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Abstract: The outcome of the research presented in this paper is the definition and investigation
of two new subclasses of meromorphic functions. The new subclasses are introduced using a
differential operator defined considering second-order differential polynomials of meromorphic
functions in U\{0} = {z ∈ C : 0 < |z| < 1}. The investigation of the two new subclasses leads to
establishing inclusion relations and the proof of convexity and convolution properties regarding each
of the two subclasses. Further, involving the concept of subordination, the Fekete–Szegö problem is
also discussed for the aforementioned subclasses. Symmetry properties derive from the use of the
convolution and from the convexity proved for the new subclasses of functions.
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1. Introduction

The results presented in this paper are obtained considering the general context of
geometric function theory and involve the class of meromorphic functions, a differential
operator and certain well-known and intensely used tools for investigation, namely the
concepts of subordination and convolution.

The basic classes involved in this study are introduced in the unit disc of the complex
plane U = {z ∈ C : |z| < 1}.

Let A denote the class of analytic functions in U of the form

f (z) = z +
∞

∑
k=2

akzk (1)

which satisfies the relations f (0) = 0, f ′(0) = 1. The subclass of A containing the univalent
functions in U is denoted by S. The subclasses of A referred to as the class of starlike
functions and the class of convex functions are denoted by S∗ and K, respectively, and are
defined as S∗ =

{
f ∈ A : Re z f ′(z)

f (z) > 0
}

and K =
{

f ∈ A : Re
(

z f ′′(z)
f ′(z) + 1

)
> 0

}
.

Another special class of analytic and univalent functions is the class of meromorphic
functions denoted by Σ and containing functions of the form:

f (z) =
1
z
+

∞

∑
n=1

anzn =
1
z
+ a1z + a2z2 + a3z3 + . . . , (2)

analytic and univalent in U∗ = U\{0} = {z ∈ C : 0 < |z| < 1}.
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A function f ∈ Σ is said to be in the class S∗ of meromorphic starlike functions in U∗

if and only if

− R

{
z f
′
(z)

f (z)

}
> 0, (z ∈ U∗). (3)

A function f ∈ Σ is said to be in the class C of meromorphic convex functions in U∗ if
and only if

− R

{
1 +

z f
′′
(z)

f ′(z)

}
> 0, (z ∈ U∗). (4)

We note that f ∈ C ⇔ −z f
′ ∈ S∗.

Considering two meromorphic functions having the form presented in (2) written as

f (z) =
1
z
+

∞

∑
n=1

anzn, g(z) =
1
z
+

∞

∑
n=1

bnzn,

f ∗ g denotes the Hadamard product (or convolution) of f and g defined as [1]:

( f ∗ g)(z) :=
1
z
+

∞

∑
n=1

anbnzn, z ∈ U∗.

The class of meromorphic functions generates many interesting results when consid-
ered in studies regarding geometric function theory. Subclasses of meromorphic functions
with positive coefficients were introduced and studied [2–5]. Certain differential operators
were involved in the studies related to meromorphic functions [6–10]; integral operators
were also added to research [11–13], and linear operators are also present in investiga-
tions [14–16]. The results presented in this paper concern a differential operator, which is
introduced here by using differential polynomials of meromorphic functions.

2. Preliminaries

Definition 1. For n ≥ 1, let f be a meromorphic function, a ∈ C and a 6= 0, ∞, the differential
polynomials f k, k = 1, 2, 3, . . . . Then, the differential polynomials of meromorphic functions can be
written as follows:

f (z) =
1
z
+ a1z + a2z2 + a3z3 + . . . ,

f
′
(z) =

−1
z2 + a1 + 2a2z + 3a3z2 + 4a4z3 + . . .

=
−1
z2 +

∞

∑
n=1

nanzn−1, (5)

f
′′
(z) =

2
z3 + 2a2 + 6a3z + 12a4z2 + 20a5z3 + . . .

=
2
z3 +

∞

∑
n=1

n(n + 1)an+1zn−1, (6)

f
′′′
(z) =

−6
z4 + 6a3 + 24a4z + 60a5z2 + 120a6z3 + . . .

