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Abstract: The heat transfer characteristics along the non-magnetized shapes have been performed in
various previous studies numerically. Due to excessive heating, these mechanisms are less interesting
in engineering and industrial processes. In the current analysis, the surface is magnetized, and
the fluid is electrically conducting, which is responsible for reducing excessive heating along the
surface. The main objective of the present work is to analyze convective heat transfer analysis
of viscous fluid flow with thermal slip and thermal radiation effects along the vertical symmetric
heated plate immersed in a porous medium numerically. The results are deduced for viscous flow
along a magnetized heated surface. The theoretical mechanism of heat and magnetic intensity along
a vertical surface is investigated for numerical analysis. The nonlinear-coupled partial differential
equations (PDEs) for the above viscous fluid flow mechanism with the symmetry of the conditions
normal to the surface are transformed and then converted into non-similar formulations by applying
appropriate and well-known similarity transformations for integration and solutions. The final non-
similar equations are numerically integrated by employing the Keller box method. The discretized
algebraic equations are plotted graphically and numerically on the MATLAB R2013a software package.
The main finding of the current analysis is to compute physical quantities such as velocity graph,
magnetic field graph, and temperature plot along with their slopes, that is, skin friction, magnetic
intensity, and heat transfer for different parameters included in the flow model. First, the velocity
graph, magnetic field graph, and temperature graph are obtained, and then their slopes are analyzed
numerically along the vertical magnetic surface. It is noticed that fluid velocity is increased at
lower magnetic force, but minimum velocity is noticed at maximum magnetic force. It is worth
mentioning that with the increase in magnetic force, the magnetic energy increases, which extracts the
kinetic energy of the fluid and causes the above-said behavior. Furthermore, the current issues have
significant implications for the polymer industries, glass fiber production, petroleum production,
fiber spinning, plastic film production, polymer sheet extraction, heat exchangers, catalytic reactors,
and the production of electronic devices.

Keywords: mixed convection; viscous fluid; Keller box method; thermal slip; symmetrically heated
surface; porous medium; magnetohydrodynamics; thermal radiation

1. Introduction and Literature Review

In metallurgy and polymer technology, the heat, magnetic intensity, and momentum
transfer in the laminar boundary layer flow on a symmetrically heated surface immersed in
porous medium are significant from both a theoretical and practical point of view. Numer-
ous engineering and geophysical applications of simultaneous heat transfer from various
geometries embedded in porous media include geothermal reservoirs, drying of porous
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solids, thermal insulation, enhanced oil recovery, packed-bed catalytic reactors, cooling
of nuclear reactors, and underground energy transport by following Mukhopadhyay [1].
Geothermal energy, industrial processes, mechanical, civil, and chemical engineering all
benefit from the combined convection mechanism and thermally driven flow over vertical
surfaces in porous media. In addition, important examples of fluid flows in the porous
medium in insulation materials include the flow of helium in pebble-bed nuclear reactors,
underground disposal of nuclear or nonnuclear waste, food processing and storage, crude
oil extraction, flow in the eyes of glaucoma patients, and flow through filtering media. Due
to the difference in viscosity between a fluid and a porous medium, porous media effects
provide resistance to the fluid flow. The most crucial symmetry for boundary layers is the
one that results from wall-normal and stream-wise transformations of the leading edge,
respectively. The flow of thermal energy and momentum along magnetized heated plates
is characterized by the similarity variable η. Engineers can benefit greatly from the laws
governing heat transfer and magnetohydrodynamics flows in a variety of fields, including
heat exchangers, sunspot theory, intercontinental ballistic missiles, interstellar gas motion,
liquid metals, cooling of nuclear reactors, plasma confinement, and geophysics and astro-
physics by following [2]. The dynamic study of electrically conducting fluid is known as
magnetohydrodynamics that is established by Maxwell for electromagnetism. The funda-
mental idea behind an electrically conducting fluid is that a magnetic field has the potential
to cause currents to flow through conductive fluid that is flowing, which in turn exerts
forces on the fluid and affects the magnetic field. In addition to purely theoretical studies
in theoretical fluid dynamics with an emphasis on symmetry concepts deriving from group
investigations, the researchers concentrated a significant deal of their work on numerical
and analytical studies of Newtonian and rheological fluid flows. Under the circumstances
of a high Reynolds number, the symmetry fails as discussed in [3]. Furthermore, the current
issues have significant implications for the polymer industries, including paper production,
glassfiber production, liquid crystal solidification, petroleum production, production of
unusual lubricants, suspension solutions, wire drawing, continuous cooling, fiber spinning,
plastic film production, polymer sheet extraction, heat exchangers, petroleum resource
recovery, fault zones, catalytic reactors, and the production of electronic devices.

In the literature, most researchers [4–7] have analyzed the heat transfer characteristics
of mixed convection flow along different geometries. However, in the current analysis,
the aligned magnetic field is used to make the surface magnetized and to reduce the
excessive heating along the proposed porous surface. Some related literature on the current
problem is mentioned here to understand the theoretical and numerical points. In order
to determine the internal surface temperature distribution of the hollow sphere from
collected data at the fixed place within, Cheng et al. [8] looked into a spherically symmetric
inverse heat conduction problem. A heated microfluidic Y-junction bubble’s symmetric
disintegration was investigated numerically using a three-dimensional model developed
by Chen et al. [9]. Significantly more heat was transferred, and the highest Nusselt number
for the two-phase case was 6.53 times more than for the single-phase case. Garia et al. [10]
performed the analysis of the MHD flow of SiO2-MoS2water-based hybrid nanofluid along
the wedge and cone numerically. The maximum temperature of the nanofluid along
the wedge and cone was noted in the presence of thermal radiation. The analysis of
MHD radiative SiO2-MoS2 kerosene oil hybrid nanofluid for heat transfer characteristics
between two rotating and shrinking surfaces has been discussed in [11]. The decreasing
behavior of axial, radial, and tangential velocity was noted near the lower disk due to
the maximum inertial coefficient. Yaseen et al. [12] investigated the thermal radiation
and heat generation/absorption effects on hybrid and mono nanofluid flow between
two parallel shapes for heat transfer characteristics. The maximum heat transfer at the
bottom of the surface was depicted for the hybrid nanofluid than the mono nanofluid. The
nanoparticle aggregation impact on the Falkner–Skan analysis along the stretching shape
with radiation and suction/injection has been performed in [13]. The excessive heat transfer
characteristics were noted with nanoparticle aggregation in comparison to its absence. The
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dihydropyridine and benzoxanthene derivatives on re-usable and highly efficient catalysts
have been derived in [14,15]. The reusability of the catalyst [Fesipmim]Cl was checked up
to seven cycles and found to have excellent activity up to five cycles. Chaudhary et al. [16]
discussed the optoelectronic analysis for synthesis and screen printing of Yb-doped ZnO
films and sol-gel developed pure. It was confirmed that resistivity increases with a rise in
Yb-doping concentration.

