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Abstract: Generalized progressive hybrid censored mechanisms have been proposed to reduce
the test duration and to save the cost spent on testing. This paper considers the problem of es-
timating the unknown model parameters and the reliability time functions of the new inverted
Nadarajah–Haghighi (NH) distribution under generalized Type-II progressive hybrid censoring
using the maximum likelihood and Bayesian estimation approaches. Utilizing the normal approxima-
tion of the frequentist estimators, the corresponding approximate confidence intervals of unknown
quantities are also constructed. Using independent gamma conjugate priors under the symmetrical
squared error loss, the Bayesian estimators are developed. Since the joint likelihood function is
obtained in complex form, the Bayesian estimators and their associated highest posterior density
intervals cannot be obtained analytically but can be evaluated via Monte Carlo Markov chain tech-
niques. To select the optimum censoring scheme among different censoring plans, five optimality
criteria are used. Finally, to explain how the proposed methodologies can be applied in real situations,
two applications representing the failure times of electronic devices and deaths from the coronavirus
disease 2019 epidemic in the United States of America are analyzed.

Keywords: inverted NH model; generalized type-II progressive hybrid censoring; Bayesian and
frequentist estimators; Metropolis–Hastings algorithm; optimum progressive censoring plan

1. Introduction

Today, reliability technology plays a very important role, because it measures the
ability of a system to successfully perform its intended function under predetermined
conditions for a specified period. In this framework, several studies on system reliability
have been conducted (among others, see Chen et al. [1], Xu et al. [2], Hu and Chen [3], and
Luo et al. [4]). Progressive Type-II censoring (PCS-T2) has been discussed quite extensively
in the literature as a highly flexible censoring scheme (for details, see Balakrishnan and
Cramer [5]). At time T = 0, n independent units are placed in a test in which the number
of failures to be observed r and the progressive censoring R = (R1, R2, . . . , Rr), where
n = ∑r

i=1 Ri + r, are determined. At the time of the first failure observed (say X1:r:n), R1
of the remaining surviving units n− 1 are randomly selected and removed from the test.
Similarly, at the time of the second failure (say X2:r:n), R2 of n − R1 − 2 are randomly
selected and removed from the test, and so on. At the time of the rth failure (say Xr:r:n),
all remaining survival units Rr = n− r−∑r−1

j=1 Rj are withdrawn from the test. However,
when the experimental units are highly reliable, PCS-T2 may take a longer time to continue,
and this is the main drawback of this censoring scheme. To overcome this drawback, Kundu
and Joarder [6] proposed the progressive Type-I hybrid censoring scheme (PHCS-T1), which
is a mixture of PCS-T2 and classical Type-I censoring.
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Under PHCS-T1, the experimental time cannot exceed T. In addition, the disadvantage
of PHCS-T1 is that there may be very few failures that occur before time T, and thus the
maximum likelihood estimators (MLEs) may not always exist. Therefore, to handle this
problem, Childs et al. [7] proposed the progressive Type-II hybrid censoring scheme (PHCS-
T2). Under PHCS-T2, the experiment stops at T∗ = max{Xr:r:n, T}. Although PHCS-T2
guarantees a specified number of failures, it might take a long time to observe r failures.
Therefore, Lee et al. [8] introduced the generalized progressive Type-II hybrid censoring
scheme (GPHCS-T2). Suppose the integer r and the two thresholds Ti, i = 1, 2 are pre-
assigned such that r 6 n and 0 < T1 < T2 < ∞. Let d1 and d2 denote the number of
failures up to times T1 and T2, respectively. At X1:r:n, R1 of n− 1 are withdrawn from the
test at random. Following X2:r:n, R2 of n− R1 − 2 are withdrawn, and so on. According
to the termination time T∗ = max{T1, min{Xr:r:n, T2}}, all remaining units are removed,
and the experiment is stopped. It is useful to note that GPHCS-T2 modifies PHCS-T2
by guaranteeing that the test is completed at a predetermined time T2. Therefore, T2
represents the absolute longest that the researcher is willing to allow the experiment to
continue. The schematic diagram shown in Figure 1 represents that if Xr:n < T1, then we
continue to observe failures, but without any further withdrawals up to time T1 (Case-I)
(i.e., Rr = Rr+1 = · · · = Rd1 = 0); if T1 < Xr:r:n < T2, we terminate the test at Xr:r:n
(Case-II); otherwise, we terminate the test at time T2 (Case-III). Thus, an experimenter will
observe one of the following three data forms:

{X, R} =


{(X1:r:n, R1), . . . , (Xr−1:r:n, Rr−1), (Xr:r:n, 0), . . . , (Xd1 :n, 0)}; Case-I,

{(X1:r:n, R1), . . . , (Xd1 :n, Rd1), . . . , (Xr−1:r:n, Rr−1), (Xr:r:n, Rr)}; Case-II,

{(X1:r:n, R1), . . . , (Xd1 :n, Rd1), . . . , (Xd2−1:n, Rd2−1), (Xd2 :n, Rd2)}; Case-III.

Figure 1. Diagram of GPHCS-T2.

Assume that {X, R} denotes the corresponding lifetimes from a distribution with a
cumulative distribution function (CDF) F(·) and probability density function (PDF) f (·).
Thus, the combined likelihood function of GPHCS-T2 can be expressed as

Lρ(θ|X) = Cρ

Dρ

∏
j=1

f (xj:r:n; θ)
[
1− F(xj:r:n; θ)

]Rj Ψρ(Tτ ; θ), (1)

where τ = 1, 2, ρ = 1, 2, 3 refer to Case-I, II, and III, respectively, and Ψρ(·) is a composite
form of the reliability functions. The GPHCS-T2 notations from Equation (1) are listed
in Table 1. Additionally, from Equation (1), different censoring plans can be obtained as
special cases:

• PHCS-T1 by setting T1 → 0;
• PHCS-T2 by setting T2 → ∞;
• Hybrid Type-I censoring by setting T1 → 0, Rj = 0, j = 1, 2, . . . , r− 1, Rr = n− r;
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• Hybrid Type-II censoring by setting T2 → ∞, Rj = 0, j = 1, 2, . . . , r− 1, Rr = n− r;
• Type-I censoring by setting T1 = 0, r = 1, Rj = 0, j = 1, 2, . . . , r− 1, Rr = n− r;
• Type-II censoring by setting T1 = 0, T2 → ∞, Rj = 0, j = 1, 2, . . . , r− 1, Rr = n− r.

Table 1. The GPHCS-T2 notations.

ρ Cρ Dρ Ψρ(Tτ ; θ) R∗dτ+1

1 Πd1
j=1 ∑r

i=j (Ri + 1) d1 [1− F(T1)]
R∗d1+1 n− d1 −∑r−1

i=1 Ri

2 Πr
j=1 ∑r

i=j (Ri + 1) r 1 0

3 Πd2
j=1 ∑r

i=j (Ri + 1) d2 [1− F(T2)]
R∗d2+1 n− d2 −∑d2

i=1 Ri

Various studies based on GPHCS-T2 have also been conducted. For example, Ashour
and Elshahhat [9] obtained the maximum likelihood and Bayes estimators of the Weibull
parameters. Ateya and Mohammed [10] discussed the prediction problem of future failure
times from the Burr-XII distribution. Seo [11] proposed an objective Bayesian analysis with
partial information for the Weibull distribution. Cho and Lee [12] studied the competing
risks from exponential data, and recently, Nagy et al. [13] investigated both the point and
interval estimates of the Burr-XII parameters.

Nadarajah and Haghighi [14] introduced a generalization form of the exponential
distribution called the Nadarajah–Haghighi (NH) distribution. Its density allows decreasing
and unimodal shapes while the hazard rate exhibits increasing, decreasing, and constant
shapes. Moreover, its density, survival, and hazard rate functions has two parameters, as
in the Weibull, gamma and generalized exponential lifetime models. They also showed
that the NH model can be interpreted as a truncated Weibull distribution. A new two-
parameter inverse distribution, called the inverted Nadarajah–Haghighi (INH) distribution,
for data modeling with decreasing and upside-down bathtub-shaped hazard rates as well
as a decreasing and unimodal (right-skewed) density was introduced by Tahir et al. [15].
A lifetime random variable X is said to have INH distribution, where X ∼ INH(α, δ), and
its PDF ( f (·)), CDF (F(·)), reliability function (RF), R(·), and hazard function (HF), h(·) at a
mission time t are given, respectively, by

f (x; α, δ) = αδx−2(1 + δx−1)α−1 exp(1− (1 + δx−1)α); x > 0, (2)

F(x; α, δ) = exp(1− (1 + δx−1)α); x > 0, (3)

R(t; α, δ) = 1− exp(1− (1 + δt−1)α); t > 0, (4)

and

h(t; α, δ) =
αδt−2(1 + δt−1)α−1

exp((1 + δt−1)α − 1)− 1
; t > 0, (5)

where α > 0 and δ > 0 are the shape and scale parameters, respectively. By setting
α = 1 in Equation (2), the inverted exponential distribution is introduced as a special
case. Tahir et al. [15] showed that the proposed distribution is highly flexible for modeling
real data sets that exhibit decreasing and upside-down bathtub hazard shapes. Recently,
from the times until breakdown of an insulating fluid between 19 electrodes recorded at
34 kV, Elshahhat and Rastogi [16] showed that the INH distribution is the best compared
with other 10 inverted models in the literature.