=
−6
z4 +

∞

∑
n=1

n(n + 1)(n + 2)an+2zn−1 (7)

...
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f k(z) =
(−1)kk!

zk+1 +
∞

∑
n=1

n(n + 1)(n + 2) . . . (n + k− 1)︸ ︷︷ ︸
k

an+k−1zn−1.

Following the same procedure as seen in [17] and used by many other authors, the
following operator is defined:

Definition 2. Considering f ∈ Σ and f ′′(z) given by (6), a new differential operator is defined as:

D0z2 f ′′(z) = z2 f ′′(z)

D1z2 f ′′(z) = (1− λ)z2 f ′′(z) + λ

(
z2(z2 f ′′(z)

))′
z

= (1 + λ)z2 f ′′(z) + λ
(

z2 f ′′(z)
)′

= Dλz2 f ′′(z), λ ≥ 0 (8)

Dkz2 f ′′(z) = Dλ

(
Dk−1z2 f ′′(z)

)
. (9)

Then, from (8) and (9), we see that

Dkz2 f
′′
(z) =

2
z
+

∞

∑
n=1

n(n + 1)[1 + (n + 1)λ]kan+1zn+1, z ∈ U∗. (10)

For the investigation presented in this paper, the following two subclasses of mero-
morphic functions are introduced using the operator given by (10):

Definition 3. In conjunction with (3) and (10),

S∗,k(λ) = { f : f ∈ Σ and Dkz2 f
′′
(z) ∈ S∗}. (11)

Definition 4. In conjunction with (4) and (10),

Ck(λ) = { f : f ∈ Σ and z(Dkz2 f
′′
(z))

′ ∈ C}. (12)

In order to obtain the new results contained in Section 3, the following lemmas
are necessary:

Lemma 1 ([18]). Let p be analytic in U with p(0) = 1, and suppose that

R

{
p(z)− zp

′
(z)

p(z)

}
> 0, z ∈ U

Then we have
R(p(z)) > 0 in U.

Lemma 2 ([1]). If g ∈ S∗ and f ∈ C, then f ∗ g ∈ S∗.

Having in mind the very recent papers where the well-known Fekete–Szegö inequali-
ties are evaluated for different subclasses of meromorphic functions [19–21], in Section 4 of
the paper, the Fekete–Szegö problem is investigated concerning the classes defined by (11)
and (12). In order to conduct the study, the notion of subordination is applied, and the
classes are redefined in terms of subordination.

Let f and g be two analytic functions in U. We say that f is subordinate to g, written
f (z) ≺ g(z), if there exists a Schwarz function w, analytic in U with w(0) = 0 and |w(z)| < 1
such that f (z) = g(w(z)); see [22]. If g is univalent in U, then f (z) ≺ g(z) is equivalent to
f (0) = g(0) and f (U) ⊂ g(U).
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Definition 5. Consider Φ(z) an analytic function with ReΦ(z) > 0, z ∈ U, satisfying Φ(0) = 1,
Φ
′
(0) > 1. Such a function maps U onto a region that is symmetric with respect to the real axis

and is starlike with respect to 1. Denote by S∗,k(Φ, λ) the class of functions f ∈ S that satisfy the
subordination given by:

− z(Dkz2 f
′′
(z))

′

Dkz2 f ′′(z)
≺ Φ(z), (λ ∈ C \ {0}). (13)

Definition 6. Consider Φ(z) an analytic function with ReΦ(z) > 0, z ∈ U, satisfying Φ(0) = 1,
Φ
′
(0) > 1. Such a function maps U onto a region which is symmetric with respect to the real axis

and is starlike with respect to 1. Denote by Ck(Φ, λ) the class of functions f ∈ S that satisfy the
subordination given by:

−
{

1 +
z(Dkz2 f

′′
(z))

′′

(Dkz2 f ′′(z))′

}
≺ Φ(z), (λ ∈ C \ {0}). (14)

We also note that

Dkz2 f
′′
(z) ∈ Ck(λ)⇔ z(Dkz2 f

′′
(z))

′ ∈ S∗,k(λ). (15)

For obtaining the Fekete–Szegö inequalities related to the classes given in Definitions 5
and 6, the following lemmas are applied:

Lemma 3 ([23]). If p(z) = 1 + c1z + c2z2 + c3z3 + . . . is a function with a positive real part in
U and σ ∈ R, then ∣∣∣c2 − σc2

1

∣∣∣ ≤ 2 max{1; |2σ− 1|}.