The consequences of a partial slip boundary condition on a steady mixed Newtonian
fluid convective flow near a vertically permeable stretched sheet in a porous material with
suction or blowing. In the manufacturing sector, double diffuse free forced convection over
rotating bodies is crucial for the development of dependable machinery, nuclear reactors,
satellites, and spacecraft. In the presence or absence of heat generation or absorption
effects, the topic of hydromagnetic fully formed laminar mixed convective flow in a vertical
channel with symmetric and asymmetric wall heating conditions is studied in [17]. When
symmetric/nonsymmetric wedge turbulators were attached to the top and bottom walls of
a small, rectangular duct, Valentino et al. [18] looked at how heat transfer and friction were
increased in that area. A second-order multi-point boundary value issue on time scales
may have at least three symmetric positive solutions, according to research by Sinanoglu
et al. [19]. The validation of numerical results for magnetic Prandtl number along various
magnetized geometries has been calculated in [20,21]. The entropy analysis on pseudoplas-
tic flow along a circular shape with mhd by using the Keller box scheme numerically in [22].
Islam [23] uses the control volume technique for steady flow to explore forced-convective
heat transmission in parallel microchannels with symmetric/nonsymmetric wall thermal
conditions under hydrodynamically and thermally fully developed flow. The numerical
representation of [24] shows an adiabatic spinning cone with axisymmetric surfaces and
a concentrated heat source at the tip. The governing equations are reduced to a set of
nonlinear ordinary differential equations after a similarity transform, and these equations
are then numerically integrated. Mukhopadhyay et al. [25] looked into boundarylayer-
driven convection flow of a Casson fluid past a symmetric wedge. The investigation’s key
discovery is that flow separation can be regulated by raising the Casson fluid parameter’s
value. Ullah et al. [26] elaborated on the impacts of mhd and reduced gravity on oscillatory
fluid along a nonconducting circular heated shape numerically.

In order to better comprehend the mathematical structure and physical significance of
the solutions to the cone boundarylayer equations in the symmetry plane, Murdock [27]
has conducted a thorough analysis of these solutions. For the circumstances of sym-
metrical or asymmetrical heating or cooling of a solid plate with non-stationary heat
conduction, the researcher in [28] developed a mathematical model. Aldosset al. [29]
investigated the MHD free force convection flow along a vertical geometry in a porous
medium. Ullah and Rees [30,31] transformed the mathematical models with Keller Box
Method numerically. Hirschhorn [32] analyzed the validation of numerical results for ther-
mal slip factor along the magnetized surface. Sarada et al. [33] analyzed the non-Fourier
heat flux model for ternary hybrid mechanism with heat generation effects of water-based
nanofluid. Kumar et al. [34] discussed a comparative study of transient three-dimensional
ternary hybrid water-based nanofluid for heat transfer characteristics. Sunitha et al. [35]
performed the analytical analysis of solute transport using integral transformation. An
analytical analysis of Casson fluid along a riga porous plate with cross-diffusion and double-
diffusive convection effects has been investigated in [36]. Punitha et al. [37,38] demon-
strated the non-Newtonian nanofluid along a stretching surface with chemical reaction and
activation energy.

Using the idea from previous literature, the magnetohydrodynamic convective heat-
transfer phenomena of viscous fluid flow with thermal slip and thermal radiation effects
along the symmetric heated surface embedded in a porous medium has been explored
numerically. The governing-coupled mathematical model is converted into ordinary dif-
ferential equations. The non-similar equations are numerically integrated by employing
the Keller box method. The discretized algebraic equations are plotted graphically and
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numerically on the MATLAB software package. The heat transmission properties along the
non-magnetized forms have been numerically performed in a number of earlier researches.
These mechanisms are less interesting in engineering and industrial processes because
of high heating. According to current studies, the surface is magnetic, and the fluid is
electrically conductive, which helps to lessen excessive surface heating. The novelty of
the current work is to compute magneto-thermo analysis of electrically conducting flow
along the vertical symmetric heated plate. First, we secure the numerical solution for the
steady part, and then these results are used to find skin friction, heat transfer, and magnetic
intensity. In current work, the fluid becomes electrically conducting due to a magnetized
surface, which insulates heat during the mechanism and reduces the excessive heating.
The results are excellent and accurate because obtained results are satisfied by the given
boundary conditions.

2. Flow Problem and Mathematical Description

The problem is devoted tonumerical solutions of MHD flow analysis of radiative
convectiveheat mechanism along symmetric heated porous geometry. The flow geometry
following [6] is given below in Figure 1.

Figure 1. Coordinate system and flow geometry.

The extended issue will be changed into the arrangement of partial differential equa-
tions and then transformed into ordinary ones using the streamfunction forms. The molded
problem will be resolved by using the FDM method conjunct with the Keller box method.
The numerical result for considered material properties will be depicted in graphical and
tabular form. Consider the two-dimensional steady and incompressible electrical con-
ducting fluid. In Figure 1, where x and y are axes along and perpendicular to the vertical
symmetric heated porous surface, respectively, u′, H′x and v′, H′y are the velocityfields in
x′ and y′ orders, respectively. The H0 is the magnetic field strength, H′x = H0 indicates
that the magnetic field is exact at the surface, T stands for temperature, T∞ for free stream
temperature, κ for the fluid’s thermal conductivity, and Cp for specific heat. The ρ is the
fluid density, µo is the magnetic permeability, ν = µ/ρ is the kinematic fluid viscosity, β∗ is
the volumetric coefficient of thermal expansion, and gravity acceleration is g. The following
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is how the equations for continuity, momentum, magnetic force, and energy are expressed
by following [1,4].

