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Abstract: For a fixed pair of input and output states in the space HA of a system A, a quantum
channel, i.e., a linear, completely positive and trace-preserving map, between them is not unique,
in general. Here, this point is discussed specifically for a decoherence channel, which maps from a
pure input state to a completely decoherent state like the thermal state. In particular, decoherence
channels of two different types are analyzed: one is unital and the other is not, and both of them
can be constructed through reduction of B in the total extended space HA ⊗ HB, where HB is the
space of an ancillary system B that is a replica of A. The nonuniqueness is seen to have its origin
in the unitary symmetry in the extended space. It is shown in an example of a two-qubit system
how such symmetry is broken in the objective subspace HA due to entanglement between A and B.
A comment is made on possible relevance of the present work to nanothermodynamics in view of
quantum Darwinism.
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1. Introduction

Decoherence is a central concept in the quantum theory of open systems and measure-
ments (see [1–4] and the references therein). It plays key roles in diverse topics, including
foundations of thermostatistics, quantum information processing and the emergence of the
classical from the quantum. From the dynamical viewpoint, it is concerned with influences
of the environmental system interacting with an open subsystem and arises when the
environmental degrees of freedom are eliminated. This is actually a highly complex issue,
having been a major subject of investigation ever since the concept was introduced about a
half-century ago [5]. Among others, quantum Darwinism [6–8] should be noted, which
assumes decoherence as a basic premise and aims to describe classical “objectivity”, that
is, different observers can simultaneously determine the same state of the system under
consideration without disturbance.

A quantum channel is a map from a density matrix of an input quantum state to
an output one in which dynamical details are contained. It is linear, completely positive
and trace-preserving. Since it is not necessarily unitary, it can map from a pure state to a
mixed state with loss of coherence. Today, the concept of quantum channels is regarded as
fundamental as quantum states. This seems to be mathematically natural: to understand
the property of a given set is to understand that of a set of maps defined on it. Accordingly,
discussions have been developed about the entropies of quantum channels for quantifica-
tion of channel complexity [9] and entanglement of channels [10]. As a higher category, the
notion of quantum supermaps/superchannels between different quantum channels has
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also been introduced [11]. These may be of importance in designing quantum heat engines
and quantum circuits, for example.

Now, for a given pair of input and output states, the quantum channel between them
is not unique, in general. That is, for the same input, different channels may give the same
output, offering flexibility to quantum engineering. This fact naturally gives rise to the
following question: how such channels are related to each other. In the present paper, we
discuss this issue for decoherence channels, which are specific channels mapping an input
pure state to an output mixed state with perfect loss of coherence like the thermal state.
In particular, we consider a couple of different decoherence channels: one is unital, and
the other is not. For this purpose, we extend the state space by introducing an ancillary
system that is a replica of the objective system. By performing nonlocal transformations of
the total input pure state in the extended space and then reducing the ancillary degrees of
freedom, we describe those two channels and explicitly show how the nonuniqueness is
related to the unitary symmetry in the extended space. We explicitly analyze an example
of a two-qubit system and see how such symmetry is broken in the space of the objective
system due to entanglement and reduction.

This paper is organized as follows. In Section 2, some basic concepts are recapitulated,
such as the Kraus representation of a completely positive trace-preserving map, the Schmidt
decomposition and an ancillary system for extension of the state space and purification.
Then, the decoherence channel and its nonuniqueness are discussed. In Section 3, a two-
qubit (i.e., a bipartite two-level system) is analyzed as an explicit example. It is shown how
different decoherence channels are related to each other. In Section 4, the results of the
present work are briefly summarized, and a comment is made on nanothermodynamics in
connection with quantum Darwinism.

2. Nonuniqueness of Decoherence Channel

Consider the objective system A in a quantum state described by a density matrix ρA,0
that should be positive semidefinite and satisfy the normalization condition trAρA,0 = 1,
where the symbol “trA” stands for the trace in the state space HA of A. A quantum channel
Φ is a map, which is required to be linear, completely positive and trace-preserving, i.e.,
trA[Φ(XA)] = trAXA with XA being an arbitrary trace-class operator/matrix. In the Kraus
representation [12], it is written as follows:

ρA = Φ(ρA,0) ≡∑
i

ViρA,0V†
i . (1)

Here, Vi’s are certain operators on HA satisfying

∑
i

V†
i Vi = IA (2)

with IA being the identity operator on HA. (For the notational convenience, the label “A” is
abbreviated for Vi’s.) Due to this partition-of-unity property, the set