To the best of our knowledge, we have not come across any work related to estimation
of the model parameters or survival characteristics of the new INH lifetime model in
the presence of data obtained from the generalized Type-II progressive hybrid censoring
plan. Therefore, to close this gap, our objectives in this study are the following. First, we
derive the likelihood inference for the unknown INH parameters α and δ or any function
of them, such as R(t) or h(t). From the squared error (SE) loss, the second objective is to
develop the Bayes estimates for the same unknown parameters by utilizing independent
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gamma priors. In addition, based on the proposed estimation methods, the approximate
confidence intervals (ACIs) and highest posterior density (HPD) interval estimators for the
unknown parameters of the INH distribution, are found. Since the theoretical results of α
and δ obtained by the proposed estimation methods cannot be expressed in closed form, in
theR programming language, the ‘maxLik’ (proposed by Henningsen and Toomet [17])
and ‘coda’ (proposed by Plummer et al. [18]) packages are used to calculate the acquired
estimates. Using five optimality criteria, the third objective is to obtain the best progressive
censoring plan. Using various combinations of the total sample size, effective sample size,
threshold times, and progressive censoring, the efficiencies of the various estimators are
compared via a Monte Carlo simulation. The estimators, thus obtained, are compared on
the basis of their simulated root mean squared errors (RMSEs), mean relative absolute
biases (MRABs), and average confidence lengths (ACLs). In addition, two different real
data sets coming from the engineering and clinical fields are examined to see how the
proposed methods can perform in practice and adopt the optimal censoring plan.

The rest of the paper is organized as follows. The maximum likelihoods and Bayes
inferences of the unknown parameters and reliability characteristics are discussed in
Sections 2 and 3, respectively. The asymptotic and credible intervals are constructed in
Section 4. The Monte Carlo simulation results are reported in Section 5. The optimal
progressive censoring plans are discussed in Section 6. Two real-life data analyses are
investigated in Section 7. Finally, we conclude the paper in Section 8.

2. Likelihood Estimators

Suppose X = {(X1:r:n, R1), . . . , (Xd1 :n, Rd1), . . . , (Xd2 :n, Rd2)} is a GPHCS-T2 sample of
a size d2 from INH( α, δ). By substituting Equations (2) and (3) into Equation (1), where xj
is used instead of xj:r:n, the likelihood function of GPHCS-T2 (1) can be written as

Lρ(α, δ|X) ∝ ∏Dρ

j=1 αδx−2
j
(
ψ
(
δ; xj

))α−1e1−(ψ(δ;xj))
α

[1− e1−(ψ(δ;xj))
α

]
Rj

Ψρ(Tτ ; α, δ), (6)

where ψ
(

δ; xj

)
= (1 + δx−1

j ), Ψ1(T1; α, δ) =
[
1− exp(1− (1 + δT−1

1 )
α
)
]R∗d1+1 , Ψ2(Tτ ; α, δ) = 1

and Ψ3(T2; α, δ) =
[
1− exp(1− (1 + δT−1

2 )
α
)
]R∗d2+1 .

The corresponding log-likelihood function `ρ(·) ∝ ln Lρ(·) of Equation (6) becomes

`ρ(α, δ|X) ∝ Dρ ln(αδ) + (α− 1)∑Dρ

j=1 ln
(
ψ
(
δ; xj

))
+ ∑Dρ

j=1

(
1−

(
ψ
(
δ; xj

))α
)

+ ∑Dρ

j=1 Rj ln(1− e1−(ψ(δ;xj))
α

) + Wρ(Tτ ; α, δ),
(7)

where W1(T1; α, δ) = R∗d1+1 ln Ψ1(T1; α, δ), W2(Tτ ; α, δ) = 0 and W3(T2; α, δ) = R∗d2+1 ln Ψ3(T2; α, δ)

for Case-I, II, and III, respectively.
By differentiating Equation (7) partially with respect to α and δ, the following two

likelihood equations must be solved simultaneously after equating them to zero to obtain
the MLEs α̂ and δ̂:

Dρ

α
+ ∑Dρ

j=1 ln
(
ψ
(
δ; xj

))
−∑Dρ

j=1

((
ψ
(
δ; xj

))α ln ψ
(
δ; xj

))
+∑Dρ

j=1 Rj
(
ψ
(
δ; xj

))α ln
(
ψ
(
δ; xj

))
F
(

xj; α, δ
)[

1− F
(

xj; α, δ
)]−1

+
∂Wρ(Tτ ; α, δ)

∂ α

∣∣∣∣
(α̂,δ̂)

= 0,
(8)

and

Dρ

δ
+ (α− 1)∑Dρ

j=1 ψ′δ
(
δ; xj

)
− α ∑Dρ

j=1 ψ′δ
(
δ; xj

)(
ψ
(
δ; xj

))α−1

+α ∑Dρ

j=1 Rj ψ′δ
(
δ; xj

)(
ψ
(
δ; xj

))α−1F
(

xj; α, δ
)[

1− F
(

xj; α, δ
)]−1

+
∂Wρ(Tτ ; α, δ)

∂ δ

∣∣∣∣
(α̂,δ̂)

= 0,
(9)
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where ψ′δ
(
δ; xj

)
= x−1

j , j = 1, 2, . . . , Dρ, ψ′δ(δ; Tτ) = T−1
τ , ψ(δ; Tτ) = (1 + δT−1

τ ) such that

∂Wρ(Tτ ; α, δ)

∂ α
=

(ψ(δ; Tτ))
α ln(ψ(δ; Tτ))F(Tτ ; α, δ)R∗Dρ+1

1− F(Tτ ; α, δ)
,

∂Wρ(Tτ ; α, δ)

∂ δ
=

αψ′δ(δ; Tτ)(ψ(δ; Tτ))
α−1F(Tτ ; α, δ)R∗Dρ+1

1− F(Tτ ; α, δ)

and
∂W2(Tτ ; α, δ)

∂ α
=

∂W2(Tτ ; α, δ)

∂ δ
= 0, for ρ = 1, 3, τ = 1, 2.

From Equations (8) and (9), it is clear that we have a system of two nonlinear equations
which must be simultaneously satisfied to obtain the MLEs α̂ and δ̂ of α and δ in the INH
model, respectively. Therefore, a closed-form solution for α̂ and δ̂ does not exist and
cannot be computed analytically. Therefore, for any given GPHCS-T2 data set, a numerical
methods such as the Newton–Raphson iterative method can be used to calculate α̂ and δ̂.
Once the estimates of α̂ and δ̂ are obtained, by replacing α and δ with α̂ and δ̂, the MLEs
R̂(t) and ĥ(t) of R(t) and h(t), respectively, can be easily derived.

3. Bayes Estimators

In this section, based on the SE loss function, the Bayes estimators and associated
HPD intervals of α, δ, R(t), and h(t) are developed. To establish this purpose, both INH
parameters, α and δ, are assumed to be independently distributed as gamma priors such as
Gα(a1, b1) and Gδ(a2, b2), respectively. Several reasons to consider gamma priors are that:
(1) they provide various shapes based on parameter values, (2) they are flexible in nature,
and (3) they are fairly straightforward, concise, and may not lead to a result with a complex
estimation issue. Then, the joint prior density of α and δ is

π(α, δ) ∝ αa1−1δa2−1 exp(−(αb1 + δb2)), (10)

where ai > 0 and bi > 0 for i = 1, 2 are assumed to be known. By combining Equations (6)
and (10), the joint posterior PDF of α and δ becomes

πρ(α, δ|X) = C−1αDρ+a1−1δDρ+a2−1e−(αb1+δb2)Ψρ(Tτ ; α, δ)

×∏Dρ

j=1

(
ψ
(
δ; xj

))α−1e1−(ψ(δ;xj))
α[

1− e1−(ψ(δ;xj))
α]Rj

,
(11)

where C is the normalizing constant. Subsequently, the Bayes estimate ϕ̃(·) of any function
of α and δ, such as ϕ(α, δ), under SE loss is the posterior expectation of Equation (11), which
is given by

ϕ̃(α, δ) =
∫ ∞

0

∫ ∞

0
ϕ(α, δ)πρ(α, δ|X)dαdδ.

It is clear that from Equation (11), the marginal PDFs of α and δ cannot be obtained
in explicit expression. For this purpose, we propose using Bayes Monte Carlo Markov
chain (MCMC) techniques to generate samples from Equation (11) in order to compute the
acquired Bayes estimates and to construct their HPD intervals.