∂u′

∂x′
+

∂v′

∂y′
= 0 (1)

∂H′x
∂x′

+
∂H′y
∂y′

= 0 (2)

u′
∂u′

∂x′
+ v′

∂u′

∂y′
= ν

∂u′2

∂y′2
− ν

K
u′ + gβ∗

(
T′ − T′∞

)
+

µ0

4πρ

(
H′x

∂H′x
∂x′

+ H′y
∂H′y
∂y′

)
(3)

u′
∂H′x
∂x′

+ v′
∂H′x
∂y′

= νm
∂H′x

2

∂y′2
( H′x

∂u′

∂x′
+ H′y

∂u′

∂y′
) (4)

u′
∂T′

∂x′
+ v′

∂T′

∂y′
=

κ

ρCp

(
∂T′2

∂y′2

)
− 1

ρCp

∂qr
′

∂y′
(5)

The boundary conditions of the present model are

u′ = 0, v′ = 0, H′x = H0 , H′y = 0, T′ = Tw + D1(
∂T′

∂y′
) at y′ = 0 (6)

U → U∞ , T → T∞ , Hx → 0 as y→ ∞.

The proper boundary conditions for the temperature with thermal slip and the radia-
tion components are described above. By following [1,4,5], the qr = −16T3

∞σ∂T/3κ∗∂y, σ
being the Stephen Boltzmann constant, κ∗ is absorption constant, the Reynolds number is
Rex = U∞x

ν , and U∞ being the free steam velocity, Tw = T∞ + To
x is the variable temperature

of the thermally porous surface, and To is the temperature constant along the thermally
and magnetized symmetrically heated surface.

3. The Similarity Transformation and Stream Function Formulation

The proper dimensionless similarity and stream function to convert partial differential
equations (PDEs) into ordinary differential equations (ODEs) are given as:

u′ =
∂ψ

∂y
, v′ = −∂ψ

∂x
, H′x =

∂φ

∂y
, H′y = −∂φ

∂x
, θ =

T′ − T∞

Tw − T∞
. (7)

The stream function φ and ψ are for magnetic and velocity fields, θ is dimensionalized
temperature, and the similarity parameter is η by following [1–3]

η = y′
√

U∞

νx′
, ψ =

√
U∞νx′ f (η), T′ = T∞ +

T0

x′
θ(η), φ =

H0

U∞

√
νx′U∞g, (8)

The converted form of the ODEs of Equations (1)–(6) by applying Equations (7) and (8),
we have nonlinear ODEs (see Appendix A):

− f f ′′

2
= f ′′′ −Ω f ′ + λθ − Mgg′′

2
(9)

− f g′′

2
= Pmg′′′ − g f ′′

2
(10)

Pr

(
−θ f ′ − θ′ f

2

)
= (1 +

4
3

R)θ′′ (11)

where Pr=
ν
α is Prandtl parameter, Pm = νm

ν is the magnetic Prandtl parameter,M =
H2

0 L2µ0
ν24πρ

is a magnetic force parameter, λ = gβ∗T0
U2

∞
is the mixed convection parameter, η is similarity
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variable, θ is dimensionless temperature, ν = µ
ρ is kinematic fluid viscosity, R = 4σ

κκ∗T3∞

is radiation number, Ω = 1/Dax Rex is the porous medium parameter, Dax = K/x2 is the
local Darcy number, K is initial permeability, the local Reynolds number Rex = U∞x

ν and
β = DU∞

ν is the thermal slip number. The boundary conditions in (6) then become

f ′ = 0, f = 0 , g = 0 , θ = 1 + βθ′, g′ = 1 at η = 0 (12)

f ′ → 1, θ → 0, g′ → 0 , at η → ∞.

The formula for skin friction is C fx = τw
ρU∞2 , the formula for the Nusselt number is

Nux = xqw
κ(Tw−T∞)

, and the formula for the magnetic intensity coefficient is Mgx = jw
U∞2 by

following [6,7,30]. The values of τw, qw, and jw are listed below:

τw = µ

(
∂u
∂y

)
y=0

, qw = −κ

(
∂T
∂y

)
y=0

, jw = −νm

(
∂Hx

∂y

)
y=0

The values of skin friction, Nusselt number, and magnetic intensity are provided by

Rex
1/2C fx = f ′′(0), Rex

−1/2Nux = −θ′(0), Rex
1/2Mgx = −g′′(0).

4. The Solution and Computing Techniques

A suitable stream function formulation is used to convert the linked partial differential
equations for the aforementioned model into a set of ordinary differential equations. The
iterative Keller box scheme is used to solve the simplified nonlinear ordinary differential
Equations (9)–(11) and boundary conditions in (12). Now, by introducing additional
independent variables p(η); q(η), u(η), and v(η) using Equation (13) and following [30,31],

f ′ = p, f ′′ = p′ = q , f ′′′ = q′ , g′ = u,

g′′ = u′ = v , g′′′ = v′ , θ′ = l , θ′′ = l′ = m. (13)

Equations (9)–(12) get simpler to solve in order to get around the problems that they
present. So the more simple forms are

f ′ = p⇒ f ′ − p = 0 (14)

p′ = q⇒ p′ − q = 0 (15)

g′ = u⇒ g′ − u = 0 (16)

u′ = v⇒ u′ − v = 0 (17)

θ′ = l ⇒ θ′ − l = 0 (18)

q′ +
f q
2
−Ωp + λθ − Mgv

2
= 0 (19)

Pmv′ +
f v
2
− gq

2
= 0 (20)

(1 +
4
3

R)m + Pr

(
θP +

l f
2

)
= 0 (21)

The reduced boundary conditions are

f = 0, g = 0, p = 0, θ = 1 + βl at η = 0, (22)

p→ 1, u→ 0, θ → 0, as η → ∞.
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Now, considering the segment ηn−1, ηn with ηn− 1
2

as midpoint by following [30,31]
and given in Equation (23) below,

η0 = 0, ηn = ηn−1 + hn, ηn = η∞. (23)

This is how the central difference form and average form are presented:

f ′ =
fn − fn−1

hn
, f =

fn + fn−1

2
= fn− 1

2
, (24)

and
fn − fn−1 −

1
2

hn(pn + pn−1 ) = 0, (25)

pn − pn−1 −
1
2

hn(qn + qn−1 ) = 0, (26)

gn − gn−1 −
1
2

hn(un + un−1) = 0, (27)

un − un−1 −
1
2

hn(vn + vn−1 ) = 0, (28)