{
V†

i Vi
}

i is said to form
a positive operator-valued measure. ρA,0 and ρA in Equation (1) are referred to as input and
output states, respectively. In quantum measurement theory, Equation (1) represents an
operation of an unsharp (or fuzzy) measurement, which generalizes von Neumann’s pro-
jective measurement. There, Vi’s are the operators associated with an observable of interest.
The fundamental nature of quantum mechanics is the unitarity of dynamics, whereas Φ in
Equation (1) is not unitary. This point is made clear if the state space is extended from HA
to HA ⊗ HB by the introduction of an ancillary system B. The total input state is taken to be
ρA,0 ⊗ |φ〉BB〈φ|; that is, B is in a pure state. (Here and hereafter, the symbol of tensor prod-
uct is commonly used for state spaces, vectors and operators/matrices.) The total system is
supposed to be isolated and to be governed by unitary dynamics now. Write a unitary trans-
formation as follows: ρA,0 ⊗ |φ〉B B〈φ| → UAB ρA,0 ⊗ |φ〉B B〈φ|U†

AB , where the operator is
assumed to be nonlocal (i.e., unfactorizable), i.e., UAB 6= UA ⊗UB, introducing entangle-
ment between A and B. Then, to look only at A in the output, B is eliminated through the
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partial trace of the total output density matrix over B: ρA = trB
(
UAB ρA,0 ⊗ |φ〉B B〈φ|U†

AB
)
.

In terms of a certain complete orthonormal system {|vi〉B}i in HB for the calculation of the
partial trace, the expression

Vi = B〈vi|UAB|φ〉B (3)

is obtained for the operators in Equation (1).
The decoherence channel is a special case of Φ in Equation (1) that maps an input pure

state ρA,0 = |ψ〉A A〈ψ| to an output mixed state of perfect decoherence with no off-diagonal
elements:

ρA = Φ(|ψ〉A A〈ψ|) = ∑
i

pi|ui〉A A〈ui|, (4)

provided that the rank of this matrix should be larger than unity. Here, {|ui〉A}i is a
complete orthonormal system in HA and is actually the set of normalized eigenstates of ρA
itself with the eigenvalues pi’s. From the positive semidefiniteness of and normalization
condition on the density matrix, it follows that 0 ≤ pi < 1 and ∑i pi = 1. It is instructive to
see this in an inverse way in connection with the concept of purification. Given a density
matrix ρA of a completely decoherent state, it is possible to represent it as a pure state in an
extended space:

|Ψ〉AB= ∑
i

√
pi|ui〉A⊗|vi〉B, (5)

where {|vi〉B}i is not necessarily the same as that used in Equation (3). From this state, ρA
in Equation (4) is in fact recovered as follows:

ρA = trB(|Ψ〉AB AB〈Ψ|). (6)

Equation (5), called the Schmidt decomposition, manifests how A and B are entangled
in order for perfect decoherence to be realized. This procedure indicates a possibility of
employing a replica of A as B.

Let |ui〉A (|vi〉B) be the i-th energy eigenstate with the eigenvalue Ei of the Hamiltonian
of A (B), and set pi = [1/Z(β)] exp(−βEi), Z(β) = ∑i exp(−βEi), where β = 1/(kBT)
with kB and T being the Boltzmann constant and temperature, respectively. In this case, ρA
becomes a canonical density matrix of the Gibbsian state that is a perfectly decoherent state
with no off-diagonal elements in the energy eigenbasis (see References [13,14] and the works
cited therein). In other words, B is regarded as the heat reservoir. Since B is a replica of A
that may be a small system in a canonical ensemble, B can be far from the thermodynamic
limit. Therefore, B is an “economical description” of the heat reservoir. It should, however,
be noted that, in this case of small B, ensemble equivalence, i.e., equivalence between
theories of microcanonical, canonical and grandcanonical ensembles, is not established
because of the absence of the thermodynamic limit. Thus, in what follows, the ancillary
system B is taken to be a replica of the objective subsystem A. It is also noted that, in the
vanishing temperature limit, only the lowest-state (i ≡ 0) element survives in the thermal
state. In conformity with this, the lowest state

ρAB,0 = |Ω〉AB AB〈Ω| (7)

with |Ω〉AB ≡ |u0〉A ⊗ |v0〉B is employed in the rest of this section as the total input pure
state. A more general input state will be treated in the example analyzed in the next section.