To run the MCMC sampler, from Equation (11), the full conditional PDFs of α and δ
are given, respectively, as

πα
ρ (α|δ, X) ∝ αDρ+a1−1e1−αb1−(ψ(δ;xj))

α

Ψρ(Tτ ; α, δ)∏Dρ

j=1

(
ψ
(

δ; xj

))α[
1− e1−(ψ(δ;xj))

α]Rj
, (12)

and

πδ
ρ( δ|α, X) ∝ δDρ+a2−1e1−δb2−(ψ(δ;xj))

α

Ψρ(Tτ ; α, δ)∏Dρ

j=1

(
ψ
(

δ; xj

))α−1[
1− e1−(ψ(δ;xj))

α]Rj
, (13)
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Since the posterior PDFs of α and δ in Equations (12) and (13), respectively, cannot be
reduced analytically to any familiar distribution, the Metropolis–Hastings (M-H) algorithm
is considered to solve this problem (for detail, see Gelman et al. [19] and Lynch [20]).
The sampling process of the M-H algorithm is conducted as follows:

Step 1: Set the initial values α(0) = α̂ and δ(0) = δ̂.

Step 2: Set S = 1.

Step 3: Generate α∗ and δ∗ from N(α̂, σ̂11) and N(δ̂, σ̂22), respectively.

Step 4: Obtain ζα = min
{

1,
πα

ρ ( α∗ |δ(S−1),X)

πα
ρ ( α(S−1)|δ(S−1),X)

}
and ζδ = min

{
1,

πδ
ρ( δ∗ |α(S),X)

πδ
ρ( δ(S−1)|α(S),X)

}
.

Step 5: Generate samples u1 and u2 from the uniform U(0, 1) distribution.

Step 6: If u1 6 ζα and u2 6 ζδ, then set α(S) = α∗ and δ(S) = δ∗; otherwise, set α(S) =
α(S−1) and δ(S) = δ(S−1), respectively.

Step 7: Set S = S + 1.

Step 8: Repeat steps 3–7 B times and obtain α(S) and δ(S) for S = 1, 2, . . . , B.

Step 9: Compute the RF (Equation (4)) and HF (Equation (5)) using (α(S), δ(S)), S =
1, 2, . . . , B for a given mission time t > 0, respectively, as

R(S)(t) = 1− exp

(
1−

(
1 + δ(S)t−1

)α(S)
)

,

and

h(S)(t) =
α(S)δ(S)t−2(1 + δ(S)t−1)α(S)−1

exp
((

1 + δ(S)t−1
)α(S) − 1

)
− 1

.

To guarantee the convergence of the MCMC sampler and remove the affection of the
start values α(0) and δ(0), the first simulated varieties (say B0) are discarded as burn-ins.
Therefore, the remaining B− B0 samples of α, δ, R(t) or h(t) (say ϕ) are utilized to compute
the Bayesian estimates. However, the Bayes MCMC estimates of ϕ under the SE loss
function are given by

ϕ̃ =
1

B− B0

B

∑
S=B0+1

ϕ(S).

4. Interval Estimators

In this section, the approximate confidence (based on the observed Fisher information)
and HPD interval (based on the MCMC-simulated varieties) estimators of α, δ, R(t), or h(t)
are obtained.

4.1. Asymptotic Intervals

To construct the ACIs for α and δ, we first need to compute the asymptotic variance-
covariance (AVC) matrix, which is obtained by inverting the Fisher information matrix.
Under some regularity conditions, (α̂, δ̂) is approximately normal with a mean (α, δ) and
variance I−1(α, δ). Following Lawless [21], by setting α̂ and δ̂ in place of α and δ, we
estimate I−1(α, δ) by I−1(α̂, δ̂) as follows:

I−1(ϕ̂) ∼=
[
−I11 − I12
−I21 − I22

]−1

=

[
σ̂11 σ̂12
σ̂21 σ̂22

]
, (14)

where ϕ̂ = (α̂, δ̂)T and Iij, i, j = 1, 2 are obtained and reported in Appendix A. Thus, the
two-sided 100(1− q)% ACIs for α and δ are given, respectively, by(

α̂ ± zq/2
√

σ̂11

)
and

(
δ̂ ± zq/2

√
σ̂22

)
,
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where zq/2 denotes the upper q/2 percentage points of the standard normal distribution,
where σ̂11 and σ̂22 are the main diagonal elements of Equation (14).

Moreover, to construct the ACIs of R(t) and h(t), we first follow the delta method to
find the estimated variance of R̂(t) and ĥ(t) (see Greene [22]) as follows:

σ̂2
R̂(t) = ΥT

R̂ I−1(ϕ̂) ΥR̂ and σ̂2
ĥ(t) = ΥT

ĥ I−1(ϕ̂) Υĥ,

where ΥT
R̂
= [ ∂R(t)

∂α , ∂R(t)
∂δ ](α̂,δ̂) and ΥT

ĥ
= [ ∂h(t)

∂α , ∂h(t)
∂δ ](α̂,δ̂).

Then, the two-sided 100(1− q)% ACIs of R(t) and h(t) are given, respectively, by(
R̂(t) ± zq/2

√
σ2

R̂(t)

)
and

(
ĥ(t) ± zq/2

√
σ2

ĥ(t)

)
.

Bootstrapping techniques which improve estimators or build confidence intervals of
α, δ, R(t), or h(t) can be easily incorporated.

4.2. HPD Intervals

To construct 100(1− q)% HPD interval estimates of α, δ, R(t), or h(t), the method
suggested by Chen and Shao [23] is used. First, we order the MCMC samples of ϕ(j) for
j = B0 + 1, B0 + 2, . . . , B as ϕ(B0+1), ϕ(B0+2), . . . , ϕ(B). As a result, the 100(1− q)% two-sided
HPD interval of ϕ is given by

(ϕ(j∗), ϕ(j∗+(1−q)(B−B0))),

where j∗ = B0 + 1, B0 + 2, . . . , B is chosen such that

ϕ(j∗+[(1−q)(B−B0)])
− ϕ(j∗) = min

16j6q(B−B0)
(ϕ(j+[(1−q)(B−B0)])

− ϕ(j)),

here [x] denotes the highest value less than or equal to x.

5. Monte Carlo Simulation

To examine the performance of the proposed point and interval estimators introduced
in the previous sections, an extensive Monte Carlo simulation is conducted. A total of 2000
GPHCS-T2 samples are generated from INH(0.5, 0.5) based on different choices for n (total
test units), r (observed failure data), T1, T2 (ideal times), and R (censoring plan). At mission
time t = 0.1, the actual values of R(t) and h(t) are 0.765 and 3.13, respectively. To run the
experiment according to generalized progressive Type-II hybrid censored sampling from
the proposed model, we propose the following algorithm:

Step 1. Set the parameter values of α and δ.

Step 2. Set the specific values of n, r, T1, T2, and R.

Step 3. Simulate a PCS-T2 sample of size r as follows:

a. Generate ν independent observations of a size r as ν1, ν2, . . . , νr from U(0, 1).

b. Set ωi = ν

(
i+∑r

j=r−i+1 Rj

)−1

i , i = 1, 2, . . . , r.
c. Set Ui = 1−ωrωr−1 · · ·ωr−i+1 for i = 1, 2, . . . , r.
d. Carry out the PCS-T2 sample of a size r from INH(α, δ) by inverting Equation

(3) (i.e., Xi = F−1(ui; α, δ), i = 1, 2, . . . , r).

Step 4. Determine d1 at T1 and d2 at T2 from the PCS-T2 sample.

Step 5. Carry out the GPHCS-T2 sample as follows:

a. If Xr < T1, then set Ri = 0, for i = r, r + 1, . . . , d1, terminate the experiment
at T1, and remove the remaining units n − d1 − ∑r−1

i=1 Ri. This is Case-I, and
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in this case, replace Xi, i = r, . . . , d1 with those items obtained from a truncated
distribution f (x)[1− F(xr)]−1 with a size n− r−∑r−1

i=1 Ri.
b. If T1 < Xr < T2, then terminate the experiment at Xr and remove the remaining

units n− r−∑r−1
i=1 Ri. This is Case-II.

c. If T1 < T2 < Xr, then terminate the experiment at T2 and remove the remaining
units n− d2 −∑d2

i=1 Ri. This is Case-III.

For the given times (T1, T2) = (0.2, 0.4) and (0.4, 0.8), various choices of n and r are
also considered, such as n = (40, 80), and r is taken as the failure percentage (FP) such that
r/n = (50, 75, 100)% for each n. For each given set of (n, r), seven different PCSs
Si = (R1, R2, . . . , Rr), i = 1, 2, . . . , 7, where R = (4, 0, 0, 0, 4), denoted by R = (4, 0∗3, 4),
are considered (see Table 2). Two different sets of the hyperparameters ai, bi, i = 1, 2, are
used, namely (ai, bi) = (1, 2), i = 1, 2 (prior A) and (ai, bi) = (5, 10), i = 1, 2 (prior B).
The specified values for priors A and B are determined in such a way that the prior average
returns to the true value of the target parameter.