θn − θn−1 −
1
2

hn(ln + ln−1) = 0, (29)

By applying the above Equations (24)–(29), the governing Equations (14)–(21) become

1
8
( fn + fn−1)(qn + qn−1)−

Ω
2
(pn − pn−1) +

1
hn

(qn − qn−1) +
λ

2
(θn + θn−1)

−M
8
(gn + gn−1)(vn + vn−1) = 0

(30)

1
8
( fn + fn−1)(vn + vn−1) +

Pm

hn
(vn − vn−1)−

1
8
(gn + gn−1)(qn + qn−1) = 0 (31)

1
4
(θn + θn−1)(Pn + Pn−1) +

1
8
(ln + ln−1)( fn + fn−1) +

(
1 +

4
3

R
)

Pr
(mn + mn−1) = 0 (32)

along with boundary conditions

f0 = 0, g0 = 0, P0 = 0 , u0 = 1, θ0 = 1 + βl0, at η = 0 (33)

pn → 1, θn → 0, un → 0, as η → ∞

Applying the below-mentioned iterative Newton–Raphson approach for a smooth
algorithm by following [30,31]

f k+1
n = f k

n + δ f k
n , pk+1

n = pk
n + δpk

n (34)

qk+1
n = qk

n + δqk
n, θk+1

n = θk
n + δθk

n

uk+1
n = uk

n + δuk
n, gk+1

n = gk
n + δgk

n

vk+1
n = vk

n + δvk
n, lk+1

n = lk
n + δlk

n

By ignoring all appearances of powers greater than the first power, just like in the
standard Newton–Raphson method, the equations become

δ fn − δ fn−1 −
1
2

hn(δpn + δpn−1) = (r1)n (35)

δpn − δpn−1 −
1
2

hn(δqn + δqn−1) = (r2)n (36)
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δgn − δgn−1 −
1
2

hn(δvn + δvn−1) = (r3)n (37)

δun − δun−1 −
1
2

hn(δvn + δvn−1) = (r4)n (38)

δθn − δθn−1 −
1
2

hn(δln + δln−1) = (r5)n (39)

The simplified form of the equations is provided below, once more utilizing Equations (35)–(39)
in Equations (30)–(33)

(u1)nδ fn + (u2)nδ fn−1 + (u3)nδqn + (u4)nδqn−1 + (u5)nδpn + (u6)nδpn−1 + (u7)nδvn
+(u8)nδvn−1 + (u9)nδgn + (u10)nδgn−1 = (r6)n

(40)

(v1)nδvn + (v2)nδvn−1 + (v3)nδ fn + (v4)nδ fn−1 + (v5)nδqn + (v6)nδqn−1 + (v7)nδgn
+(v8)nδgn−1 = (r7)n

(41)

(w1)nδpn + (w2)nδpn−1 + (w3)nδθn + (w4)nδθn−1 + (w5)nδ fn + (w6)nδ fn−1 + (w7)nδmn
+(w8)nδmn−1 = (r8)n

(42)

The specific boundary conditions that can be met without iteration are recalled.
As a result, to ensure that these correct values are maintained across all iterations, as
given below:

δ f0 = 0, δg0 = 0, δp0 = 0, δu0 = 1, δθ0 = 1 + βδl0 (43)

δpn = 1, δθn = 0, δun = 0.

5. The Arrangement of Difference Equations in Vector Notation/Matrix

The next essential step is to organize the aforementioned difference equations in matrix
form. If it is done wrong, either the matrix solution method fails because there is a singular
matrix (determinant = 0) or sub-matrix, or the approach becomes extremely inefficient
since there is no discernible structure in the matrix. The matrix form following [30,31] is
given below:

Aδ = r, (44)

[A] =


[A1][C1]

[B2][A2][C2]
· · · · · ·

...
. . .

...
... · · · [Bn−1][An−1][Cn−1]

[Bn][An]

, [δ] =


[δ1]
[δ2]
...

[δn−1]
[δn]

, [r] =


[r1]
[r2]
...

[rn−1]
[rn]

. (45)

6. Analysis and Discussion of Results

The present analysis addressed the thermal slip and radiation effects on electrically
conducting flow phenomena of the convective heat transfer along the vertical symmetric
heated surface with porous medium and magnetohydrodynamics impacts. The nonlinear-
coupled PDE equations for the above fluid flow mechanism are formulated and then
converted into non-similar formulations by applying an appropriate and well-known simi-
larity transformation for integration. The final non-similar forms are integrated numerically
by employing the Keller box scheme method. The transformed algebraic equations are
plotted graphically and numerically on the MATLAB software package. The behavior of
physical quantities such as velocity graph, magnetic field graph, and temperature graph
along with their slopes, that is, skin friction, magnetic intensity, and transfer of heat under
the effect of different parameters included in the flow model, is discussed.

