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Abstract: In order to raise the hysteresis loops in stationary dynamic regimes in the case of elas-
tomeric insulators, specialized dynamic stands are used that may obtain both the necessary harmonic
excitation by force as well as the modification of the angular arrangement discreetly variable from
zero to 90 degrees. In this context, for the evaluation of the elastomeric insulators, a dynamic stand
with an inertial vibrator was used, the frequency of which can be changed by continuous adjustment
within the range of values from 2 Hz to 60 Hz. Forces and displacements can be measured with the
appropriate sensors, and based on the recording of signals, the characteristics of rigidity, damping
and the raise of hysteresis loops could be determined for three significant dynamic regimes: ante-
resonance and post-resonance. Research on the dynamic stand, patented in Romania, has highlighted
the fact that the parametric evaluation can be performed based on the lifting of the hysteretic loops
in stationary harmonic regimes. Additionally, there are two situations specifically mentioned, one
in which the significant inertial effect for the F-x loops leads to their positioning in quadrants II
and IV, and the case of Q-x loops, where the inertial effect does not exist, and their positioning is
only in quadrants I and III. From the analysis of the two cases, the most advantageous evaluation
method for the test can be chosen. This article provides the calculation relationships established for
the dynamic model with linear viscoelastic behaviour. The requirements of Voight–Kelvin modeling
with a single degree of freedom is fully justified and ensured by the conditions of geometric and
mass symmetry in the construction of the stand. The verification of the numerical results with the
experimental ones was performed with the hysteresis loops corresponding to the previously defined
three significant dynamic regimes, as well as according to the three positions of the elastomeric
insulators for compression, compression-shear and shear.

Keywords: elastomeric insulator; anti-vibrator; resonance; hysteresis loop; dissipated energy

1. Introduction

The analysis of the dynamic response for distinct positions of placing the elastomeric
insulators showed that, depending on the dynamic ante-resonance or post-resonance
regime, the dissipated energy, the force transmitted to the foundation, and the rigidity
and damping characteristics are defining parameters in designing and/or optimizing an
antivibration system [1–6]. Thus, in Romania, at ICECON Bucharest, dynamic test stands
were developed for elastomeric insulators used in industry and construction [7].

The experiments on elastomeric insulators, either made in Romania or imported
from companies in Europe and the USA, were performed on a dynamic stand patented in
Romania and owned by ICECON Bucharest. In principle, the dynamic stand consists of
three vertical columns and an inertial vibrator located at the top.

Each column consists of a two semi-cylindrical bodies system with central seats where
the elastomer insulator is mounted. In the mounted system, a circular group with radial
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holes is formed so that it may be positioned at various angles, with a 15-degree angular
pace. Thus, the angular position of placing the elastomeric insulator is defined by the angle
α formed by the direction of the vertical perturbator force and the compression axis of the
elastomeric device. Experimental tests were performed for all positions indexed with the
15◦ step, by performing simple or combined requirements such as: compression at α = 0◦,
compression + shear at α > 0 and shear at α = 90◦ [8–13].

On the analyzed dynamic stand, 628 tests were performed for elasatomeric anti-
vibration devices that were analyzed and certified in the period 2015–2020, the manufactur-
ers being from Romania, Italy, France, Austria and Spain. The experimental results were
statistically processed, taking into account the uncertainty of the measurements [14,15].

2. Test Stand Constructive Scheme

Figure 1 presents the construction solution of the stand with three test groups ar-
ranged at 120◦ so that the vertical excitation force may be applied equally to each elas-
tomeric insulator. The following notations were used in Figure 1: 1—variable speed drive
electric engine; 2—unidirectional vibrator; 3—adjustment and fixing support; 4—upper
beam; 5—force transducer Tf; 6—semi-circular clamping device; 7—elastomeric insulator;
8—displacement transducer Tx; 9—force transducer Tq; 10—fixed base (frame) [16–20].
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measures the emergent force, or the force transmitted at the base and transducer Tx 

Figure 1. Dynamic stand scheme.