Table 2. Various PCSs used in Monte Carlo simulation.

n Scheme
FPs

50% 75% 100%

40

S1 (1*20) (1*10, 0*20) (0*40)
S2 (2*10, 0*10) (0*20, 1*10) -
S3 (0*10, 2*10) (2*5, 0*25) -
S4 (0*8, 4*5, 0*7) (0*25, 2*5) -
S5 (0*5, 2*10, 0*5) (0*13, 2*5, 0*12) -
S6 (2*5, 0*10, 2*5) (0*10, 1*10, 0*10) -
S7 (0*19, 20) (0*29, 10) -

80

S1 (1*40) (1*20, 0*40) (0*80)
S2 (2*20, 0*20) (0*40, 1*20) -
S3 (0*20, 2*20) (2*10, 0*50) -
S4 (0*16, 4*10, 0*14) (0*50, 2*10) -
S5 (0*10, 2*20, 0*10) (0*26, 2*10, 0*24) -
S6 (2*10, 0*20, 2*10) (0*20, 1*20, 0*20) -
S7 (0*39, 40) (0*59, 20) -

For each unknown parameter, via the M-H sampler, 12,000 MCMC variates are gen-
erated, and the first 2000 values are eliminated as burn-ins. Hence, using the last 10,000
MCMC samples, the average Bayes estimates and 95% two-sided HPD intervals are com-
puted. To run the MCMC sampler, the initial values of α and δ are taken to be α̂ and δ̂,
respectively.

A comparison between different point estimates is made based on their RMSE and
MRAB values. Additionally, the performances of the proposed interval estimates are
compared by using their ACLs. For the unknown parameter α, δ, R(t), or h(t) (say
ϕs, s = 1, 2, 3, 4), the average estimates (Av.Es), RMSEs, MRABs and ACLs of ϕs are com-
puted as follows:

ϕ̂s =
1
N ∑N

j=1 ϕ̂
(j)
s ,

RMSE(ϕ̂s) =

√
1
N ∑N

j=1

(
ϕ̂
(j)
s − ϕs

)2
,

MRAB(ϕ̂s) =
1
N ∑N

j=1

∣∣∣ϕ̂(j)
s − ϕs

∣∣∣
ϕs

,

and
ACLϕs(1− q)% =

1
N ∑N

j=1

(
U (ϕ̂

(j)
s )−L(ϕ̂

(j)
s )
)

,
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where ϕ̂
(j)
s denotes the calculated estimate at the jth sample of ϕs, N is the number of

generated sequence data, and L(·) and U (·) denote the lower and upper bounds, respec-
tively, of the (1− q)% asymptotic (or credible HPD) interval of ϕs such that ϕ1 = α, ϕ2 = δ,
ϕ3 = R(t) and ϕ4 = h(t). All numerical computations were performed via the ‘maxLik’
and ‘coda’ packages inR 4.0.4 software.

Graphically, utilizing heat-map plots, all simulated values for the RMSEs, MRABs,
and ACLs of α, δ, R(t), and h(t) are shown in Figures 2–5, respectively, while all simulation
tables are provided as Supplementary Materials.
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Figure 2. Heat-maps for the estimation results for α.



Symmetry 2022, 14, 2379 10 of 21

(0.2,0.4)−40[ 50% ]−S1

(0.2,0.4)−40[ 50% ]−S2

(0.2,0.4)−40[ 50% ]−S3

(0.2,0.4)−40[ 50% ]−S4

(0.2,0.4)−40[ 50% ]−S5

(0.2,0.4)−40[ 50% ]−S6

(0.2,0.4)−40[ 50% ]−S7

(0.2,0.4)−40[ 75% ]−S1

(0.2,0.4)−40[ 75% ]−S2

(0.2,0.4)−40[ 75% ]−S3

(0.2,0.4)−40[ 75% ]−S4

(0.2,0.4)−40[ 75% ]−S5

(0.2,0.4)−40[ 75% ]−S6

(0.2,0.4)−40[ 75% ]−S7

(0.2,0.4)−40[100%]−S1

(0.2,0.4)−80[ 50% ]−S1

(0.2,0.4)−80[ 50% ]−S2

(0.2,0.4)−80[ 50% ]−S3

(0.2,0.4)−80[ 50% ]−S4

(0.2,0.4)−80[ 50% ]−S5

(0.2,0.4)−80[ 50% ]−S6

(0.2,0.4)−80[ 50% ]−S7

(0.2,0.4)−80[ 75% ]−S1

(0.2,0.4)−80[ 75% ]−S2

(0.2,0.4)−80[ 75% ]−S3

(0.2,0.4)−80[ 75% ]−S4

(0.2,0.4)−80[ 75% ]−S5

(0.2,0.4)−80[ 75% ]−S6

(0.2,0.4)−80[ 75% ]−S7

(0.2,0.4)−80[100%]−S1

MLE SE−PA SE−PB

δ

(T
1
 ,

 T
2
) 

−
 n

 [
 F

P
 ]

 −
 S

c
h

e
m

e

0.5

1.0

RMSE

(0.4,0.8)−40[ 50% ]−S1

(0.4,0.8)−40[ 50% ]−S2

(0.4,0.8)−40[ 50% ]−S3

(0.4,0.8)−40[ 50% ]−S4

(0.4,0.8)−40[ 50% ]−S5

(0.4,0.8)−40[ 50% ]−S6

(0.4,0.8)−40[ 50% ]−S7

(0.4,0.8)−40[ 75% ]−S1

(0.4,0.8)−40[ 75% ]−S2

(0.4,0.8)−40[ 75% ]−S3

(0.4,0.8)−40[ 75% ]−S4

(0.4,0.8)−40[ 75% ]−S5

(0.4,0.8)−40[ 75% ]−S6

(0.4,0.8)−40[ 75% ]−S7

(0.4,0.8)−40[100%]−S1

(0.4,0.8)−80[ 50% ]−S1

(0.4,0.8)−80[ 50% ]−S2

(0.4,0.8)−80[ 50% ]−S3

(0.4,0.8)−80[ 50% ]−S4

(0.4,0.8)−80[ 50% ]−S5

(0.4,0.8)−80[ 50% ]−S6

(0.4,0.8)−80[ 50% ]−S7

(0.4,0.8)−80[ 75% ]−S1

(0.4,0.8)−80[ 75% ]−S2

(0.4,0.8)−80[ 75% ]−S3

(0.4,0.8)−80[ 75% ]−S4

(0.4,0.8)−80[ 75% ]−S5

(0.4,0.8)−80[ 75% ]−S6

(0.4,0.8)−80[ 75% ]−S7

(0.4,0.8)−80[100%]−S1

MLE SE−PA SE−PB

δ

(T
1
 ,

 T
2
) 

−
 n

 [
 F

P
 ]

 −
 S

c
h

e
m

e

0.5

1.0

1.5

2.0

RMSE

(0.2,0.4)−40[ 50% ]−S1

(0.2,0.4)−40[ 50% ]−S2

(0.2,0.4)−40[ 50% ]−S3

(0.2,0.4)−40[ 50% ]−S4

(0.2,0.4)−40[ 50% ]−S5

(0.2,0.4)−40[ 50% ]−S6

(0.2,0.4)−40[ 50% ]−S7

(0.2,0.4)−40[ 75% ]−S1

(0.2,0.4)−40[ 75% ]−S2

(0.2,0.4)−40[ 75% ]−S3

(0.2,0.4)−40[ 75% ]−S4

(0.2,0.4)−40[ 75% ]−S5

(0.2,0.4)−40[ 75% ]−S6

(0.2,0.4)−40[ 75% ]−S7

(0.2,0.4)−40[100%]−S1

(0.2,0.4)−80[ 50% ]−S1

(0.2,0.4)−80[ 50% ]−S2

(0.2,0.4)−80[ 50% ]−S3

(0.2,0.4)−80[ 50% ]−S4

(0.2,0.4)−80[ 50% ]−S5

(0.2,0.4)−80[ 50% ]−S6

(0.2,0.4)−80[ 50% ]−S7

(0.2,0.4)−80[ 75% ]−S1

(0.2,0.4)−80[ 75% ]−S2

(0.2,0.4)−80[ 75% ]−S3

(0.2,0.4)−80[ 75% ]−S4

(0.2,0.4)−80[ 75% ]−S5

(0.2,0.4)−80[ 75% ]−S6

(0.2,0.4)−80[ 75% ]−S7

(0.2,0.4)−80[100%]−S1

MLE SE−PA SE−PB

δ

(T
1
 ,

 T
2
) 

−
 n

 [
 F

P
 ]