Figure 2a–c present the influence of thermalslip number with various values β = 0.1, 1.0,
3.0, and 6.0 along the thermally and magnetized surface. To check the behavior of physical
properties, the fluid velocity, magnetic field, and temperature of the fluid by keeping some
constant variables havebeen deduced. In Figure 2a, it is obtained that velocity f ′(η) is
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increased at lower β = 0.1, but the smaller quantity of f ′(η) velocity is obtained at large
β = 6.0. It is also noted that suitable variations are obtained at each value of β with a certain
height and then approach asymptotically to the given boundary condition. Due to slip
flow, the frictional resistance between the viscous fluid and the surface is eliminated,
and the fluid velocity booststhe heat transfer and skin friction along the surface. It can
be predicted that an increase in skin friction corresponds to a thinning of the velocity
boundary layer. In Figure 2b, the magnetic effects in the fluid are maximum at larger
β = 6.0, and a smaller quantity is observed at lower β = 0.1. The magnetic profile of the fluid
obtained in suitable variation at each value of the β. It occurs because magnetic diffusion is
reduced by increasing the magneticPrandtl number, which is responsible for the above-said
phenomena. From Figure 2c, it is concluded that the slip temperature is maximum for
a small value of β = 0.1, but smaller quantity is explored at large β = 6.0 in a prominent way.
The prominent variations in temperature θ(η) with prominent slip effects in the presence of
λ = 15.1. Figure 3a–c demonstrates the velocity profile, magnetic profile, and temperature
θ(η) for various quantities of Ω = 0.0, 0.2, 0.4, and 0.6 along magnetized heated geometry.
In Figure 3a, the velocity graph is maximum at a smaller value of Ω = 0.0 and minimum
value at larger Ω = 0.6 with prominent amplitude and then approachesits given condition
asymptotically. Increasing Ω means the medium is more porous, and the fluid permeability
in the porous layer is increased and thus yields resistance in the fluid flow. In Figure 3b, it is
concluded that the magnetic profile is increased at a higher value of Ω = 0.6 and is minimum
at a smaller value of Ω = 0.0 with suitable variations. It occurs because the magnetic force
parameter is the ratio of magnetic energy to kinetic energy, so with the increase in the
magnetic force parameter Pm, the magnetic energy is increased, while the kinetic energy is
reduced. In Figure 3c, it is examined that the temperature profile is increased at a higher
value of Ω = 0.6 but decreased at a smaller value of Ω = 0.0 with better thermal slip. In
Figure 4a, the maximum amplitude in velocity is obtained at larger R = 5.0, and minimum
velocity is obtained at lower R = 0.1 in the presence of magnetic force and strong magnetic
Prandtl number. As the magnetic Prandtl number increases, the viscosity of fluid increases,
and fluid becomes thicker and, consequently, the boundary layer thickness decreases. The
prominent variations are obtained in the magnetic profile for each value of R in Figure 4b.
The prominent thermalslip response is observed in temperature for each R in Figure 4c.
An excellent and favorable slip phenomenonis observed in the temperature graph and
presentssuitable behavior. The suitable variations are obtained in the velocity profile graph
at each value of the R and then approached asymptotically to the given boundary condition.
Figure 5a–c are presented the influence of magnetic force number M with various values
M = 2.5, 3.5, 4.5, and 5.5 along the heated surface. In Figure 5a, it is noticed that f ′(η)
velocity is increased at a lower quantity of M = 2.5 but a smaller quantity of f ′(η) velocity
is noticed at large M = 5.5 with suitable amplitude in the presence of thermal slip. This
result was expected because an increase in M means an enhancement in the Lorentz forces,
which opposes the flow and velocity of the fluid decreases. In Figure 5b, the magnetic
profile is increased at the lower magnetic force parameter M = 2.5, but the smaller quantity
of magnetic profile is obtained at large M = 5.5 with prominent variations. In Figure 5c,
it is concluded that the magneticforce effects in the fluid temperature aremaximum at M
= 2.5, and smaller quantity is found at large M = 5.5 with excellent thermalslip for the
given phenomenon and approached to the given boundary conditions asymptotically. This
behavior of the aforementioned variables supports the physical hypothesis that as the
magnetic field grows stronger, more resistance is formed inside the fluid flow domain,
which reduces the velocity distribution and improves the temperature profile. Figure 6a–c
are presented against the various values of the Prandtl parameter Pr = 0.1, 0.71, 3.0 and 7.0
along the magnetic plate. In Figure 6a, it is observed that the velocity f ′(η) is maximum
with suitable amplitude response at a smaller value of Prandtl parameter Pr = 0.1, but
the smaller quantity of f ′(η) is obtained at higher Pr = 7.0. It is also noted that f ′(η)
profile shows suitable behavior along the surface of geometrical shape in the presence of
mixed convection. In Figure 6b, the magnetic field profile showed suitable variations for
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each value of Pr. From Figure 6c, it is concluded that the temperature profile along the
surface of the given shape is maximum at a small value of Pr = 0.1 while the temperature
profile is minimum at a large value Pr = 7.0. This phenomenon is expected because an
increase in Pr tends to increase density variation with temperature, which enhances the
buoyancy force. The thermal boundary layer thickness is reduced due to an increase in
Pr. The prominent thermal slip with suitable variations isobtained in the temperature
graph at each value of Pr. Due to the fluid’s poor thermal conductivity and decreased
heat transfer as Pr enhanced, the temperature of the fluid flow domain was reduced. In
Figure 7a, it is noted that the velocity profile shows suitable amplitude effects along the
heated plate in the presence of thermal slip and radiations. In Figure 7b, the magnetic
profile is increased at lower mixedconvective parameter λ = 3.0, but the smaller quantity
of magnetic profile is obtained at large λ = 9.0 with prominent variations. In Figure 7c, it
is noted that the temperature profile with excellent thermalslip is obtained for the given
phenomenon and approachesthe given boundary conditions asymptotically. Physically, it
was expected because larger values of λ correspond to stronger buoyancy forces, which
leads to an increase the acceleration of fluid flow. Due to conducting phenomena, the
magnetic effects are strongly observed exactly at the surface but far from the surface are
zero for each value.

Figure 2. (a–c). The geometric profiles of f ′(η), g′(η), and θ(η) against β.
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Figure 3. (a–c). The geometric profiles of f ′(η), g′(η), and θ(η) against Ω.

Figure 4. (a–c). The geometric profiles of f ′(η), g′(η), and θ(η) against R.
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Figure 5. (a–c). The geometric profiles of f ′(η), g′(η), and θ(η) against M.

Figure 6. (a–c). The geometric profiles of f ′(η), g′(η), and θ(η) against Pr.
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Figure 7. (a–c). The geometric profilesof f ′(η), g′(η), and θ(η) against λ.

