem A3. Anticommutator of an arbitrary number of fermion operators

{b, a1 . . . aN} =
N

∑
k=1

(−1)k−1a1 . . . ak−1{b, ak}ak+1 . . . aN + (1 + (−1)N)a1 . . . aNb . (A9)

Proof. The most straightforward way to prove this statement is by induction. We start by
verifying it for N = 2:

{b, a1a2} =ba1a2 + a1a2b

={b, a1}a2 − a1ba2 + a1a2b

={b, a1}a2 − a1{b, a2}+ 2a1a2b .
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However, this is precisely the right of (A9) for N = 2. The implication is that (A9) is true for
N = 2. Now for the inductive step of the prove. We assume that it is true for N = n− 1.
{b, a1 . . . an} = ba1 . . . an + a1 . . . anb = {b, a1 . . . an−1}an − a1 . . . an−1ban + a1 . . . anb .

However, if (A9) is true for N = n− 1, then

{b, a1 . . . an}

=
n−1

∑
k=1

(−1)k−1a1 . . . ak−1{b, ak}ak+1 . . . an−1an

+ (1 + (−1)n−1)a1 . . . an−1ban − a1 . . . an−1ban + a1 . . . anb

=
n−1

∑
k=1

(−1)k−1a1 . . . ak−1{b, ak}ak+1 . . . an−1an + (−1)n−1a1 . . . an−1ban + a1 . . . an−1anb

=
n−1

∑
k=1

(−1)k−1a1 . . . ak−1{b, ak}ak+1 . . . an−1an

+ (−1)n−1a1 . . . an−1{b, an} − (−1)n−1a1 . . . an−1anb + a1 . . . anb

=
n

∑
k=1

(−1)k−1a1 . . . ak−1{b, ak}ak+1 . . . an−1an + (−1)na1 . . . an−1anb + a1 . . . anb

=
n

∑
k=1

(−1)k−1a1 . . . ak−1{b, ak}ak+1 . . . an−1an + (1 + (−1)n)a1 . . . anb .

However, this is none other than (A9) for N = n. Hence, if (A9) holds for N = n− 1 it must
also be true for N = n. This proves (A9), by induction.

Appendix A.4. Derived Identities Involving the Projection Operator onto N > 1 Particle States

The projection operator onto N particle states is defined as

Π̂N =
1

N!

∫
dp1...dpN |p1...pN〉 〈p1...pN | .

The form of the projection operator that shall be assumed is

Π̂N =
1

N!

∫
dx1 . . . dxN a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1) .

This is consistent with the requirement that, given a state |ψ〉 = |x1 . . . xN′〉 =
a†(x1) . . . a†(x′N) |0〉, then Π̂N |ψ〉 = δNN′ |ψ〉, which is easily shown to be true by invoking
theorem A1. Based on (56) and the form of the Hamiltonian in (31), then it can be shown
that the two commute:

[Ĥ, Π̂N ] = 0.

To show that they commute we substitute their explicit forms:
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[Ĥ, Π̂N ] =
∫

dX H0(X)
1

N!

∫
dx1 . . . dxN [a†(X)a(X), a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1)]

+
∫

dX dY V (X−Y)
1

N!

∫
dx1 . . . dxN

[a†(X)a(X)a†(Y)a(Y), a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1)]

=
∫

dX H0(X)
1

N!

∫
dx1 . . . dxN

{
a†(X)a(X)a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1)

− a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1)a†(X)a(X)

}

+
∫

dX dY V (X−Y)
1

N!

∫
dx1 . . . dxN{

a†(X)a(X)a†(Y)a(Y)a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1)

− a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1)a†(X)a(X)a†(Y)a(Y)
}

. (A10)

Note that

a†(X)a(X)a†(x1) . . . a†(xN) |0〉
= ∑N

i=1 δ(X− xi)a†(x1) . . . a†(xi−1)a†(X)a†(xi+1) . . . a†(xN) |0〉 (A11)

〈0| a(xN) . . . a(x1)a†(X)a(X) =
N

∑
i=1

δ(X− xi) 〈0| a(xN) . . . a(xi+1)a(X)a(xi−1) . . . a(x1)

a†(Y)a(Y)a†(x1) . . . a†(xN) |0〉

=
N

∑
i,j=1
i 6=j

δ(X− xi)δ(Y− xj)a†(x1) . . . a†(xi−1)a†(X)a†(xi+1) . . . a†(xj−1)a†(Y)a†(xj+1) . . . a†(xN) |0〉

and

〈0| a(xN) . . . a(x1)a†(X)a(X)a†(Y)a(Y)

=
N

∑
i,j=1
i 6=j

δ(X− xi)δ(Y− xj) 〈0| a(xN) . . . a(xj−1)a(Y)a(xj+1) . . . a(xi+1)a(X)a(xi−1) . . . a(x1) , (A12)

such that by substituting (A11)–(A12) into (A10) and integrating over X and Y the result is
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[Ĥ, Π̂N ] =
N

∑
i=1

H0(xi)
1

N!