 −
 S

c
h

e
m

e

0.5

1.0

1.5

MRAB

(0.4,0.8)−40[ 50% ]−S1

(0.4,0.8)−40[ 50% ]−S2

(0.4,0.8)−40[ 50% ]−S3

(0.4,0.8)−40[ 50% ]−S4

(0.4,0.8)−40[ 50% ]−S5

(0.4,0.8)−40[ 50% ]−S6

(0.4,0.8)−40[ 50% ]−S7

(0.4,0.8)−40[ 75% ]−S1

(0.4,0.8)−40[ 75% ]−S2

(0.4,0.8)−40[ 75% ]−S3

(0.4,0.8)−40[ 75% ]−S4

(0.4,0.8)−40[ 75% ]−S5

(0.4,0.8)−40[ 75% ]−S6

(0.4,0.8)−40[ 75% ]−S7

(0.4,0.8)−40[100%]−S1

(0.4,0.8)−80[ 50% ]−S1

(0.4,0.8)−80[ 50% ]−S2

(0.4,0.8)−80[ 50% ]−S3

(0.4,0.8)−80[ 50% ]−S4

(0.4,0.8)−80[ 50% ]−S5

(0.4,0.8)−80[ 50% ]−S6

(0.4,0.8)−80[ 50% ]−S7

(0.4,0.8)−80[ 75% ]−S1

(0.4,0.8)−80[ 75% ]−S2

(0.4,0.8)−80[ 75% ]−S3

(0.4,0.8)−80[ 75% ]−S4

(0.4,0.8)−80[ 75% ]−S5

(0.4,0.8)−80[ 75% ]−S6

(0.4,0.8)−80[ 75% ]−S7

(0.4,0.8)−80[100%]−S1

MLE SE−PA SE−PB

δ

(T
1
 ,

 T
2
) 

−
 n

 [
 F

P
 ]

 −
 S

c
h

e
m

e

1

2

3

MRAB

(0.2,0.4)−40[ 50% ]−S1

(0.2,0.4)−40[ 50% ]−S2

(0.2,0.4)−40[ 50% ]−S3

(0.2,0.4)−40[ 50% ]−S4

(0.2,0.4)−40[ 50% ]−S5

(0.2,0.4)−40[ 50% ]−S6

(0.2,0.4)−40[ 50% ]−S7

(0.2,0.4)−40[ 75% ]−S1

(0.2,0.4)−40[ 75% ]−S2

(0.2,0.4)−40[ 75% ]−S3

(0.2,0.4)−40[ 75% ]−S4

(0.2,0.4)−40[ 75% ]−S5

(0.2,0.4)−40[ 75% ]−S6

(0.2,0.4)−40[ 75% ]−S7

(0.2,0.4)−40[100%]−S1

(0.2,0.4)−80[ 50% ]−S1

(0.2,0.4)−80[ 50% ]−S2

(0.2,0.4)−80[ 50% ]−S3

(0.2,0.4)−80[ 50% ]−S4

(0.2,0.4)−80[ 50% ]−S5

(0.2,0.4)−80[ 50% ]−S6

(0.2,0.4)−80[ 50% ]−S7

(0.2,0.4)−80[ 75% ]−S1

(0.2,0.4)−80[ 75% ]−S2

(0.2,0.4)−80[ 75% ]−S3

(0.2,0.4)−80[ 75% ]−S4

(0.2,0.4)−80[ 75% ]−S5

(0.2,0.4)−80[ 75% ]−S6

(0.2,0.4)−80[ 75% ]−S7

(0.2,0.4)−80[100%]−S1

ACI HPD−PA HPD−PB

δ

(T
1
 ,

 T
2
) 

−
 n

 [
 F

P
 ]

 −
 S

c
h

e
m

e

0.25

0.50

0.75

1.00

ACL

(0.4,0.8)−40[ 50% ]−S1

(0.4,0.8)−40[ 50% ]−S2

(0.4,0.8)−40[ 50% ]−S3

(0.4,0.8)−40[ 50% ]−S4

(0.4,0.8)−40[ 50% ]−S5

(0.4,0.8)−40[ 50% ]−S6

(0.4,0.8)−40[ 50% ]−S7

(0.4,0.8)−40[ 75% ]−S1

(0.4,0.8)−40[ 75% ]−S2

(0.4,0.8)−40[ 75% ]−S3

(0.4,0.8)−40[ 75% ]−S4

(0.4,0.8)−40[ 75% ]−S5

(0.4,0.8)−40[ 75% ]−S6

(0.4,0.8)−40[ 75% ]−S7

(0.4,0.8)−40[100%]−S1

(0.4,0.8)−80[ 50% ]−S1

(0.4,0.8)−80[ 50% ]−S2

(0.4,0.8)−80[ 50% ]−S3

(0.4,0.8)−80[ 50% ]−S4

(0.4,0.8)−80[ 50% ]−S5

(0.4,0.8)−80[ 50% ]−S6

(0.4,0.8)−80[ 50% ]−S7

(0.4,0.8)−80[ 75% ]−S1

(0.4,0.8)−80[ 75% ]−S2

(0.4,0.8)−80[ 75% ]−S3

(0.4,0.8)−80[ 75% ]−S4

(0.4,0.8)−80[ 75% ]−S5

(0.4,0.8)−80[ 75% ]−S6

(0.4,0.8)−80[ 75% ]−S7

(0.4,0.8)−80[100%]−S1

ACI HPD−PA HPD−PB

δ

(T
1
 ,

 T
2
) 

−
 n

 [
 F

P
 ]

 −
 S

c
h

e
m

e

0.25

0.50

0.75

1.00

ACL

(a) (T1, T2) = (0.2, 0.4) (b) (T1, T2) = (0.4, 0.8)

Figure 3. Heat-maps for the estimation results for δ.
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Figure 4. Heat-maps for the estimation results for R(t).
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For specification, for each plot in Figures 2–5, some notations have been used. For ex-
ample, based on prior A (PA), for all unknown parameters, the Bayes estimates based
on the SE loss function are mentioned as ‘SE-PA’, and their HPD interval estimates are
mentioned as ‘HPD-PA’. From Figures 2–5, some general observations can be made:

• The Bayesian estimates of all unknown parameters performed better than the frequen-
tist estimates, as expected, in terms of the minimum RMSE, MRAB, and ACL values.
This result was due to the fact that the Bayes point (or interval) estimates contained
priority information of the model parameters but the others did not.

• As n (or FP) increases, the RMSEs, MRABs, and ACLs of all proposed estimates
performed satisfactory. Similar performance was also observed when the sum of the
removal patterns Ri, i = 1, 2, . . . , r decreased.

• As Ti, i = 1, 2 increased, in most cases, the RMSEs and MRABs of all calculated
estimates decreased significantly.

• As Ti, i = 1, 2, tended to increase, the ACLs for ACIs of α and R(t) decreased while
the HPD intervals increased. In addition, the ACLs of the ACI and HPD intervals for
δ and h(t) narrowed.

• Since the variance of prior B was lower than the variance of prior A, the Bayesian
results, including the point and interval estimators of α, δ, R(t), and h(t), performed
better under prior B than those obtained under prior A in terms of their RMSEs,
MRABs, and ACLs.

• To sum up, the simulation results recommended that the Bayesian inferential approach
via the M-H algorithm was the better than the others for estimating the unknown
parameter(s) of life using generalized Type-II progressive hybrid censored data.

6. Optimal PCS-T2 Plans

Mostly in the context of reliability, the experimenter may desire to determine the ‘best’
censoring scheme from a collection of all available censoring schemes in order to provide
the most information about the unknown parameters under study. Balakrishnan and Ag-
garwala [24] first investigated the problem of choosing the optimal censoring strategy in
various scenarios. Many optimality criteria, however, have been proposed, and numerous
results on optimal censoring designs have been investigated. The specific values of n (total
test units), r (effective sample), and Ti, i = 1, 2 (ideal test thresholds) are chosen in advance
based on the availability of the units, experimental facilities, and cost considerations, as
well as the optimal censoring design R = (R1, R2, . . . , Rr), where ∑r

i=1 Ri = n − r, can
be determined (see Ng et al. [25]). In the literature, several works have addressed the
problem of comparing two (or more) different censoring plans (for example, see Prad-
han and Kundu [26], Elshahhat and Rastogi [16], Elshahhat and Abu El Azm [27], and
Ashour et al. [28]). However, to determine an optimum PCS-T2 plan, some commonly-used
criteria were considered (see Table 3).

Table 3. Some optimality criteria of progressive censoring plan.

Criterion Objective

C1 Minimize det (I−1(ϕ̂))
C2 Minimize trace (I−1(ϕ̂))
C3 Maximize trace (I(ϕ̂))
C4 Minimize Var (log(T̂υ))

C5 Minimize
∫ 1

0 Var (log(T̂υ))w(υ)dυ

From Table 3, it should be noted that the criteria C1 and C2 are intended to minimize
the determinant and trace of the AVC matrix in Equation (14), while the criterion C3 is
intended to maximize the main diagonal elements of the observed Fisher’s matrix I(α, δ)
at its MLEs α̂ and δ̂. Regarding criteria C1 and C2, Gupta and Kundu [29] stated that the
comparison of two (or more) AVC matrices based on these criteria is not a trivial task
because they are not scale-invariant.