Lemma 4 ([23]). If p(z) = 1 + c1z + c2z2 + c3z3 + . . . is a function with a positive real part in
U and σ ∈ R, then ∣∣∣c2 − σc2

1

∣∣∣ ≤

−4σ + 2, σ ≤ 0

2 , 0 ≤ σ ≤ 1
4σ− 2, σ ≥ 1

.

Now, after all the preliminary notations, definitions and lemmas are listed, the next
two sections contain the new results, which the authors want to bring to researchers’
attention. In Section 3, containment relations are established for the classes S∗,k(λ) and
Ck(λ) introduced in Definitions 3 and 4. It is proved that the functions belonging to
those classes are convex, and also, convolution properties are obtained using the functions
f , g ∈ S∗,k(λ) and f , g ∈ Ck(λ), respectively. In Section 4, the Fekete–Szegö problem is
considered for the classes S∗,k(Φ) and Ck(Φ) seen in Definitions 5 and 6.

3. Inclusion and Convolution Theorems

The results presented in this section refer to inclusion relations established for the
classes S∗,k(λ) and Ck(λ) introduced in Definitions 3 and 4, respectively. Convexity proper-
ties are stated for classes S∗,k(λ) and Ck(λ), and convolution properties involving functions
from the two classes are also proved easily by using the iterative-type operator seen in
Definition 2.

The first two theorems from this section include containment relations obtained for
classes S∗,k(λ) and Ck(λ) given by (12) and (13).

Theorem 1.
S∗,k+1(λ) ⊂ S∗,k(λ). (16)
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Proof. Let z2 f
′′
(z) ∈ S∗,k+1(λ) and suppose that

R

{
z(Dk+2z2 f

′′
(z))

Dk+1z2 f ′′(z)

}
> 0, z ∈ U. (17)

Set

p(z) =

(
z(Dk+1z2 f

′′
(z))

Dkz2 f ′′(z)

)
> 0, z ∈ U. (18)

The analytic function p(z) satisfies conditions p(0) = 1 and p(z) 6= 0 for all z ∈ U.
Differentiating logarithmically (18), and after manipulations, we obtain

zp
′
(z)

p(z)
=

z(Dk+1z2 f
′′
(z))

′

Dkz2 f ′′(z)
− z(Dk+1z2 f

′′
(z))

′

Dkz2 f ′′(z)
.

Since z(Dkz2 f
′′
(z))

′
= −z(Dk+1z2 f

′′
(z)) coupled with (18) yields

p(z)− zp
′
(z)

p(z)
=

z(Dk+2z2 f
′′
(z))

Dk+1z2 f ′′(z)

that is

R

(
p(z)− zp

′
(z)

p(z)

)
> 0, z ∈ U.

Now, by applying Lemma 1, we obtain that z2 f
′′
(z) ∈ S∗,k(λ), z ∈ U∗.

Theorem 2. Let λ ∈ C \ {0}. Then

Ck+1(λ) ⊂ Ck(λ). (19)

Proof. Applying (15) and Theorem 1, the following can be written:

z2 f
′′
(z) ∈ Ck+1(λ)⇔ Dkz2 f

′′
(z) ∈ C(λ)

⇔ z(Dkz2 f
′′
(z))

′ ∈ S∗(λ)

⇔ Dk(z(z2 f
′′
(z))

′) ∈ S∗(λ)

⇔ z(z2 f
′′
(z))

′ ∈ S∗,k+1(λ)

⇒ z(z2 f
′′
(z))

′ ∈ S∗,k(λ)

⇔ Dk(z(z2 f
′′
(z))

′) ∈ S∗(λ)

⇔ z(Dk)
′ ∈ S∗(λ)

⇔ Dk ∈ Ck(λ)

⇔ z2 f
′′
(z) ∈ Ck(λ),

which evidently proves Theorem 2.

The next two theorems prove the property of the sets of functions S∗,k(λ) and Ck(λ)
to be convex.