∫
dx1 . . . dxN{

a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1)− a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1)

}
+

N

∑
i,j=1
i 6=j

V (xi − xj)
1

N!

∫
dx1 . . . dxN

{
a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1)− a†(x1) . . . a†(xN) |0〉 〈0| a(xN) . . . a(x1)

}

= 0 .

Appendix B. Miscellaneous Identities for Weyl Symbols with N > 1

The Moyal product of the Weyl symbols of two operators Â and B̂ is defined as

AW({xa}, {pa}) ? BW({xa}, {pa})

=AW({xa}, {pa}) exp

[
i
2

N

∑
a=1

2

∑
i=1

(←−
∂

∂xi
a

−−→
∂

∂pi
a
−
←−−

∂

∂pi
a

−→
∂

∂xi
a

)]
BW({xa}, {pa}) . (A13)

The functional trace of a Weyl symbol of an operator on single-particle states is defined
as [19] (see Equation (10)).

TrAW(x, p) ≡ 1
(2π)D

∫
dx dp trAW(x, p) .

The analogous expression for N identical particles is

TrAW(x1, . . . xN , p1, . . . , pN) ≡
1

(2π)ND

∫
dx1 . . . dxN dp1 . . . dpN trAW(x1, . . . xN , p1, . . . , pN) .

The Wigner transformation of the operator Â that acts on one-particle states is

AW(p, x) =
∫

dq eiqx〈p + q
2 |Â|p−

q
2 〉 , (A14)

The Wigner transformation of the product of two operators, by analogy with (A14), is

(AB)W(p, x) =
∫

dq eiqx〈p + q
2 |ÂB̂|p− q

2 〉 =
∫

dq dQ eiqx〈p + q
2 |Â |Q〉 〈Q| B̂|p−

q
2 〉 , (A15)

where the analogue of (A3) for N = 1 was substituted (
∫

dQ |Q〉 〈Q| = 1 when acting on
one-particle states). Through the change of variables q = u + v, Q = p− u

2 + v
2 with the

associated Jacobian ∂(q, Q)/∂(u, v) = 1, (A15) takes the form

(AB)W(p, x) =
∫

du dv ei(u+v)x〈p + u
2 + v

2 |Â |p−
u
2 + v

2 〉 〈p−
u
2 + v

2 | B̂|p−
u
2 −

v
2 〉

=
∫

du eiux〈p + u
2 |Â |p−

u
2 〉 exp

( v
2
←−
∂p −

u
2
−→
∂p

) ∫
dv eivx 〈p + v

2 | B̂|p−
v
2 〉

=
∫

du eiux〈p + u
2 |Â |p−

u
2 〉 exp

(
i
2
←−
∂p
−→
∂x −

i
2
←−
∂x
−→
∂p

) ∫
dv eivx 〈p + v

2 | B̂|p−
v
2 〉

=AW(x, p) ? BW(x, p) . (A16)
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Now to generalize this result to operators on N > 1 particle states, the Wigner
transformation of the operator Â is defined as a function of 2N + 1 variables ω, pa, xa
(a = 1, ..., N), in terms of its matrix elements in momentum space:∫

dp1 . . . dpN
1

(2π)ND

∫
dx1 . . . dxN AW({xa}, {pa}) =

1
N!

∫
dp1 . . . dpN 〈{pa}|Â|{pa}〉 .

and

AW(ω, {pa}, {xa}) =
1

N!

∫ ( N

∏
a=1

dqa eiqaxa

)
〈{pa +

qa
2 }|Â|{pa − qa

2 }〉 . (A17)

The extra factor of 1/N! ensures that the N-particle extension of the result in (A16) is
the same. That is, given two operators Â and B̂ that act on N-particle states, the Wigner
transformation of the product of the two operators is the N-particle generalization of (A15):

(AB)W({pa}, {xa}) =
1

N!

∫ ( N

∏
a=1

dqa eiqaxa

)
〈{pa +

qa
2 }|ÂB̂|{pa − qa

2 }〉

=
1

N!2

∫ ( N

∏
a=1

dqa dQa eiqaxa

)
〈{pa +

qa
2 }|Â |{Qa}〉 〈{Qa}| B̂|{pa − qa

2 }〉 . (A18)

Note the presence of the extra factor of 1/N! in the second equality, coming from (A3).
Following the same steps as in (A16), Equation A18 yields

(AB)W({pa}, {xa}) =
1

N!

∫ ( N

∏
a=1

dua eiuaxa

)
〈{pa +

ua
2 }|Â |{pa − ua

2 }〉

exp

[
i
2

N

∑
a=1

2

∑
i=1

(←−
∂

∂xi
a

−−→
∂

∂pi
a
−
←−−

∂

∂pi
a

−→
∂

∂xi
a

)]
1

N!