The inertial vibrator generates a vertical force, harmonic with parallel and symmetrical
action direction in relation to the three elastomeric insulators connected in parallel. Trans-
ducer Tf measures the incident force on the elastomeric insulator, transducer Tq measures
the emergent force, or the force transmitted at the base and transducer Tx measures the
instantaneous displacement x = x(t) or the vertical deformation of the deformable assembly.
Each column has its own system of transducers Tx si Tf.
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The principle schematization of the stand in constructive solution is presented in
Figure 2 where the following notations were used: 1—unidirectional vibrator mounted
on upper structure; 2—force transducer (tensometric dose) input; 3—upper semi-circular
guiding device and radial positional indexing; 4—upper device for holding the elastomeric
insulator; 5—elastomeric insulator; 6—lower device for holding the elastomeric insula-
tor; 7—lower semi-circular device for guiding and radial positional indexing; 8—force
transducer (tensometric dose) output; 9—fixed base.
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Figure 2. Principle scheme for one test group.

It is shown that the force transducer 5 and the displacement transducer 7 in Figure 1,
are mounted and maintained in the initial mechanical state, regardless of any modifications
of the angular position of group 6. This makes the initial calibration of the transducers
uninfluenced by the subsequent states of the dynamic tests.

Figure 3 presents the schematic of the linear dynamic model, where x = x(t) is the
instantaneous displacement; F = F(t) harmonic excitation force; m—mass of the mobile
assembly; Q = Q(t)—the force transmitted to the base; k—stiffness of the insulator in the
vertical direction; c—viscous damping; Tf—the incident force transducer which measures
force F(t); Tq—the displacement transducer that measures the instantaneous displacement
x = x(t).
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Figure 3. Schematization of the position of the force transducers Tf, Tq and of the displacement
transducer Tx.

The significant positions of the elastomeric insulator are presented in Figure 4 where
the axes of the fixed system are Ox and Oy, and the moving axes Oc, for compression,
and Of, for shear, are connected to the elastomeric device. The three distinct positions are
highlighted by the seating angle α. Thus, for compression α = 0, compression-shear α > 0
and α < 90, and for shear α = 90◦ [21,22].
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3. Evaluation of Dissipated Energy

Highlighting the modality of variation of the dissipated energy, in some well specified
cases, is a criterion for optimizing the dynamic system based on the stationary harmonic
regime and of the linear viscoelastic characteristics of the elastomeric insulators (stiffness
k and viscous damping c) [22]. In this case, for a dynamic regime with relative pulsation
Ω = ω

ωn
, where ω is the excitation pulsation and ωn is its own pulsation, the dissipated

energy Wd may be expressed as:

Wd(Ω, ζ) = 2π
(m0r

m

)2
kζ

Ω5(
1−Ω2

)2
+ (2ζΩ)2

(1)

where ζ is damping rate or the fraction of the critical damping (where ζ = c/cr, where
c—effective viscous damping, and cr—critical viscous damping). Usually, ζ is under the
value of 0.7;

k—system stiffness, N/m;
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m0r—static moment of the exciter with eccentric bodies in rotation motion, kg·m;
m—mobile mass of the stand, kg;
The maximum dissipated energy in the ante-resonance regime Wmax

d,a corresponds to a

fraction of the critical damping ζ0
a = 1−Ω2

a
2Ωa

, so it may be written as:

Wmax
d,a = 2π

(m0r
m

)2
k

Ω4
a

4
(

1−Ω2
a

) (2)

where Ωa < 1 is the ante-resonance relative pulsation.
The maximum dissipated energy in the post-resonance regime Wmax

d,p corresponds to

pulsation Ωp > 1 and to the fraction of the critical damping ζ0
p =

Ω2
p−1

2Ωp
, so that we have

Wmax
d,p = 2π

(m0r
m

)2
k

Ω4
p

4
(

Ω2
p − 1

) (3)

The dissipated energy in the resonance regime Wrez
d corresponds to pulsation Ω = 1

and to the fraction of the critical damping ζn = c
2mωn

, so that we have

Wrez
d = 2π

(m0r
m

)2
k

1
4ζn

(4)

From Relations (2), (4) then from Relations (3) and (4), it emerges the following
correlations

Wmax
d,a = Wrez

d
Ω4

a

1−Ω2
a

ζn (5)

Wmax
d,p = Wrez

d
Ω4

p

1−Ω2
p

ζn (6)

The correlation between Wmax
d,a and Wmax

d,p emerges from Relations (5) and (6) as

Wmax
d,p

Wmax
d,a

=

(
Ωa

a

)2 1−Ω2
a

Ω2
p − 1

(7)