Table 1 presents the comparison of skin friction for three values of magnetic Prandtl
number Pm = 1.0, 10.0, 100.0 at the leading edge of the magnetized heated surface. In
Table 1, Mehmood et al. [20] explored skin friction along a magnetized wedge, Ilyas
et al. [21] obtained skin friction along a magnetized cone, but prominent results of skin
friction are deduced in the current analysis along the magnetized heated surface. The
values of skin friction are approximately matched with the previous results by using lower
magnetic force M = 0.5 in the presence of porous medium and found suitable agreement
in the present numerical results of skin friction. It can be seen that the maximum skin
friction is obtained at lower Pm = 1.0, but lower skin friction is computed at maximum
Pm = 100.0 fromphysical point of view. This result was expected because an increase in M
means an enhancement in the Lorentz forces, which opposes the flow and velocity of the
fluid decreases. It was also expected because as the magnetic Prandtl number increases, the
viscosity of fluid increases, and fluid becomes thicker, and consequently, the boundary layer
thickness decreases. From Table 2, it is concluded that the skin friction f ′′(0) is increased at
smaller β = 0.1, but the smaller quantity of skin friction is obtained at higher β = 6.0 with
free/force convective parameter λ = 1.5 and magnetic force M. With the increase in value
of M, the magnetic field becomes stronger along the surface, which is a clear indication that
the Lorentz force is more effective in this case. It is noted that the magnetic intensity−g′′(0)
is maximum at small β = 0.1, but the smaller quantity of magnetic intensity is examined at
large β = 6.0 under the impact of porous parameter Ω = 0.8. It is also depicted that the heat
transfer is increased at lower β = 0.1, but the smaller quantity of heat transfer is depicted
at large β = 6.0 under the impact of maximum Pr = 7.0. Physically, it is possible because
thermal conductivity decreases as Pr increases, which has a lower magnitude of frictional
forces between the viscous layers. Table 3 is indicated the influence of porous Ω numbers
with diverse Ω = 0.1, 0.4, 0.7 and 1.0 along a vertical plate to check the behavior of physical
properties the f ′′(0),−g′′(0) and for −θ′(0) of the fluid while some parameters are fixed
λ = 1.5, M = 3.5, and β = 1.1. From Table 3, it is presumed that the f ′′(0) is maximum at
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a smaller value of Ω = 0.1, but the smaller quantity of skin friction is depicted at a higher
quantity of Ω = 1.0 in the presence of temperatureslip number β = 1.1. Increasing Ω means
the medium is more porous, and the fluid permeability in the porous layer is increased
and thus yields resistance in the fluid flow. However, due to the strong buoyancy number
λ, which acts like a pressure gradient and dominatesover the resistance, skin friction is
increased, and slight changes in heatand magnetic intensityare noted. It is depicted that
the magnetic intensity is increased at smaller Ω = 0.1, but the smaller quantity of magnetic
intensity is explored at higher Ω = 1.0 in the presence of β = 1.1. It is also mentioned that
the heat transfer −θ′(0) is maximum at a lower value of Ω = 0.1, but the small quantity of
heat transfer is noticed at larger Ω = 1.0 in the presence of thermal slip parameter β = 1.1.
In Table 4, the skin friction is increased at larger R = 5.0 but reduced at lower R = 0.1 with
temperatureslip and porous effects. The magnetic intensity is increased at higher R = 5.0
but decreased at lower R = 0.1 numerically, but the heat transfer is increased at R = 0.1 in
the presence of a strong magnetic Prandtl number. The reason behind this is that increasing
the value of Pm is equivalent to decreasing magnetic diffusivity, and consequently, the
strength of the magnetic field becomes loose. Physically, it is accurate to say that adding
thermal radiation to a flow model raises the temperature of the fluid flow domain. Table 5
presents the comparison of heat transfer with Hirschhorn et al. [32], which verified the
Table 2 results due to a strong magnetic field. The magnetized surface insulates the heat
and reduces the excessive heating along the surface in the presence of a magnetic Prandtl
number. In addition, the skin friction is maximum at lower thermal slip due to minimum
friction resistance between the surface and fluid’s layers. So, the given results are valid and
in suitable agreement froma physical point of view.

Table 1. Numerical results for f ′′(0) skin friction for various values of Pm = 1.0, 10.0, 100.0 for
β = 0.1, M = 0.5, Pr = 7.0, λ = 0.1 a t the leading edge.

Pm Mehmood et al. [20] Ilyas et al. [21] Present Analysis

1.0 0.3148 0.3122 0.3193

10.0 0.3151 0.3137 0.3180

100.0 0.3156 0.3149 0.3041

Table 2. Numerical results for f ′′(0),−g′′(0) and for−θ′(0) for various values of β = 0.1, 1.0, 3.0, 6.0,
while other parameters are fixed.

β= f ′′(0) −g′′(0) −θ′(0)

0.1 7.948792987522230 0.469004024822659 0.872763001306980

1.0 5.444255951510843 0.411585485704276 0.459271245066785

3.0 3.650283616517952 0.363853736639147 0.230932235434102

6.0 2.679220347371918 0.333775556097965 0.134087127559919

Table 3. Numerical results for f ′′(0),−g′′(0) and for−θ′(0) for various values of Ω = 0.1, 0.4, 0.7, 1.0,
while other parameters are fixed.

Ω. f ′′(0) −g′′(0) −θ′(0)

0.1 1.570888903060684 0.250664877643679 0.287615619132488

0.4 1.020219932907417 0.221789130911155 0.257375444745247

0.7 0.693273907560712 0.198738070735411 0.231620888575782

1.0 0.504794793668375 0.181464431569163 0.211274951578891
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Table 4. Numerical results for f ′′(0),−g′′(0) and for−θ′(0) for various values of R = 0.1, 1.0, 3.0, 5.0,
while other parameters are fixed.

R f ′′(0) −g′′(0) −θ′(0)

0.1 1.383648476977060 0.376890740587770 0.133671961466489

1.0 1.694272623828378 0.412795831386895 0.124460477822591

3.0 2.091203704461853 0.454926644631236 0.113299983497299

5.0 2.335649688218721 0.478692890887229 0.106502575270043

Table 5. Comparison of numerical results for –θ′(0) Nusselt number for various values of
β = 0.0, 0.3, 0.6 for Pm = 3.3, M = 0.1, Pr = 7.0, λ = 1.8, R = 0.1, Ω = 0.01 along the mag-
netized plate.