Symmetry 2022, 14, 2379 14 of 21

Thus, based on criteria C4 and C5, which are scale-invariant, one can determine the
optimum censoring scheme of multi-parameter distributions. It is clear that the minimizing
the associated variance of the logarithmic υth quantile log(T̂υ), where 0 < υ < 1, is depen-
dent on the choice of υ in C4. Additionally, for C5, the weight w(υ) ≥ 0 is a nonnegative
function satisfying

∫ 1
0 w(υ)dυ = 1. Hence, the logarithmic for Tυ of the INH distribution is

log(Tυ) = log(δ)− log((1− log(υ))1/α − 1), 0 < υ < 1. (15)

Again, using Equation (15), the delta method is considered here to approximate the
variance estimate of log(T̂p) (say v̂ar(log(T̂p))), as follows:

v̂ar(log(T̂p)) = ΥT
log(T̂p)

I−1(ϕ̂) Υlog(T̂p)
,

where

ΥT
log(T̂p)

=

[
∂

∂α
log(Tp),

∂

∂δ
log(Tp)

]
(α̂,δ̂)

is the gradient of log(T̂p) with respect to α and δ. Obviously, from Table 3, it can be seen that
the optimized PCS-T2 plan that provides more information corresponded to the smallest
value of Ci, i = 1, 2, 4, 5 optimality criteria and the highest value of C4 optimality criteria.

7. Real-Life Applications

To demonstrate the adaptability and flexibility of the proposed methodologies to a real
phenomenon, in this section, we shall provide two numerical applications using electronic
devices and COVID-19 data sets.

7.1. Electronic Device Data

In this application, we’ll analyze engineering real data given by Wang [30]. This
data set consists of 18 observations of failure times of electronic devices: 5, 11, 21, 31, 46,
75, 98, 122, 145, 165, 196, 224, 245, 293, 321, 330, 350, and 420. We first checked whether
Wang’s data fit INH distribution or not. For this purpose, the Kolmogorov–Smirnov (K-S)
distance along with the associated p-value provided. Using all of Wang’s data, the MLEs
(with their standard errors (St.E)) of α and δ were 0.4215 (0.1073) and 258.03 (164.65),
respectively, and the K-S (with its p-value) was 0.199 (0.418). This result indicates that
Wang’s data were coming from INH lifetime model. To show the existence and uniqueness
of α̂ and δ̂, the contour plot of the log-likelihood function with respect to α and δ using all
of Wang’s data is plotted in Figure 6a. It shows that the MLEs α̂ ∼= 0.42 and δ̂ ∼= 258.03
existed and were unique. It is also clear that Wang’s data set was overly and generally flat.
We also suggest taking these estimates as initial values to run any numerical evaluation
required. Graphically, to identify the HF shapes of Wang’s data, the scaled total time on
testing (TTT) transform is also plotted in Figure 6b. It indicates that the bathtub-shaped
(decreasing-increasing) hazard rate was suitable for the fitting the INH model.
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Figure 6. (a) Contour plot of log-likelihood function and (b) empirical and fitted scaled TTT transform
plot from Wang’s data.
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From all of Wang’s data, based on various choices of Ti, i = 1, 2 and different PCSs
R, namely S1: R = (1∗9), S2: R = (2∗4, 0∗4, 1), and S3: R = (1, 0∗4, 2∗4), different artificial
GPHCS-T2 samples were generated when r = 9, which are presented in Table 4. Since the
prior information about the model parameters was not available, the improper gamma
priors (i.e., ai = bi = 0, for i = 1, 2) were used. However, to run the calculations, we used
0.0001 for all given hyperparameters. Using the MCMC algorithm described in Section 3,
to develop the Bayes point estimates and associated HPD interval estimates, the first 5000
iterations were discarded from 30,000 MCMC samples. From Table 4, it can be seen that
the point (with their St.Es) and 95% interval (with their interval lengths (ILs)) estimators
derived by the maximum likelihood and Bayesian approaches of α, δ, R(t), and h(t) (at time
t = 50) were computed, and they are presented in Table 5. It is evident that the acquired
inferences of α, δ, R(t), and h(t) derived using the Bayes approach performed better than
those derived from the frequentist approach in terms of their minimum St.E and IL values.

Table 4. Three artificial GPHCS-T2 samples from Wang’s data.

Scheme Sample T1(d1) T2(d2) Censored Data R∗ T∗

S1

1 450 (10) 500 (10) 5, 21, 46, 98, 145, 196, 245, 321, 350, 420 1 450
2 450 (9) 500 (9) 5, 21, 46, 98, 145, 196, 245, 321, 350 0 350
3 200 (6) 340 (8) 5, 21, 46, 98, 145, 196, 245, 321 2 340

S2

1 450 (10) 500 (10) 5, 31, 98, 165, 245, 293, 321, 330, 350, 420 1 450
2 300 (6) 500 (9) 5, 31, 98, 165, 245, 293, 321, 330, 350 0 350
3 250 (5) 340 (8) 5, 31, 98, 165, 245, 293, 321, 330 2 340

S3

1 400 (10) 450 (11) 5, 21, 31, 46, 75, 98, 165, 245, 330, 350 1 400
2 150 (6) 450 (9) 5, 21, 31, 46, 75, 98, 165, 245, 330 0 330
3 100 (6) 325 (8) 5, 21, 31, 46, 75, 98, 165, 245 3 325

Table 5. The point and interval estimates of α, δ, R(t), and h(t) under Wang’s data.

Scheme Sample Parameter
MLE MCMC ACI HPD

Estimate St.E Estimate St.E Lower Upper IL Lower Upper IL

S1

1

α 0.30525 0.04106 0.33224 0.04299 0.22477 0.38573 0.16096 0.27552 0.39430 0.11878
δ 1492.71 11.8654 1492.53 0.20787 1469.45 1515.96 46.5116 1492.33 1492.70 0.37533

R (50) 0.84252 0.06315 0.87534 0.05439 0.71874 0.96630 0.24756 0.79636 0.94571 0.14935
h (50) 0.00315 0.00063 0.00273 0.00066 0.00191 0.00438 0.00247 0.00178 0.00359 0.00181

2

α 0.32569 0.04731 0.29412 0.05086 0.23295 0.41842 0.18546 0.22589 0.37456 0.14867
δ 944.274 11.8656 944.027 0.25408 921.018 967.530 46.5125 943.913 944.140 0.22692

R (50) 0.80756 0.07207 0.74986 0.09170 0.66630 0.94882 0.28253 0.62277 0.87664 0.25388
h (50) 0.00390 0.00069 0.00432 0.00068 0.00255 0.00526 0.00271 0.00320 0.00522 0.00202

3

α 0.30451 0.04388 0.30628 0.03280 0.21851 0.39051 0.17200 0.25028 0.36237 0.11209
δ 1258.83 8.38948 1258.84 0.04810 1242.39 1275.28 32.8861 1258.77 1258.93 0.16361

R (50) 0.81778 0.07054 0.81586 0.05051 0.67953 0.95604 0.27651 0.71895 0.89717 0.17822
h (50) 0.00353 0.00066 0.00349 0.00049 0.00224 0.00481 0.00257 0.00264 0.00429 0.00165

S2

1

α 0.32087 0.04271 0.33577 0.04173 0.23716 0.40457 0.16742 0.26254 0.41146 0.14892
δ 1508.79 8.38929 1508.80 0.05892 1492.35 1525.23 32.8854 1508.69 1508.88 0.18256

R (50) 0.86671 0.05904 0.87944 0.04753 0.75100 0.98242 0.23142 0.80316 0.97292 0.16976
h (50) 0.00288 0.00067 0.00265 0.00063 0.00158 0.00418 0.00261 0.00152 0.00376 0.00224

2

α 0.34508 0.05087 0.37573 0.07028 0.24537 0.44479 0.19941 0.26306 0.46711 0.20405
δ 863.796 11.8672 863.415 0.41156 840.536 887.055 46.5186 863.217 863.673 0.45605

R (50) 0.82192 0.07172 0.84819 0.08310 0.68135 0.96249 0.28114 0.69969 0.95197 0.25228
h (50) 0.00385 0.00075 0.00338 0.00105 0.00238 0.00532 0.00294 0.00204 0.00498 0.00294

3

α 0.32653 0.04783 0.33673 0.03512 0.23279 0.42027 0.18748 0.28515 0.39890 0.11376
δ 1094.35 16.7840 1094.35 0.06937 1061.45 1127.24 65.7922 1094.22 1094.45 0.22733

R (50) 0.83126 0.07019 0.84128 0.04651 0.69369 0.96884 0.27515 0.76761 0.92034 0.15273
h (50) 0.00352 0.00072 0.00336 0.00053 0.00211 0.00494 0.00282 0.00243 0.00414 0.00171

S3

1

α 0.29757 0.03992 0.29947 0.03588 0.21933 0.37580 0.15647 0.23477 0.35279 0.11803
δ 1394.83 6.34156 1394.92 0.10524 1382.40 1407.26 24.8585 1394.85 1394.98 0.13347