3.1. Dissipated Energy as a Function of Damping

For the current variable ζ with Ω 6= 1 mentioned at constant value, we have the
following situations, that is:

(a) ante-resonance with Ωa< 1 for which we have

Wciclu
d,a (ζ) = 2π

(m0r
m

)2
kζ

Ω5
a(

1−Ω2
)2

+ (2ζΩ)2
(8)

with graphical representation in Figure 5 [23,24].
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(b) Post-resonance with Ωp > 1 for which it is valid the relation

Wciclu
d,p (ζ) = 2π

(m0r
m

)2
kζ

Ω5
p(

1−Ω2
)2

+ (2ζΩ)2
(9)

with graphical representation in Figure 6 [23,24].

Symmetry 2022, 14, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 5. Variation of dissipated energy per cycle, in ante-resonance regime, depending on the 
damping ratio 𝜁 and stiffness k for Ω = 0.8. 

(b) Post-resonance with Ωp > 1 for which it is valid the relation 𝑊 , 𝜁  =  2𝜋 𝑘𝜁   (9)

with graphical representation in Figure 6 [23,24]. 

 
Figure 6. Variation of dissipated energy per cycle, in post-resonance regime, depending on the 
damping ratio ζ and stiffness k for Ω = 1.5. 

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

50
X: 0.225
Y: 49.64

ζ

W
dci

cl
u  [J

]

X: 0.225
Y: 19.43

X: 0.225
Y: 6.874 kc=65*105 N/m

ζc=0.225

k
α
=23*105 N/m
ζα

=0.225

kf=23*105 N/m
ζf=0.225

Ω=0.8

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180
X: 0.41
Y: 176.7

ζ

W
dci

cl
u  [J

]

X: 0.41
Y: 69.14

X: 0.41
Y: 24.46

kc=65*105 N/m
ζc=0.41

k
α
=23*105 N/m

ζα
=0.41

kf=9*105 N/m
ζf=0.41

Ω=1.5

Figure 6. Variation of dissipated energy per cycle, in post-resonance regime, depending on the
damping ratio ζ and stiffness k for Ω = 1.5.



Symmetry 2022, 14, 246 7 of 13

The three curves in Figures 5 and 6 correspond to the cases in which the elastomeric
anti-vibration devices, required for compression with kc, compression—shear kα and shear
kf are characteristic of the ante-resonance regime Ωa = 0.8, ζ0

a = 0.225 and, respectively, of
the post-resonance regime Ωp = 1.5, ζ0

p = 0.41 [23,24].

3.2. Dissipated Energy as a Function of Relative Pulsation

The energy dissipated per cycle Wd
ciclu(Ω) depending on the relative excitation pulsa-

tion Ω = ω
ωn

for the given values of stiffness k and the fraction of the critical damping ζ is
given by relation, with the parameter order i, so

Wciclu
d (Ω) = 2π

(m0r
m

)2
kiζi

Ω5(
1−Ω2

)2
+ (2ζiΩ)2

= Ei (10)

where i = 1, 2, . . . , n represents the index of the parametric order ki, ζi which describes a
curve from the curve family with current variable Ω [23,24].

Figure 7 shows the curve family with discrete values ki, ζi and the continuous variation
of Ω.
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The relative pulsation Ωi can also be written as

Ωi = ω

√
m
ki

where, ki is the stiffness for i = c, α, f, for the three situations corresponding to angle α = 0◦,
α = 60◦, α = 90◦, respectively, compression, compression—shear and shear.

As kc > kα > kf, it emerges that the relative pulsations are in order Ωc< Ωα< Ωf as
shown in Figure 7.

The raised curves in Figures 5–7 are obtained numerically, and the marked values
are obtained experimentally in the stationary dynamic regime regulated and controlled
especially for this purpose. The deviations of the experimental values in relation to those
obtained numerically fall within the range −3–5%.
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4. Hysteretic Loops

For the viscoelastic linear dynamic system, the hysteretic loops of elliptic shape can
be represented for the dynamic excitation force F(t) in relation to deformation x = x(t)
in coordinates F-x, as well as for the transmitted dynamic force Q = Q(t) depending on
deformation x = x(t) in coordinates Q-x.