Theorem 3. The set S∗,k(λ) is convex.
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Proof. Consider the function z2 f
′′
(z) ∈ S∗,k+1(λ) and suppose that

z2 f
′′
i (z) =

2
z
+

∞

∑
n=1

n(n + 1)a(n+1)iz
n+1, (i = 1, 2), (20)

belongs to the class S∗,k(λ). The proof requires to show that the function h(z) = u1 f1(z) +
u2 f2(z), with u1 and u2 nonnegative and u1 + u2 = 1, belongs to the class S∗,k(λ).

h(z) =
2
z3 +

∞

∑
n=1

n(n + 1)(u1a(n+1)1 + u2a(n+1)2zn+1, (i = 1, 2), (21)

Then, from (11), we have

z(Dkz2h(z))
′
=
−6
z

+
∞

∑
n=1

n(n+ 1)(n+ 2)[1+(n+ 1)λ]k(u1a(n+1)1 + u2a(n+1)2)z
n+1. (22)

Hence

−R
(

z(Dkz2h(z))
′)

=− R

(
−6
z

+ u1

∞

∑
n=1

n(n + 1)(n + 2)[1 + (n + 1)λ]ka(n+1)1zn+1

)
(23)

−R

(
−6
z3 + u2

∞

∑
n=1

n(n + 1)(n + 2)[1 + (n + 1)λ]ka(n+1)2zn

)
.

Since f1, f2 ∈ S∗,k(λ), this implies that

− R

(
−6
z

+ ui

∞

∑
n=1

n(n + 1)(n + 2)[1 + (n + 1)λ]ka(n+1)1zn+1

)
> 1− ui. (24)

Using (24) in (23), we obtain

− R(z(Dkz2h(z))
′
) > 1− (u1 + u2) (25)

and since u1 + u2 = 1, the theorem is proved.

Theorem 4. The set Ck(λ) is convex.

Proof. From Theorem 3 and (15), it follows easily that Theorem 4 is true.

In the next four theorems, results related to convolution properties for the classes
S∗,k(λ) and Ck(λ) are derived.

Theorem 5. Consider the function z2 f
′′
(z) ∈ S∗,k(λ). The following equality holds:

Dkz2 f
′′
(z) = z−1 · exp

∫ z

0

(
2w(t)

t(w(t)− 1)
dt.
)

, (26)

where w is analytic in U with |w(z)| < 1 and w(z) = 0.

Proof. For z2 f
′′
(z) ∈ S∗,k(λ), we write the following:

−z(Dkz2 f
′′
(z))

′

Dkz2 f ′′(z)
=

1 + w(z)
1− w(z)

,
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where w is analytic in U with |w(z)| < 1 and w(z) = 0. From this, we obtain

z(Dkz2 f
′′
(z))

′

Dkz2 f ′′(z)
+

1
z
=

2w(z)
z(w(z)− 1)

,

which upon integration yields

In(Dkz2 f
′′
(z)) = exp

∫ z

0

(
2w(t)

t(w(t)− 1)
dt
)

. (27)

Assertion (27) can easily be obtained from (26).

Theorem 6. If z2 f
′′
(z) ∈ Ck(λ), then

z(Dkz2 f
′′
(z))

′
= ξ

′
, (28)

and

ξ = z−1 exp
∫ z

0

(
2w(t)

t(w(t)− 1)
dt.
)

,

where w is analytic in U with |w(z)| < 1 and w(z) = 0.

Proof. Suppose that z2 f
′′
(z) ∈ Ck(λ); then (12) can be written as follows:

1 +
−z(Dkz2 f

′′
(z))

′′

(Dkz2 f ′′(z))′
=

1 + w(z)
1− w(z)

where w is analytic in U with |w(z)| < 1 and w(z) = 0. From this, we obtain

1 +
−z(Dkz2 f

′′
(z))

′′

(Dkz2 f ′′(z))′
+

1
z
=

2w(z)
z(w(z)− 1)

.

By integrating the above relation, we obtain:

In(z(Dkz2 f
′′
(z))

′
) = exp

∫ z

0

(
2w(t)

t(w(t)− 1)
dt
)

. (29)

It follows that
z(Dkz2 f

′′
(z))

′
=
∫ z

0
ξ
′
, (30)

z(Dkz2 f
′′
(z))

′
=
∫ z

0

(
exp

∫ z

0

(
2w(t)

t(w(t)− 1)
dt
))

dt. (31)

The equality given by relation (28) of Theorem 6 is easily obtained from (18)
and (31).