After recapitulating these basic issues, let us start discussing the nonuniqueness of the
decoherence channel in Equation (4) with |ψ〉A = |u0〉A.

In general, i.e., not limited to the one in Equation (4), a quantum channel for a given
pair of input and output states is not unique. This nonuniqueness comes from the reduction
of the ancillary system, which leads to the loss of information. In other words, it may be
related to symmetry in the extended state space that is broken in the objective subspace.
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The following two different forms of the map in Equation (1) are considered:

V(I)
i = (IA − |u0〉AA〈u0|) δi0 +

√
pi|ui〉AA〈u0|, (8)

V(II)
i =

√
pi (IA − |u0〉AA〈u0| − |ui〉AA〈ui|+ |u0〉AA〈ui|+ |ui〉AA〈u0|), (9)

where pi are the ones given below Equation (4). Both of these form positive operator-valued
measures as in Equation (2). However, a salient feature of difference between them is that

∑
i

V(I)
i V(I)†

i = IA − |u0〉AA〈u0|+ ∑
i

pi |ui〉AA〈ui|, (10)

∑
i

V(II)
i V(II)†

i = IA. (11)

That is, the channel Φ(II) associated with V(II)
i is unital, i.e., Φ(II)(IA) = IA, whereas Φ(I)

associated with V(I)
i is not. In spite of this difference, both of them are seen to satisfy

Equation (4) with |ψ〉A = |u0〉A.
An important property of a unital channel is that the entropy (the von Neumann

entropy or the Rényi entropy indexed by α with 0 < α ≤ 2) always increases due to
the channel for any input state. In other words, the entropy monotonically increases for
repeated applications of a unital channel to any state, whereas such monotonicity does not
hold if a channel is not unital [15] (see also Reference [16]).

Equation (8) is related to the theory of Takahashi and Umezawa, who have developed
a real-time field theory at finite temperature termed thermo-field dynamics [17]. In that
theory, the thermal vacuum of a quantum field is constructed from the zero-temperature
vacuum in the extended space by the Bogoliubov transformation. Its generalization has
been discussed in Reference [18]. The unitary operator on the extended space presented
there is as follows:

U(I)
AB = exp(θ GAB), (12)

where GAB is the anti-Hermitian operator given by

GAB = |J〉AB AB〈Ω| − |Ω〉AB AB〈J| (13)

with |Ω〉AB being given below Equation (7) and

|J〉AB =
1√

1− p0
∑
i 6=0

√
pi |ui〉A⊗|vi〉B (14)

with θ = cos−1√p0. Equation (8) is in fact given by V(I)
i = B〈vi|U

(I)
AB|v0〉B.

On the other hand, regarding Equation (9), which has been presented in Reference [19],
a general form is not known yet for the unitary operator associated with it, unfortunately.
(In the next section, one such example will be presented for a two-qubit system.) Suppose at
present that U(II)

AB is found in a specific case. Then, there always uniquely exists the unitary
operator RAB satisfying

U(I)
AB RAB = U(II)

AB . (15)

This makes manifest how the nonuniqueness of the decoherence channel is related to the
nonlocal unitary symmetry between the transformations in the extended space. In the next
section, we show in an explicit example how the nonuniqueness comes from the breakdown
of such symmetry in HA due to entanglement between A and B.

3. Two-Qubit

The nonuniqueness of the decoherence channel and related issues are best illustrated
in a two-qubit system, which plays important roles in quantum processors using supercon-
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ductors [20] and semiconductors [21], for example. In this case, the total space HA ⊗ HB is
4-dimensional and can be spanned by the basis

|χ0〉AB = |u0〉A ⊗ |v0〉B,
|χ1〉AB = |u0〉A ⊗ |v1〉B,
|χ2〉AB = |u1〉A ⊗ |v0〉B,
|χ3〉AB = |u1〉A ⊗ |v1〉B,

(16)

satisfying AB
〈
χα

∣∣χβ

〉
AB = δαβ and ∑3

α=0|χα〉AB AB〈χα| = IA ⊗ IB.
The input of A considered here is a general qubit state |ψ〉AA〈ψ|with the superposition

of the lower and upper states

|ψ〉A = a0|u0〉A + a1|u1〉A, (17)

where the complex coefficients obey the normalization condition: |a0|2 + |a1|2 = 1. Two
different sets of operators we consider here are as follows:

V(I)
0 = a∗0

√
p0|u0〉AA〈u0|+ a∗1

√
p0|u0〉AA〈u1| − a1|u1〉AA〈u0|+ a0|u1〉AA〈u1|,

V(I)
1 = a∗0

√
p1|u1〉AA〈u0|+ a∗1

√
p1|u1〉AA〈u1|,

(18)

and
V(II)

0 = a∗0
√

p0|u0〉AA〈u0|+ a∗1
√

p0|u0〉AA〈u1| − a1
√

p0|u1〉AA〈u0|
+a0
√

p0|u1〉AA〈u1|,
V(II)

1 = −a1
√

p1|u0〉AA〈u0|+ a0
√

p1|u0〉AA〈u1|+ a∗0
√

p1|u1〉AA〈u0|
+a∗1
√

p1|u1〉AA〈u1|,

(19)

where 0 < pi < 1 (i = 0, 1) and p0 + p1 = 1. It is straightforward to ascertain that both of
these yield

Φ(Q)(|ψ〉AA〈ψ|) = ∑
i=0,1

V(Q)
i |ψ〉A A〈ψ|V

(Q)†
i

= ∑
i=0,1

pi|ui〉AA〈ui| (Q = I, II)
(20)

for |ψ〉A in Equation (17) as well as the trace-preserving condition

∑
i=0,1

V(Q)†
i V(Q)

i = IA (Q = I, II). (21)

Therefore, both Equations (18) and (19) define decoherence channels for the same input
and output states. However, ∑i=0,1 V(II)

i V(II)†
i = IA and therefore Φ(II) is unital, whereas

Φ(I) is not, since ∑i=0,1 V(I)
i V(I)†

i = p0|u0〉AA〈u0|+ (1 + p1)|u1〉AA〈u1|.
To understand this nonuniqueness, let us consider the unitary operators corresponding

to these two channels on the extended space HA⊗HB of the two-qubit system. As examples,
here we present the following ones:

U(I)
AB = a∗0

√
p0|χ0〉AB AB〈χ0|+ a1

√
p1|χ0〉AB AB〈χ1|

+a∗1
√

p0|χ0〉AB AB〈χ2| − a0
√

p1|χ0〉AB AB〈χ3|
+a∗0 |χ1〉AB AB〈χ1|+ a∗1 |χ1〉AB AB〈χ3| − a1|χ2〉AB AB〈χ0|+ a0|χ2〉AB AB〈χ2|

+a∗0
√

p1|χ3〉AB AB〈χ0| − a1
√

p0|χ3〉AB AB〈χ1|
+a∗1
√

p1|χ3〉AB AB〈χ2|+ a0
√

p0|χ3〉ABA B〈χ3|,

(22)
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U(II)
AB = a∗0

√
p0|χ0〉AB AB〈χ0|+ a1

√
p1|χ0〉AB AB〈χ1|

+a∗1
√

p0|χ0〉AB AB〈χ2| − a0
√

p1|χ0〉AB AB〈χ3|
−a1
√

p1|χ1〉AB AB〈χ0|+ a∗0
√

p0|χ1〉AB AB〈χ1|
+a0
√

p1|χ1〉AB AB〈χ2|+ a∗1
√

p0|χ1〉AB AB〈χ3|
−a1
√

p0|χ2〉AB AB〈χ0| − a∗0
√

p1|χ2〉AB AB〈χ1|
+a0
√

p0|χ2〉AB AB〈χ2| − a∗1
√

p1|χ2〉AB AB〈χ3|
+a∗0
√

p1|χ3〉AB AB〈χ0| − a1
√

p0|χ3〉AB AB〈χ1|
+a∗1
√

p1|χ3〉AB AB〈χ2|+ a0
√

p0|χ3〉AB AB〈χ3|.

(23)

The input state of the ancillary system is still taken to be its lower state in order to avoid
unnecessary complications. Therefore, the total input pure state here is ρ0,AB = |ψ〉A A〈ψ| ⊗
|v0〉B B〈v0|. Then, it can be verified that the reduced operators V (Q)

i = B〈vi|U
(Q)
AB |v0〉B

(Q = I, II; i = 0, 1) in fact give rise to Equations (18) and (19).
With these explicit forms of the unitary operators on the extended space, now the

unitary operator RAB satisfying U(I)
AB RAB = U(II)