R (50) 0.82108 0.06536 0.81815 0.06060 0.69298 0.94918 0.25619 0.70543 0.90181 0.19639
h (50) 0.00341 0.00060 0.00336 0.00053 0.00223 0.00458 0.00236 0.00255 0.00429 0.00173

2

α 0.31500 0.04570 0.28327 0.04662 0.22543 0.40457 0.17915 0.20276 0.34460 0.14185
δ 918.421 10.6135 918.318 0.12350 897.619 939.223 41.6042 918.202 918.436 0.23408

R (50) 0.78637 0.07358 0.72742 0.08633 0.64217 0.93058 0.28842 0.61181 0.87589 0.26409
h (50) 0.00413 0.00065 0.00454 0.00061 0.00285 0.00540 0.00255 0.00372 0.00550 0.00178

3

α 0.29328 0.04158 0.32213 0.04464 0.21177 0.37478 0.16301 0.26541 0.38712 0.12170
δ 1258.08 23.7337 1257.90 0.20938 1211.56 1304.59 93.0344 1257.70 1258.07 0.37431

R (50) 0.79906 0.07103 0.83955 0.06405 0.65984 0.93829 0.27845 0.75083 0.92321 0.17237
h (50) 0.00370 0.00061 0.00325 0.00068 0.00250 0.00489 0.00239 0.00228 0.00411 0.00183
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According to the proposed criteria given in Table 3, the problem of determining the
optimum progressive censoring plan is present. Using the generated samples in Table 4,
the calculated values of the optimum criteria are presented in Table 6. To distinguish them,
the suggested optimum censoring schemes are denoted with asterisks (*). However, Table 6
shows that for Sample 1, S1 was the optimal censoring using C3, and S2 was the optimal
censoring using Ci, i = 4, 5, while S3 was the optimal censoring using Ci, i = 1, 2. For
Samples 2 and 3, S1 was the optimal censoring using Ci, i = 1, 2, 3, while S2 was the
optimal censoring using Ci, i = 4, 5.

Table 6. Optimum progressive censoring plan under Wang’s data.

Sample
Scheme C1 C2 C3

C4
C5

υ→ 0.3 0.6 0.9

1

S1 0.23730 140.790 593.310 ∗ 2082.197 16,339.83 367,978.2
207.2626 2310.908 28,210.21

S2 0.31504 140.796 446.917 1251.656 ∗ 9004.943 ∗ 196,306.7 ∗
130.3598 ∗ 1318.443 ∗ 15,213.47 ∗

S3 0.13547 ∗ 70.3852 ∗ 519.533 1682.934 13,251.48 298,739.9
167.2291 1871.671 22,894.99

2

S1 0.12835 ∗ 70.3819 ∗ 548.329 ∗ 2534.547 18,577.64 407,307.8
261.3108 2699.633 31,508.02

S2 0.36422 140.833 386.670 1335.744 ∗ 8961.234 ∗ 190,206.8 ∗
144.5508 ∗ 1350.787 ∗ 14,879.23 ∗

S3 0.64385 281.706 437.535 1725.113 12,372.11 269,561.5
179.9892 1813.738 20,893.35

3

S1 0.06406 ∗ 40.2169 ∗ 627.750 ∗ 1630.251 13,276.49 303,198.9
159.2986 1850.959 23,139.50

S2 0.23516 112.649 479.030 1038.482 ∗ 7803.217 ∗ 172,917.4 ∗
105.7014 ∗ 1122.635 ∗ 13,326.83 ∗

S3 0.97349 563.291 578.632 1395.357 11,635.34 26,9434.4
134.8670 1607.324 20,461.52

7.2. COVID-19 Data

This application provides an analysis of the confirmed deaths by the 7-day moving
average for coronavirus disease (COVID-19) in the United States for 32 consecutive days
from mid-March to mid-April 2020 (https://www.cdc.gov/ accessed on 3 March 2022), see
Table 7. To check for the goodness of fit, the K-S statistic along with the associated p value
were obtained. First, using complete COVID-19 data, the MLEs (with their St.Es) of α and δ
were 0.2989 (0.0521) and 1696.1 (895.34), respectively. Thus, the K-S (with its p value) was
0.1601 (0.348). This result demonstrates that the INH distribution is an adequate model to
fit the COVID-19 data.

Table 7. Deaths due to COVID-19 from mid-March to mid-April 2020 in USA.

10 13 17 25 33 46 60 77
98 127 162 203 260 321 385 473
584 702 884 971 1120 1312 1448 1608

1763 1891 2009 2100 2102 2132 2188 2255

The contour plot, using the complete COVID-19 data set, of the log-likelihood func-
tion with respect to α and δ is displayed in Figure 7a. It indicates that the MLEs (α̂, δ̂) ∼=
(0.2989, 1696.1) existed and were unique. Additionally, a plot of the scaled TTT trans-
form for the COVID-19 data is displayed in Figure 7b. It shows that the bathtub-shaped
(decreasing-increasing) hazard rate was adequate for fitting the INH model.

In Table 8, from the complete COVID-19 data set when r = 12, different GPHCS-
T2 samples based on various choices of Ti, i = 1, 2, and R were generated, namely S1:
R = (0, 2∗10, 0), S2: R = (4∗4, 0∗7, 4), and S3: R = (4, 0∗7, 4∗4). From Table 8, the maximum
likelihood and Bayes estimates (with their St.Es) of α, δ, R(t), and h(t) for time t = 100 were
computed, and they are presented in Table 9. In addition, two-sided 95% ACI and HPD
intervals with their ILs were calculated, and these are also listed in Table 9. From Table 9, it
can be seen that the calculated inferences derived from the Bayesian MCMC estimates in

https://www.cdc.gov/
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terms of their St.Es performed better than the frequentist estimates, and the HPD interval
estimates with respect to their ILs performed better than the others.

0.290 0.295 0.300 0.305

1
5

5
0

1
6

0
0

1
6

5
0

1
7

0
0

1
7

5
0

1
8

0
0

1
8

5
0

alpha

d
e

lt
a

 −249.47 

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

u

S
c
a
le

d
 T

T
T

−
T
ra

n
s
fo

rm

 

Empirical

INH

(a) (b)

Figure 7. (a) Contour plot of log-likelihood function. (b) Empirical or fitted scaled TTT transform
plot derived from COVID-19 data.

Table 8. Three GPHCS-T2 samples from COVID-19 data.

Scheme Sample T1(d1) T2(d2) Censored Data R∗ T∗

S1

1 2200 (13) 2300 (14) 10, 13, 33, 77, 162, 321, 584, 971, 1448, 1891, 2102, 2132, 2188 2 2100
2 2000 (10) 2300 (14) 10, 13, 33, 77, 162, 321, 584, 971, 1448, 1891, 2102, 2255 0 2255
3 1500 (9) 2200 (11) 10, 13, 33, 77, 162, 321, 584, 971, 1448, 1891, 2102 1 2200

S2

1 2150 (14) 2300 (16) 10, 46, 162, 473, 1120, 1312, 1448, 1608, 1763, 1891, 2009, 2100, 2102, 2132 2 2150
2 2000 (10) 2300 (16) 10, 46, 162, 473, 1120, 1312, 1448, 1608, 1763, 1891, 2009, 2100 0 2100
3 1500 (7) 2000 (10) 10, 46, 162, 473, 1120, 1312, 1448, 1608, 1763, 1891 6 2000

S3

1 2120 (13) 2300 (16) 10, 46, 60, 77, 98, 127, 162, 203, 260, 702, 1448, 2100, 2102 3 2120
2 1500 (11) 2300 (16) 10, 46, 60, 77, 98, 127, 162, 203, 260, 702, 1448, 2100 0 2100
3 750 (10) 1500 (11) 10, 46, 60, 77, 98, 127, 162, 203, 260, 702, 1448 6 1500

Table 9. The point and interval estimates of α, δ, R(t), and h(t) under COVID-19 data.