Theorem 7. Consider functions z2 f
′′
(z) and z2g

′′
(z) from the class S∗,k(λ). Then, z2 f

′′
(z) ∗

z2g
′′
(z) ∈ S∗,k(λ).

Proof. Knowing that g
′′
(z) is convex univalent in U, from (11), we have

− R

{
z(Dkz2g

′′
(z))

′

Dkz2g′′(z)

}
> 0. (32)



Symmetry 2022, 14, 2587 8 of 14

By applying convolution properties, we deduce:

−R

{
z(Dkz2 f

′′
(z))

′

Dkz2 f ′′(z)

}
∗ −R

{
z(Dkz2g

′′
(z))

′

Dkz2g′′(z)

}

= R

(
(

z(Dkz2 f
′′
(z))

′

Dkz2 f ′′(z)
) ∗ ( z(Dkz2 f g

′′
(z))

′

Dkz2g′′(z)
)

)
. (33)

The proof is concluded by applying Lemma 2.

Theorem 8. Consider the functions z2 f
′′
(z) and z2g

′′
(z) from the class Ck(λ). Then, z2 f

′′
(z) ∗

z2g
′′
(z) ∈ Ck(λ).

Proof. Applying (15), Lemma 2 and Theorem 7, we have

z2 f
′′
(z), z2g

′′
(z) ∈ Ck(λ)⇔ Dkz2 f

′′
(z) ∈ C(λ), and Dkz2g

′′
(z) ∈ C(λ)

⇔ z(Dkz2 f
′′
(z))

′ ∈ S∗(λ), and z(Dkz2g
′′
(z))

′ ∈ S∗(λ)

⇔ Dk(z(z2 f
′′
(z))

′) ∈ S∗(λ), and Dk(z(z2g
′′
(z))

′) ∈ S∗(λ)

⇔ z(z2 f
′′
(z))

′ ∈ S∗,k(λ), and z(z2g
′′
(z))

′ ∈ S∗,k(λ)

⇒ (z(z2 f
′′
(z))

′ ∗ z(z2g
′′
(z))

′
) ∈ S∗,k(λ)

⇔ (Dk(z(z2 f
′′
(z))

′) ∗ Dk(z(z2g
′′
(z))

′) ∈ S∗(λ)

⇔ (Dk(z(z2 f
′′
(z))

′) ∗ Dk(z(z2g
′′
(z))

′) ∈ Ck(λ)

⇔ (z2 f
′′
(z) ∗ z2g

′′
(z)) ∈ Ck(λ),

which evidently proves Theorem 8.

4. Fekete–Szegö Problem

Fekete–Szegö inequalities are obtained in this section considering functions from
classes S∗,k(Φ) and Ck(Φ) given by Definitions 5 and 6, respectively. In order to obtain
those results, similar methods to those seen in [24] are implemented, and the proof of the
results is facilitated by the use of the iterative-type operator given by Definition 2.

Theorem 9. Let Φ(z) = 1 + B1z + B2z2 + B3z3 + . . . , with (B1 6= 0) and f
′′

given in (6)
belonging to S∗,k(Φ, λ); then, for σ ∈ C,

∣∣a3 − σa2
2

∣∣ ≤ |B1|
6[1+3λ]k

max
{

1;
∣∣∣∣ B2

B1
+ σ

[1+3λ]k B1
(1+ 1

3 )[1+2λ]2k

∣∣∣∣}.

The result is sharp.

Proof. Consider the function f
′′
(z) ∈ S∗,k(Φ, λ). In this case, an analytic Schwarz function

w exists with w(0) = 0 and |w(z)| < 1 in U such that

− z(Dkz2 f
′′
(z))

′

Dkz2 f ′′(z)
= Φ(w(z)). (34)

We define the function p(z) by

p(z) =
1 + w(z)
1− w(z)

= 1 + c1z + c2z2 + . . . , (35)
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since w(z) is a Schwartz function. Therefore,

Φ(w(z)) = Φ
(

p(z)− 1
p(z) + 1

)
= Φ

(
1
2

[
c1z +

(
c2 −

c2
1

2

)
z2 +

(
c3 − d1c2 +

c3
1

4

)
z3 + . . .