AB can immediately be calculated. Its explicit
form is given by

RAB =
(
|a0|2 + |a1|2

√
p0

)
|χ0〉AB AB〈χ0|+ a∗0 a∗1

√
p1|χ0〉AB AB〈χ1|

+a0a∗1
(
1−√p0

)
|χ0〉AB AB〈χ2|+ a∗21

√
p1|χ0〉AB AB〈χ3|

−a0a1
√

p1|χ1〉AB AB〈χ0|+
(
|a0|2
√

p0 + |a1|2
)
|χ1〉AB AB〈χ1|

+a2
0
√

p1|χ1〉AB AB〈χ2| − a0 a∗1
(
1−√p0

)
|χ1〉AB AB〈χ3|

+a∗0 a1
(
1−√p0

)
|χ2〉AB AB〈χ0| − a∗20

√
p1|χ2〉AB AB〈χ1|

+
(
|a0|2
√

p0 + |a1|2
)
|χ2〉AB AB〈χ2| − a∗0 a∗1

√
p1|χ2〉AB AB〈χ3|

−a2
1
√

p1|χ3〉AB AB〈χ0| − a∗0 a1
(
1−√p0

)
|χ3〉AB AB〈χ1|

+a0a1
√

p1|χ3〉AB AB〈χ2|+
(
|a0|2 + |a1|2

√
p0

)
|χ3〉AB AB〈χ3|.

(24)

This unitary operator is nonlocal, that is, RAB 6= RA ⊗ RB. To see it, let us apply RAB on an
unentangled state, say |χ2〉AB in Equation (16), to have

RAB|χ2〉AB = a0 a∗1
(
1−√p0

)
|χ0〉AB + a2

0
√

p1|χ1〉AB

+
(
|a0|2
√

p0 + |a1|2
)
|χ2〉AB + a0a1

√
p1|χ3〉AB,

(25)

and then evaluate the purity trA σ2
A, where σA is the reduced density matrix σA ≡ trB(

RAB|χ2〉AB AB〈χ2|R†
AB
)
. The result turns out to be simplified in the special case |a0|2 =

|a1|2 = 1/2: trA σ2
A =

(
3 + p2

0
)
/4 < 1, implying that A is in a mixed state and the state

in Equation (25) is entangled. Therefore, RAB is in fact nonlocal. Accordingly, a unitary
relation like Equation (15) does not exist in HA. It is, however, noted that since RAB
is input-state specific, the input state remains unchanged (and thus unentangled):
RAB|ψ〉A ⊗ |v0〉B = |ψ〉A ⊗ |v0〉B, as it should do.

4. Concluding Remarks

For a given pair of input and output states of a system, the quantum channel between
them is not unique, in general. In the present work, we have discussed this point for a
specific case of the decoherence channel that maps from a pure input state to a completely
decoherent output state. We have considered two different decoherence channels: one
is unital and the other is not. By introducing an ancillary system that is a replica of the
objective subsystem of interest, the unitary symmetry between the two in the extended
space is identified. The nonuniqueness is then seen to be due to the breakdown of the
symmetry in the objective subspace.

Although only two specific decoherence channels are treated, here, the structure of
unitary symmetry and its breaking in the subspace as the origin of channel nonuniqueness
may not be limited to the decoherence channels.
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A remaining challenge is to examine if smallness permitted for the size of the ancillary
system as a replica of the objective system, which is an economical description of its thermal
reservoir, has some relevance to the foundations of nanothermodynamics [22–24]. There, a
central concept is subdivision of a macroscopic system into small systems. Each single piece
is an objective system in contact with the neighbor(s)/fragment(s) regarded as the reser-
voir(s). Thus, the structured environment is essential. Each fragment of the environment
can be thought of as a replica or a collection of some replicas discussed in the present work.
Here seems to be a point of quantum Darwinism [6–8] analogous to nanothermodynamics
characterized by the modified Gibbsian state. In quantum Darwinism, decoherence due to
the heterogeneous environment and proliferation of (classical) information over it as the
collection of all fragments may explain “objectivity” (see Section 1). Since the thermal states
are generally considered to possess objectivity of the high level, it is natural to anticipate
that quantum Darwinism plays a role as a possible foundation of nanothermodynamics. A
main obstacle here is the fact that proliferation of (classical) information or energy transport
over the whole environment as the total collection of the fragments is hard to be realized,
in general. This point has recently been discussed for the Gibbsian state [25]. There, it is
shown not to be impossible to simultaneously establish both thermality and objectivity. As
a future subject, it may be important to clarify under what conditions replications of the
system A can be related to the proliferation of classical information and quantum cloning
of the states associated with it.
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