∫ ( N

∏
a=1

dva eivaxa

)
〈{pa +

va
2 }| B̂|{pa − va

2 }〉

=AW({pa}, {xa}) ? BW({pa}, {xa}) ,

as required.
From the definition of (A17) an important property of AW(ω, {pa}, {xa}) emerges.

Take for example, the appropriate expression for N = 2, viz

AW(ω, p1, p2, x1, x2) =
1
2

∫
dq1 dq2 eiq1x1+iq2x2 〈p1 +

q1
2 , p2 +

q2
2

∣∣Â∣∣p1 − q1
2 , p2 − q2

2 〉 , (A19)

paying attention to the order of variables in the ket
∣∣p1 − q1

2 , p2 − q2
2 〉 and similarly for the

bra vector 〈p1 +
q1
2 , p2 +

q2
2

∣∣. It then follows from the definition in (A2) that exchanging the
order of variables results in a change in sign:∣∣p2 − q2

2 , p1 − q1
2 〉 = −

∣∣p1 − q1
2 , p2 − q2

2 〉 , 〈p2 +
q2
2 , p1 +

q1
2

∣∣ = −〈p1 +
q1
2 , p2 +

q2
2

∣∣ .

Under such a change of order of variables in the two-state vectors the expression
in (A19) becomes

AW(ω, p1, p2, x1, x2) =
(−1)2

2

∫
dq1 dq2 eiq1x1+iq2x2 〈p2 +

q2
2 , p1 +

q1
2

∣∣Â∣∣p2 − q2
2 , p1 − q1

2 〉 ,
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with two minus signs that enter in the form on the right that cancel. Now by relabeling the
dummy integration variables we obtain

AW(ω, p1, p2, x1, x2) =
∫

dq2 dq1 eiq2x1+iq1x2 〈p2 +
q1
2 , p1 +

q2
2

∣∣Â∣∣p2 − q1
2 , p1 − q2

2 〉

=
∫

dq1 dq2 eiq1x2+iq2x1 〈p2 +
q1
2 , p1 +

q2
2

∣∣Â∣∣p2 − q1
2 , p1 − q2

2 〉 ,

which, upon comparison with (A19), is found to be precisely the same expression but with
the variables p1, p2 interchanged and the variables x1, x2 interchanged. The upshot is that

AW(ω, p1, p2, x1, x2) = AW(ω, p2, p1, x2, x1) . (A20)

It can be shown using analogous examples generalized to the case of states greater
than two particles that

AW(ω, p1, p2, . . . , pN , x1, x2, . . . xN) = AW

(
ω, pσ(1), pσ(2), . . . , pσ(N), xσ(1), xσ(2), . . . , xσ(N)

)
. (A21)

where σ(i) is the number in position i under a permutation σ.
The Weyl symbol of a product of operators, (AB)W(x, p) is defined as [19] (See

Equation (5)).

(AB)W({xa}, {pa}) := AW({xa}, {pa}) ? BW({xa}, {pa}) ,

where the Moyal product or ? product of the Weyl symbols of two operators Â and B̂ is
defined as [19] (see Equation (9))

AW({xa}, {pa}) ? BW({xa}, {pa})

=AW({xa}, {pa}) exp

[
i
2

N

∑
a=1

2

∑
i=1

(←−
∂

∂xi
a

−−→
∂

∂pi
a
−
←−−

∂

∂pi
a

−→
∂

∂xi
a

)]
BW({xa}, {pa}) . (A22)

where the subscript a = 1, . . . , N distinguishes between variables that belong to the N
different particles and the label i = 1, 2 = x, y refers to the component each variable in the
lattice plane. To clarify the expression in (A22) take the case of N = 2:

(AB)W({xa}, {pa})
=(AB)W(x1, x2, p1, p2)

=AW(x1, x2, p1, p2) ? BW(x1, x2, p1, p2)

=AW(x1, x2, p1, p2) exp

[
i
2

2

∑
i=1

(←−
∂

∂xi
1

−−→
∂

∂pi
1
+

←−
∂

∂xi
2

−−→
∂

∂pi
2
−
←−−

∂

∂pi
1

−→
∂

∂xi
1
−
←−−

∂

∂pi
2

−→
∂

∂xi
2

)]
BW(x1, x2, p1, p2) .

However, thanks to the property (A20), AW(x1, x2, p1, p2) = AW(x2, x1, p2, p1) and
similarly BW(x1, x2, p1, p2) = BW(x2, x1, p2, p1), hence, since the interchange of the vari-
ables p1, p2 and interchange of the variables x1, x2 inside the ? operator does not change
the operator, such that

(AB)W(x1, x2, p1, p2) = (AB)W(x2, x1, p2, p1) . (A23)

(A23) is the invariance property analogous to the one found in (A20) for just one Weyl
symbol. Similar arguments using (A21) leads to a generalization of (A23) for N > 2, namely

(AB)W(p1, p2, . . . , pN , x1, x2, . . . , xN) = (AB)W

(
pσ(1), pσ(2), . . . , pσ(N), xσ(1), xσ(2), . . . , xσ(N)

)
.
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