Scheme Sample Parameter
MLE MCMC ACI HPD

Estimate St.E Estimate St.E Lower Upper IL Lower Upper IL

S1

1

α 0.24911 0.02608 0.23857 0.02787 0.19799 0.30023 0.10224 0.18368 0.28676 0.10308
δ 9934.79 11.86340 9934.54 0.26007 9911.54 9958.05 46.5037 9934.42 9934.66 0.23475

R (100) 0.88376 0.04404 0.85936 0.05426 0.79744 0.97008 0.17263 0.76900 0.95615 0.18715
h (100) 0.00102 0.00021 0.00111 0.00022 0.00061 0.00143 0.00082 0.00073 0.00152 0.00079

2

α 0.24880 0.02730 0.24886 0.02080 0.19529 0.30231 0.10702 0.21001 0.28791 0.07789
δ 8558.04 6.84928 8558.04 0.05323 8544.62 8571.47 26.8487 8557.97 8558.15 0.18334

R (100) 0.86920 0.04834 0.86586 0.03675 0.77446 0.96393 0.18948 0.79577 0.93123 0.13546
h (100) 0.00112 0.00022 0.00112 0.00016 0.00070 0.00155 0.00085 0.00081 0.00142 0.00061

3

α 0.24209 0.02660 0.24590 0.02654 0.18997 0.29422 0.10425 0.19570 0.30103 0.10533
δ 9934.07 5.59244 9934.08 0.06100 9923.11 9945.03 21.9220 9933.97 9934.16 0.18831

R (100) 0.87149 0.04807 0.87256 0.04356 0.77727 0.96570 0.18843 0.79971 0.96484 0.16513
h (100) 0.00108 0.00021 0.00105 0.00021 0.00066 0.00149 0.00083 0.00061 0.00142 0.00081

S2

1

α 0.30261 0.02899 0.31310 0.02675 0.24579 0.35944 0.11365 0.26374 0.35782 0.09408
δ 10195.0 4.84317 10194.8 0.21484 10185.5 10204.5 18.9849 10194.6 10195.0 0.37926

R (100) 0.95334 0.02548 0.95839 0.02098 0.90339 0.99870 0.09531 0.91678 0.98954 0.07277
h (100) 0.00060 0.00020 0.00054 0.00018 0.00020 0.00100 0.00080 0.00026 0.00087 0.00062

2

α 0.29585 0.03384 0.27814 0.03623 0.22952 0.36219 0.13267 0.21713 0.34464 0.12750
δ 6623.37 11.86333 6623.13 0.24825 6600.12 6646.62 46.5034 6623.02 6623.24 0.22556

R (100) 0.91566 0.04171 0.88500 0.05678 0.83391 0.99742 0.16351 0.80234 0.97176 0.16942
h (100) 0.00093 0.00026 0.00107 0.00028 0.00041 0.00145 0.00104 0.00052 0.00148 0.00097

3

α 0.27929 0.03082 0.28023 0.02322 0.21888 0.33969 0.12080 0.23755 0.32289 0.08534
δ 9389.66 8.38862 9389.65 0.05237 9373.22 9406.10 32.8828 9389.58 9389.76 0.18064

R (100) 0.92318 0.03844 0.92052 0.02836 0.84784 0.99852 0.15067 0.86550 0.96939 0.10389
h (100) 0.00082 0.00024 0.00082 0.00018 0.00035 0.00129 0.00094 0.00050 0.00115 0.00065

S3

1

α 0.24862 0.02464 0.25169 0.02476 0.20032 0.29691 0.09659 0.20520 0.30554 0.10034
δ 12501.5 7.50304 12501.5 0.06166 12486.8 12516.2 29.4114 12501.4 12501.6 0.18752

R (100) 0.90252 0.03866 0.90216 0.03570 0.82675 0.97830 0.15155 0.84075 0.97538 0.13462
h (100) 0.00089 0.00020 0.00087 0.00019 0.00050 0.00127 0.00077 0.00043 0.00118 0.00076

2

α 0.24043 0.02691 0.24809 0.03211 0.18769 0.29316 0.10547 0.17909 0.29760 0.11851
δ 9970.42 8.38868 9970.02 0.43087 9953.98 9986.86 32.8830 9969.81 9970.29 0.47570

R (100) 0.86880 0.04935 0.87421 0.05769 0.77208 0.96552 0.19344 0.74780 0.96061 0.21281
h (100) 0.00109 0.00021 0.00103 0.00025 0.00067 0.00151 0.00084 0.00065 0.00155 0.00091

3

α 0.24267 0.02605 0.24884 0.01965 0.19162 0.29372 0.10211 0.21294 0.28306 0.07012
δ 10351.4 11.8632 10351.4 0.06944 10328.2 10374.7 46.5032 10351.3 10351.5 0.22800

R (100) 0.87634 0.04628 0.88406 0.03206 0.78564 0.96705 0.18141 0.82553 0.94134 0.11582
h (100) 0.00105 0.00021 0.00100 0.00016 0.00064 0.00146 0.00082 0.00073 0.00128 0.00055
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To discuss how to select the optimum censoring plan from the COVID-19 data, based
on the generated samples in Table 4, the calculated values of the given criteria Si, i =
1, 2, 3, 4, 5 are reported in Table 10. It can be observed that for Sample 1, S1 was the optimal
scheme under C3, and S2 was the optimal scheme under Ci, i = 4, 5, while S3 was the
optimal scheme under Ci, i = 1, 2. For Samples 2 and 3, S1 was the optimal scheme
under Ci, i = 1, 2, 3, while S2 was the optimal scheme under Ci, i = 4, 5 compared with
the other competing schemes. As a result, great information about the unknown INH
parameters could be easily obtained using two recommended censoring schemes, namely
left withdrawn, where R = (n− r, 0∗(r− 1)), and uniformly withdrawn, where R = (1∗r).
This finding was due to the fact that the remaining surviving units were removed at an early
stage (i.e., R = (n− r, 0∗(r− 1)) (left withdrawn) or R = (1∗r) (uniformly withdrawn)),
and they could be used for other purposes, especially if the items put in the test were
very costly. All conclusions derived from the COVID-19 data support the same findings
in the case of electronic device data analysis. Finally, the analysis results from both the
electronic devices and COVID-19 data sets support the simulation results.

Table 10. Optimum progressive censoring plan under COVID-19 data.

Sample
Scheme C1 C2 C3

C4
C5

υ→ 0.3 0.6 0.9

1

S1 0.09573 140.741 1470.148 ∗ 22,691.17 252,068.2 6,513,173.0
1928.674 31,449.74 478,889.40

S2 0.03497 46.9133 1341.583 18,383.75 ∗ 204,746.0 ∗ 5,295,918.0 ∗
1560.902 ∗ 25,523.47 ∗ 389,275.30 ∗

S3 0.02212 ∗ 31.2761 ∗ 1413.831 21,670.09 25,5421.1 6,760,883.0
1798.204 31,249.22 493,758.50

2

S1 0.01971 ∗ 23.4570 ∗ 1189.690 ∗ 47,592.71 378,100.2 8,549,592.0
4707.847 53219.94 654,611.10

S2 0.16120 140.740 873.0723 26,107.70 ∗ 214,459.8 ∗ 4,913,372.0 ∗
2540.270 ∗ 29,800.82 ∗ 374,598.70 ∗

S3 0.06683 70.3699 1052.982 38,211.97 343,929.2 8,167,798.0
3559.850 46,187.47 615,707.70

3

S1 0.03418 ∗ 56.2962 ∗ 1646.985 ∗ 31,888.40 355,665.3 9,204,857.0
2705.927 44,315.56 676,491.80

S2 0.05094 70.3706 1381.427 21,872.89 ∗ 261,639.1 ∗ 6,967,390.0 ∗
1804.433 ∗ 31,856.38 ∗ 507,992.10 ∗

S3 0.09549 140.738 1473.826 22,734.82 266,630.1 7,043,435.0
1890.350 32,674.14 514,677.00

8. Concluding Remarks

This study takes into account the statistical inference of the unknown model param-
eters, reliability, and hazard rate functions of the inverted Nadarajah–Haghighi lifetime
model based on generalized Type-II progressive hybrid censoring. The frequentist esti-
mates with their asymptotic confidence intervals for the unknown parameters and any
function of them were computed using the Newton–Raphson iterative procedure via the
‘maxLik’ package in R software. Since the likelihood function was obtained in complex
form, the posterior density function was obtained in nonlinear form. Therefore, using the
Metropolis–Hastings algorithm, the Bayesian estimates and the associated HPD intervals
were developed under the assumption of independent gamma priors and by considering
the squared error loss function. To compare the behavior of the acquired estimates, various
simulation experiments based on different choices of total test units, observed failure data,
threshold times and progressive censoring plans were conducted, and they showed that
the Bayes MCMC approach performed quite satisfactorily compared with the frequentist
approach. Electronic devices and COVID-19 data sets were analyzed to show the practical
utility of the proposed methods in real-life phenomenon and to suggest the optimum cen-
soring plan. Finally, the Bayesian MCMC paradigm to estimate the parameters, reliability,
and hazard functions of the INH distribution under generalized Type-II progressive hybrid
censoring was recommended. We hope that the results and methodologies proposed here
will be beneficial to reliability practitioners and extended to other censoring plans.
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Appendix A

When differentiating Equation (7) with respect to α and δ, the elements of Equation (14)
are as follows:

I11 =
Dρ

α2 +
Dρ

∑
j=1

(
φj

α (ln φj)
2
)
−

Dρ

∑
j=1

Rj

[[
1− Zj

][
(ln φj)

2Zj
(
φj

α − φj
2α
)]]
−
[
φj

α ln φj Zj
]2[

1− Zj
]2 −
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∂ α2 ,
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where
φj = ψ

(
δ; xj

)
, Zj = F(xj; α, δ), γτ = (1 + δT−1

τ ), ∂2ψ2(Tτ ;α,δ)
∂ α2 = ∂2ψ2(Tτ ;α,δ)

∂ δ2 = ∂2ψ2(Tτ ;α,δ)
∂ α ∂δ = 0,

∂2ψρ(Tτ ;α,δ)
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