β Hirschhorn et al. [32] Present Analysis

0.0 0.34768 0.34174

0.3 0.31484 0.32909

0.6 0.28767 0.31976

7. Conclusions

The current physical problem addressed the thermal slip and radiation effects on
viscous flow phenomena of convective heat and magneticintensity transfer along vertical
symmetric heated surfaces embedded in porous medium and magnetohydrodynamics
impacts. In previous studies, the heat transfer characteristics along the non-magnetized
shapes have been performed numerically. Due to excessive heating, these mechanisms
are less interesting in engineering and industrial processes. To overcome this issue in
the current analysis, the surface is magnetized, and the fluid is electrically conducting,
which is responsible for reducing excessive heating along the surface. The nonlinear-
coupled PDE equations for the above fluid flow mechanism are formulated with symmetric
conditions normal to the heated surface and then converted into a non-similar formulation
by applying an appropriate and well-known similarity transformation for integration. The
final non-similar forms are numerically integrated by employing the Keller box scheme. The
transformed algebraic equations are plotted graphically and numerically on the MATLAB
software package. The main finding of the current analysis is to compute physical quantities
such as velocity graph, magnetic field graph, and temperature plot along with their slopes,
that is, skin friction, magnetic intensity, and heat transfer for different parameters included
in the flow model. The comparison of Keller box analysis is computed with previous
existing numerical results. Furthermore, the current issues have significant implications
for the polymer industries, glass fiber production, petroleum production, fiber spinning,
plastic film production, polymer sheet extraction, heat exchangers, catalytic reactors, and
the production of electronic devices. The main findings are given below:

• It is obtained that the velocity profile increased at β = 0.1 but decreased at β = 6.0 with
a prominent variation. Due to slip flow, the frictional resistance between the viscous
fluid and the surface is eliminated, and the fluid velocity booststhe heat transfer and
skin friction along the surface;

• The prominent variations are obtained in the magnetic profile for each value of R,
and the prominent thermalslip response is observed in temperatures with a strong
magnetic field. As the magnetic Prandtl number increases, the viscosity of fluid
increases, and fluid becomes thicker, and consequently, the boundary layer thickness
decreases;

• It is concluded that the skin friction is increased at β = 0.1, but the smaller quantity of
skin friction is obtained at β = 6.0 withbuoyancy and magnetic force. With the increase
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in value of M, the magnetic field becomes stronger along the surface, which is a clear
indication that the Lorentz force is more effective in this case;

• It is presumed that skin friction is maximum at smaller Ω = 0.1 but minimum at higher
Ω = 1.0 in the presence of temperature slip. Increasing Ω means the medium is more
porous, and the fluid permeability in the porous layer is increased and thus yields
resistance in the fluid flow;

• Due to the strong buoyancy number λ, which acts like a pressure gradient and dom-
inatesover the resistance, skin friction is increased, and slight changes in heatand
magnetic intensityare noted.
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Nomenclature

u′, v′ Velocity along and normal to surface (m s−1) T∞ Ambienttemperature (K)
H′x, H′y Magnetic coordinates of velocities in x, y direction (Tesla) Rex Renolds number
µ Dynamic viscosity (kg m−1 s−1) Grx Grashof number
Ho Constant applied magnetic field Nux Nusselt number
Tw Wall temperature (K) C fx Skin friction
qr Radiative heat flux Mgx Magnetic intensity
D1 Thermal slip factor Dax Local Darcy number
ν Kinematicalviscosity (m2 s−1)
Greek symbols
ρ Fluid density (kg m−3) κ Thermal conductivity parameter
g Gravity acceleration (m s−2) M Magnetic force parameter
β∗ Coefficient of thermalexpansion (K−1) λ Mixedconvective number
νm Magnetic diffusivity (H m−1) θ Dimensionless temperature
α Thermaldiffusivity (m2 s−1) Pm MagneticPrandtl parameter
T Fluid temperature (K) Pr Prandtl parameter
Cp Specific heat (J kg−1 K−1) µo Magnetic permeability
x Characteristic length η Similarity variable
U∞ Free stream velocity (m s−1) ζ Thermal conductivity parameter
σ Electrical conductivity (s m−1) K permeability of porous medium
Ω Porous medium parameter β Thermal slip parameter
To Constant temperature R Radiation parameter

Appendix A

From the given stream function formulation and similarity variables Equations (7) and (8),

u = U∞ f ′, v =
U∞y f ′

2x
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T = T∞ +

(
To

x

)
θ,

∂T
∂x

= To

(
− θ

x2 −
U∞yθ′
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νx
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)
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∂T
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Toθ′

x

√
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,
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νx2 (A4)

By using Equations (A1)–(A4), the ODEs are given in Equations (9)–(11), and boundary
conditions are given in Equation (12).

References
1. Mukhopadhyay, S. Effect of thermal radiation on unsteady mixed convection flow and heat transfer over a porous stretching

surface in porous medium. Int. J. Heat Mass Transf. 2009, 52, 3261–3265. [CrossRef]
2. Sarada, K.; Gowda, R.J.P.; Sarris, I.E.; Kumar, R.N.; Prasannakumara, B.C. Effect of magnetohydrodynamics on heat transfer

behaviour of a non-Newtonian fluid flow over a stretching sheet under local thermal non-equilibrium condition. Fluids 2021, 6,
264. [CrossRef]

3. Abbas, A.; Shafqat, R.; Jeelani, M.B.; Alharthi, N.H. Significance of Chemical Reaction and Lorentz Force on Third-Grade Fluid
Flow and Heat Transfer with Darcy–Forchheimer Law over an Inclined Exponentially Stretching Sheet Embedded in a Porous
Medium. Symmetry 2022, 14, 779. [CrossRef]

4. Kumar, A. Numerical study of effect of induced magnetic field on transient natural convection over a vertical cone. Alex. Eng. J.
2016, 55, 1211–1223. [CrossRef]

5. Bhattacharyya, K.; Mukhopadhyay, S.; Layek, G.C. Similarity solution of mixed convective boundary layer slip flow over a
vertical plate. Ain Shams Eng. J. 2013, 4, 299–305. [CrossRef]

6. Muhammad, A.; Chamkha, A.J.; Iqbal, S.; Ahmad, M. Effects of temperature-dependent viscosity and thermal conductivity on
mixed convection flow along a magnetized vertical surface. Int. J. Numer. Methods Heat Fluid Flow 2016, 26, 1580–1592. [CrossRef]

7. Chawla, S.S. Magnetohydrodynamic oscillatory flow past a semi-infinite flat plate. Int. J. Non-Linear Mech. 1971, 6, 117–134.
[CrossRef]

8. Cheng, W.; Liu, Y.L.; Yang, F. A Modified Regularization Method for a Spherically Symmetric Inverse Heat Conduction Problem.
Symmetry 2022, 14, 2102. [CrossRef]

9. Chen, J.; Du, W.; Kong, B.; Wang, Z.; Cao, J.; Wang, W.; Yan, Z. Numerical Investigation on the Symmetric Breakup of Bubble
within a Heated Microfluidic Y-Junction. Symmetry 2022, 14, 1661. [CrossRef]