])

= 1 +
1
2

B1c1z +
1
2

(
B1

[
c2 −

c2
1

2

]
+

1
2

B2c2
1

)
z2 + . . . . (36)

By substituting (34) in (36), we obtain

− z(Dkz2 f
′′
(z))

′

Dkz2 f ′′(z)
= 1 +

B1c1

2
z +

(
B1

2

[
c2 −

c2
1

2

]
+

B2c2
1

4

)
z2 + . . . . (37)

From Equation (37), we obtain

a2 = − B1c1

4[1 + 2λ]k
,

a3 = − 1
3[1 + 3λ]k

(
B1

2

[
c2 −

c2
1

2

]
+

B2c2
1

4

)
.

Therefore,

a3 − σa2
2 = − B1

6[1 + 3λ]k

{
c2 − νc2

1

}
, (38)

where

ν =
1
2

[
1 +

B2

B1
− σ

[1 + 3λ]kB1

(1 + 1
3 )[1 + 2λ]2k

]
. (39)

The proof is concluded by applying Lemma 3. The sharpness of the results is obtained
for the functions

− z(Dkz2 f
′′
(z))

′

Dkz2 f ′′(z)
= Φ(z2)

and

− z(Dkz2 f
′′
(z))

′

Dkz2 f ′′(z)
= Φ(z).

All the assertions of Theorem 9 are now proved.

Theorem 10. Let Φ(z) = 1 + B1z + B2z2 + B3z3 + . . . with (B1 6= 0) and let f
′′

given in (6)
belong to Ck(Φ, λ). Then, for σ ∈ C,∣∣a3 − σa2

2

∣∣ ≤ |B1|
8[1+3λ]k

max
{

1;
∣∣∣ B2

B1
+ σ

8[1+3λ]k B1
[1+2λ]2k

∣∣∣}.

The result is sharp.

Proof. Consider the function f
′′
(z) ∈ Ck(Φ, λ). In this case, an analytic Schwarz function

w exists with w(0) = 0 and |w(z)| < 1 in U such that

−
{

1 +
z(Dkz2 f

′′
(z))

′′

(Dkz2 f ′′(z))′

}
= Φ(w(z)). (40)
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Along Equations (35), (36) and (40), we have

−
{

1 +
z(Dkz2 f

′′
(z))

′′

(Dkz2 f ′′(z))′
}
= 1 +

B1c1

2
z +

(
B1

2

[
c2 −

c2
1

2

]
+

B2c2
1

4

)
z2 + . . . . (41)

From Equation (41), we obtain

a2 = − B1c1

[1 + 2λ]k
,

a3 = − 1
2[1 + 3λ]k

{
1
2
(

B1

2

[
c2 −

c2
1

2

]
+

B2c2
1

4
)

}
.

Therefore,

a3 − σa2
2 = − B1

8[1 + 3λ]k

{
c2 − ν1c2

1

}
, (42)

where

ν1 =
1
2

[
1 +

B2

B1
− σ

8[1 + 3λ]kB1

[1 + 2λ]2k

]
. (43)

The proof is concluded by applying Lemma 3. Sharpness of the results is obtained for
the functions

−
{

1 +
z(Dkz2 f

′′
(z))

′′

(Dkz2 f ′′(z))′

}
= Φ(z2)

and

−
{

1 +
z(Dkz2 f

′′
(z))

′′

(Dkz2 f ′′(z))′

}
= Φ(z).

This completes the proof of Theorem 10.

Taking λ = 0 in Theorems 9 and 10, we obtain the following results for functions
belonging to the classes S∗,k(Φ) and Ck(Φ).

Corollary 1. Let Φ(z) = 1 + B1z + B2z2 + B3z3 + . . . with (B1 6= 0). If f
′′

given in (6) belongs
to the class S∗,k(Φ), then, for σ, a real number,

∣∣∣a3 − σa2
2

∣∣∣ ≤ |B1|
6

max

{
1;

∣∣∣∣∣B2

B1
+ σ

B1

(1 + 1
3 )

∣∣∣∣∣
}

.