(a) Hysteretic loops in F-x coordinates

The equation of the elliptical hysteretic loops in the coordinate system F-x is given by
the relation parameterized by k and ζ discrete variable and x continuous variable, so that
x ∈ [−A,+A], the demonstration is given in the following papers [24,25].

Thus, we have

F(x, Ω) = k
[(

1−Ω2
)

x± 2ζΩ
√

A2 − x2
]

(11)

where A = A (Ω) is the amplitude of instantaneous displacement (deformation) x = x(t).

A = A(Ω) =
m0r
m

Ω2 1√(
1−Ω2

)2
+ (2ζiΩ)2

(12)

Figure 8 for Ωa= 0.8 in the ante-resonance regime presents the family of elliptical loops
for the three significant cases of the viscoelastic system αc = 0o, α = 60o and α f = 90o

that is in situation kc, ζc, kα, ζα and k f , ζ f . It is specified that all ellipses are inclined in
quadrants I and III [23,24].
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Figure 8. Hysteretic loops F-x in ante-resonance regime for Ω = 0.8.

Figure 9 for Ωp = 1.5 in the post-resonance regime presents the family of elliptical
loops for the three significant cases, with the specification that all ellipses are inclined in
quadrant II and IV as effect of the influence of the resonance regime [23–25].
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Figure 10 shows the elliptical hysteretic loops in resonance mode for the three signifi-
cant cases.
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It is found that the energy dissipated at resonance Ec, Eα and Ef with the values in
Figure 10 coincides with the corresponding values in Figure 7.

Figures 8 and 9 show the significant inertial effect in post-resonance with hysteretic
loops in quadrants I and IV compared to the reduced inertial effect for pre-resonance with
hysteretic loops found only in quadrants I and III.

(b) Hysteretic loops in Q-x coordinates

The equation of the elliptical hysteretic loops in coordinates Q-x is given by the
equation parameterized by k and ζ discrete variables and by the continuous variable
x ∈ [−A,+A]. In this case we have

Q(x, Ω) = k
[

x± 2ζΩ
√

A2 − x2
]

(13)

where Ω is Ωa < 1, Ωp > 1 and Ω = 1 [23–25].
In Figure 11 at Ωa = 0.8 in ante-resonance, for the three significant values and kc, ζc,

kα, ζα and k f , ζ f it is presented as the family of elliptical loops, all inclined in quadrants I
and III.
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Figure 12 at Ωp = 1.5 in post-resonance, for the three sets of significant values kc, ζc,
kα, ζα and k f , ζ f there are presented the hysteretic loops in quadrants I and III.
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Figure 12. Hysteretic loops Q-x in post-resonance regime for Ω = 1.5.

Figure 13 for Ω = 1 at resonance presents the hysteretic loops for the three sets of
significant data. It is found that the areas of the elliptical hysteretic loops are the same as
the ones in Figure 10 in the F-x system at resonance.
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5. Conclusions

Based on the analysis of the analytical relations established both for the dissipated
energy as well as for the representation of the hysteretic loops specific to the linear vis-
coelastic system that models a dynamic stand for elastomeric anti-vibration devices, the
following conclusions can be drawn:

(a) The analytical expression of the dissipative energy offers the possibility of evaluation
for two significant cases, namely:

- The variation of the dissipated energy depending on the discrete change of the
damping for the three dynamic regimes: ante-resonance, post-resonance and
resonance;

- The variation of the dissipated energy depending on the variation of Ω for discrete
variable sets of values of k and ζ;

(b) The representation of the elliptical hysteretic loops in the F-x coordinate system for
the three cases of the dynamic regimes, namely: ante-resonance, post-resonance and
resonance. It was found that in post-resonance the inclination of the axes of the
ellipses towards the ante-resonance regime changes due to the inertial effect of the
mass, and in resonance, the ellipses are symmetrically centered in relation to the F-x
axis system.

(c) The elliptical hysteretic loops in the Q-x system are inclined only in quadrants I and
III, regardless of the dynamic regime.

(d) The areas of the ellipses represent the dissipated energy. The numerical results were
verified by experimental lifting of hysteretic loops on the dynamic stand.

The experimental values were verified in accordance with those numerically deter-
mined by hysteretic loops with deviations of −3–5%.
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