10. Garia, R.; Rawat, S.K.; Kumar, M.; Yaseen, M. Hybrid nanofluid flow over two different geometries with Cattaneo–Christov
heat flux model and heat generation: A model with correlation coefficient and probable error. Chin. J. Phys. 2021, 74, 421–439.
[CrossRef]

11. Yaseen, M.; Rawat, S.K.; Kumar, M. Cattaneo–Christov heat flux model in Darcy–Forchheimer radiative flow of MoS2–
SiO2/kerosene oil between two parallel rotating disks. J. Therm. Anal. Calorim. 2022, 147, 10865–10887. [CrossRef]

12. Yaseen, M.; Rawat, S.K.; Shafiq, A.; Kumar, M.; Nonlaopon, K. Analysis of Heat Transfer of Mono and Hybrid Nanofluid Flow
between Two Parallel Plates in a Darcy Porous Medium with Thermal Radiation and Heat Generation/Absorption. Symmetry
2022, 14, 1943. [CrossRef]

13. Yaseen, M.; Rawat, S.K.; Kumar, M. Falkner–Skan Problem for a Stretching or Shrinking Wedge with Nanoparticle Aggregation. J.
Heat Transf. 2022, 144, 102501. [CrossRef]

14. Agrwal, A.; Kasana, V. [Fesipmim] Cl as highly efficient and reusable catalyst for solventless synthesis of dihydropyridine
derivatives through Hantzsch reaction. J. Chem. Sci. 2020, 132, 67. [CrossRef]

15. Agrwal, A.; Kumar, V.; Kasana, V. Preparation and application of highly efficient and reusable TBAPIL@ Si (CH2)3@nano-silica-
based nano-catalyst for preparation of benzoxanthene derivatives. J. Iran. Chem. Soc. 2021, 18, 2583–2595. [CrossRef]

16. Chaudhary, P.; Agrwal, A.; Sharma, D.K.; Kumar, V. Synthesis and screen-printing of sol-gel developed pure and Yb-doped ZnO
films towards optoelectronic analysis. J. Sol-Gel Sci. Technol. 2022, 104, 425–433. [CrossRef]

17. Chamkha, A.J. On laminar hydromagnetic mixed convection flow in a vertical channel with symmetric and asymmetric wall
heating conditions. Int. J. Heat Mass Transf. 2002, 45, 2509–2525. [CrossRef]

18. Valentino, M.; Tran, L.; Ricklick, M.; Kapat, J. Comparison of heat transfer and friction augmentation for symmetric and non-
symmetric wedge turbulators on two opposite walls. In Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion
Conference & Exhibit, San Diego, CA, USA, 31 July–3 August 2011; p. 6021.

19. Sinanoglu, A.; Karaca, I.Y.; Tokmak, F.; Senlik, T. Existence of three symmetric positive solutions for a second-order multi-point
boundary value problem on time scales. Adv. Differ. Equ. 2014, 2014, 81. [CrossRef]

20. Mahmood, M.; Asghar, S.; Hossain, M.A. Hydromagnetic flow of viscous incompressible fluid past a wedge with permeable
surface. ZAMM-J. Appl. Math. Mech. Z. Für Angew. Math. Mech. Appl. Math. Mech. 2009, 89, 174–188. [CrossRef]

21. Ilyas, A.; Ashraf, M.; Rashad, A.M. Periodical analysis of convective heat transfer along electrical conducting cone embedded in
porous medium. Arab. J. Sci. Eng. 2021, 47, 8177–8188. [CrossRef]

22. Al-Mdallal, Q.; Prasad, V.R.; Basha, H.T.; Sarris, I.; Akkurt, N. Keller box simulation of magnetic pseudoplastic nano-polymer
coating flow over a circular cylinder with entropy optimisation. Comput. Math. Appl. 2022, 118, 132–158. [CrossRef]

23. Islam, M.T. Heat Transfer through Parallel Plate Microchannels at Symmetric and Asymmetric Constant Wall Temperature. Acad.
J. Appl. Math. Sci. 2018, 4, 22–33.

http://doi.org/10.1016/j.ijheatmasstransfer.2008.12.029
http://doi.org/10.3390/fluids6080264
http://doi.org/10.3390/sym14040779
http://doi.org/10.1016/j.aej.2016.08.019
http://doi.org/10.1016/j.asej.2012.09.003
http://doi.org/10.1108/HFF-08-2014-0265
http://doi.org/10.1016/0020-7462(71)90038-2
http://doi.org/10.3390/sym14102102
http://doi.org/10.3390/sym14081661
http://doi.org/10.1016/j.cjph.2021.10.030
http://doi.org/10.1007/s10973-022-11248-0
http://doi.org/10.3390/sym14091943
http://doi.org/10.1115/1.4055046
http://doi.org/10.1007/s12039-020-01770-9
http://doi.org/10.1007/s13738-021-02211-1
http://doi.org/10.1007/s10971-022-05938-2
http://doi.org/10.1016/S0017-9310(01)00342-8
http://doi.org/10.1186/1687-1847-2014-81
http://doi.org/10.1002/zamm.200700115
http://doi.org/10.1007/s13369-021-06191-5
http://doi.org/10.1016/j.camwa.2022.05.013


Symmetry 2022, 14, 2421 18 of 18

24. Wang, C.Y. Boundary layers on rotating cones, discs and axisymmetric surfaces with a concentrated heat source. Acta Mech. 1990,
81, 245–251. [CrossRef]

25. Mukhopadhyay, S.; Mondal, I.C.; Chamkha, A.J. Casson fluid flow and heat transfer past a symmetric wedge. Heat Transf. Asian
Res. 2013, 42, 665–675. [CrossRef]

26. Ullah, Z.; Ashraf, M.; Sarris, I.E.; Karakasidis, T.E. The Impact of Reduced Gravity on Oscillatory Mixed Convective Heat Transfer
around a Non-Conducting Heated Circular Cylinder. Appl. Sci. 2022, 12, 5081. [CrossRef]

27. Murdock, J.W. The solution of sharp-cone boundary-layer equations in the plane of symmetry. J. Fluid Mech. 1972, 54, 665–678.
[CrossRef]
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