Sharpness of the results is obtained for the functions

− z(Dkz2 f
′′
(z))

′

Dkz2 f ′′(z)
= Φ(z2) and − z(Dkz2 f

′′
(z))

′

Dkz2 f ′′(z)
= Φ(z).

Corollary 2. Let Φ(z) = 1 + B1z + B2z2 + B3z3 + . . . with (B1 6= 0). If f
′′

given in (6) belongs
to the class Ck(Φ), then, for σ, a real number,∣∣∣a3 − σa2

2

∣∣∣ ≤ |B1|
8

max
{

1;
∣∣∣∣B2

B1
+ σ8B1

∣∣∣∣}.

Sharpness of the results is obtained for the functions

−
{

1 +
z(Dkz2 f

′′
(z))

′′

(Dkz2 f ′′(z))′
}
= Φ(z2) and −

{
1 +

z(Dkz2 f
′′
(z))

′′

(Dkz2 f ′′(z))′
}
= Φ(z).
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Theorem 11. Let Φ(z) = 1 + B1z + B2z2 + B3z3 + . . . with B1 > 0, B2 ≥ 0 and f
′′

be given
by (6), which belongs to S∗,k(Φ, λ). Then, for σ ∈ R,

∣∣∣a3 − σa2
2

∣∣∣ ≤


B2
6[1+3λ]k

+
σB2

1
6(1+ 1

3 )[1+2λ]2k if σ ≤ χ1,
B1

6[1+3λ]k
if χ1 ≤ σ ≤ χ2,

B2
6[1+3λ]k

− σB2
1

6(1+ 1
3 )[1+2λ]2k if σ ≥ χ2,

(44)

where

χ1 = −
[1 + 2λ]2k{(B1 + B2) + B2

1}
3[1 + 3λ]kB2

1
,

χ2 = −
[1 + 2λ]2k{(B1 − B2) + B2

1}
3[1 + 3λ]kB2

1
.

Proof. Applying Lemma 4 to Equations (38) and (39), we obtain three cases:
Case (1): If σ ≤ χ1, then∣∣a3 − σa2

2

∣∣ ≤ B1
6[1+3λ]k

{2− 4ν}

≤ B1
6[1+3λ]k

{
B2
B1

+ σ
[1+3λ]k B1

(1+ 1
3 )[1+2λ]2k

}
≤ B2

6[1+3λ]k
+

σB2
1

6(1+ 1
3 )[1+2λ]2k .

Case (2): If χ1 ≤ σ ≤ χ2, then∣∣∣a3 − σa2
2

∣∣∣ ≤ B1

6[1 + 3λ]k
.

Case (3): If σ ≥ χ2, then∣∣a3 − σa2
2

∣∣ ≤ B1
6[1+3λ]k

{2− 4ν}

≤ B1
6[1+3λ]k

{
B2
B1
− σ

[1+3λ]k B1
(1+ 1

3 )[1+2λ]2k

}
≤ B2

6[1+3λ]k
− σB2

1
6(1+ 1

3 )[1+2λ]2k .

Theorem 12. Let Φ(z) = 1 + B1z + B2z2 + B3z3 + . . . with B1 > 0, B2 ≥ 0 and f
′′

be given
by (6), which belongs to Ck(Φ, λ). Then, for σ ∈ R,

∣∣∣a3 − σa2
2

∣∣∣ ≤


B2
8[1+3λ]k

+
σB2

1
[1+2λ]2k , σ ≤ γ1,

B1
8[1+3λ]k

, γ1 ≤ σ ≤ γ2,
B2

8[1+3λ]k
− σB2

1
[1+2λ]2k , σ ≥ γ2,

where

γ1 = −
[1 + 2λ]2k{(B1 + B2) + B2

1}
2[1 + 3λ]kB2

1
,

γ2 = −
[1 + 2λ]2k{(B1 − B2) + B2

1}
2[1 + 3λ]kB2

1
.

Proof. Applying Lemma 4 to Equations (42) and (43), we have the following three cases:
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Case (1): If σ ≤ γ1, then∣∣a3 − σa2
2

∣∣ ≤ B1
8[1+3λ]k

{2− 4ν}

≤ B1
8[1+3λ]k

{
B2
B1

+ σ
8[1+3λ]k B1
[1+2λ]2k

}
≤ B2

8[1+3λ]k
+

σB2
1

[1+2λ]2k .

Case (2): If γ1 ≤ σ ≤ γ2, then∣∣∣a3 − σa2
2

∣∣∣ ≤ B1

8[1 + 3λ]k
.

Case (3): If σ ≥ γ2, then∣∣a3 − σa2
2

∣∣ ≤ B1
8[1+3λ]k

{4ν− 2}

≤ B1
8[1+3λ]k

{
B2
B1
− σ

8[1+3λ]k B1
[1+2λ]2k

}
≤ B2

8[1+3λ]k
− σB2

1
[1+2λ]2k .

Taking λ = 0 in Theorems 11 and 12, we obtain the following results for functions
belonging to the classes S∗,k(Φ) and Ck(Φ), respectively.

Corollary 3. Let Φ(z) = 1 + B1z + B2z2 + B3z3 + . . . with B1 > 0 and B2 ≥ 0. If f
′′

given
by (6) belonging to S∗,k(Φ), then, for σ, a real number,

∣∣∣a3 − σa2
2

∣∣∣ ≤


B2
6 +

σB2
1

6(1+ 1
3 )

if σ ≤ χ1,
B1
6 if χ1 ≤ σ ≤ χ2,

B2
6 −

σB2
1

6(1+ 1
3 )

if σ ≥ χ2,

(45)

where

χ1 = −
(B1 + B2) + B2

1
3B2

1
,

χ2 = −
(B1 − B2) + B2

1
3B2

1
.

Corollary 4. Let Φ(z) = 1 + B1z + B2z2 + B3z3 + . . . with B1 > 0 and B2 ≥ 0. If f
′′

given
by (6) belongs to Ck(Φ), then, for σ, a real number,

∣∣∣a3 − σa2
2

∣∣∣ ≤


B2
8 + σB2

1, σ ≤ γ1,
B1
8 , γ1 ≤ σ ≤ γ2,

B2
8 − σB2

1, σ ≥ γ2,

where

γ1 = −
(B1 + B2) + B2

1
2B2

1
,

γ2 = −
(B1 − B2) + B2

1
2B2

1
.

5. Conclusions

After a few aspects regarding the lines of research involving meromorphic functions
are highlighted, the investigation presented in this paper starts with the introduction of



Symmetry 2022, 14, 2587 13 of 14

a new differential operator given in Definition 2. This operator is obtained using the
second-order differential polynomials of meromorphic functions seen in Definition 1. A
new subclass of meromorphic starlike functions S∗,k(λ) and a new subclass of meromor-
phic convex functions Ck(λ) are introduced in Definitions 3 and 4, respectively. The new
subclasses are investigated in Section 3 for inclusion relations, convexity and convolution
properties. Using the concept of subordination, classes S∗,k(λ) and Ck(λ) are redefined
in Definitions 5 and 6, and the notations used for them become S∗,k(Φ) and Ck(Φ) with
reference to the subordinating function Φ instead of the parameter λ. The study is com-
pleted by establishing in Section 4 Fekete–Szegö inequalities regarding the coefficients of
the functions from classes S∗,k(Φ) and Ck(Φ).

As future directions of research where the results presented in this paper could be
used, the connection between convexity properties and symmetry could be further ex-
plored. The convolution properties proved here suggest future studies where functions
from the new subclasses S∗,k(λ) and Ck(λ) could be combined with other functions with
remarkable geometric and symmetry properties. The means of the theory of differential
subordination could be used for further investigations on the two subclasses S∗,k(Φ) and
Ck(Φ), which could provide interesting subordination results with a nice geometric inter-
pretation. The results obtained for multivalent meromorphic functions connected with the
Liu–Srivastava operator using the theory of strong differential subordination [25] suggest
that this theory could also be applied for the functions of classes S∗,k(λ) and Ck(λ) involv-
ing the new operator defined here. Additionally, considering the strong differential results
obtained for Sălăgean and Ruscheweyh differential operators [26], the idea of applying the
means of strong differential subordination to the differential operator given in Definition 2
seems interesting.
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26. Alb Lupaş, A.; Oros, G.I.; Oros, G. On special strong differential subordinations using Sălăgean and Ruscheweyh operators.
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