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Abstract: The measurement of the energy consumption of electrical appliances, where the meter
is installed at a single point on the main input circuit of the building, is called non-intrusive load
monitoring (NILM). The NILM method can distinguish the loads that are currently active and
break down how the loads consume electricity. A microcontroller with embedded software was
selected to read the data into the NILM method process at a low sampling rate every 1 s or 1 Hz.
The measured data and the data obtained by the NILM algorithm were displayed via an internet
platform. This article presents an alternative low-cost embedded NILM system for household energy
conservation with a low sampling rate, which could identify electrical appliances such as an air
conditioner, refrigerator, television, electric kettle, electric iron, microwave oven, rice cooker, and
washing machine. Four features of symmetry pattern were extracted, containing information on
the value of active power change, the value of reactive power change, the number of intersection
points between the active power data and the reference line, and an estimation of an equation for
the starting characteristics of the electrical equipment. The proposed NILM system was tested in
a selected test house that used a single-phase power system. A typical meter was also installed to
compare the results with the proposed NILM. The validity of the tests was checked for 1 month in
3 houses to analyze the results. The proposed method was able to detect 91.3% of total events. The
accuracy of the average ability of the system to disaggregate devices was 0.897. The accuracy value
for total power consumption was 0.927. The continuous data recording of the NILM method provides
information on the behavior of electrical appliances that can be used for maintenance and warnings.

Keywords: nonintrusive load monitoring (NILM); embedded system; disaggregation load

1. Introduction

Currently, if electricity consumers want to check their electricity consumption, they
can read it from the meter on the electricity pole or from the common meter board in
their residential building, or they can check their electricity bill every month, which is
unfavorable for energy conservation or management. The feedback of the total electricity
consumption gives an overview of the whole house. However, there is no clear information
about the energy consumption of each appliance. The Thai Energy Consumption Report in
2020, prepared by the Provincial Electricity Authority and the Municipal Electricity Au-
thority, indicates that residential electricity consumption is 27.1% of the total consumption,
while the number of electricity users in the residential sector accounts for 89.7% of all users.
Real-time data on the electricity consumption of electrical appliances are required to achieve
effective energy savings. Continuous feedback of each appliance’s electricity consumption
data enables users to change their behavior and save about 12% of their electricity, while
monthly feedback of electricity consumption enables savings of about 3.8% of electricity [1].
To improve the efficiency of electrical appliances, continuous data on appliance energy
consumption can be used to plan and maintain appliances, such as by analyzing data on
refrigerator defrosting or air conditioner cleaning. If energy conservation agencies want
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to analyze the electricity consumption of residential electric appliances, data collection is
very time-consuming and labor-intensive. To achieve effective residential energy savings,
a low-investment technology is needed that uses electrical power measurement, called
non-intrusive load monitoring (NILM).

Generally, determining the consumption status of electrical appliances requires the
installation of a voltage sensor and a current sensor on each electrical appliance, which
is referred to as direct measurements or intrusive load monitoring systems [2,3]. Several
disadvantages have been found in this method, such as the interruption of the load circuit,
the cost of the electricity meter, the installation cost, the free space for the installation of
the hardware, etc. NILM methods or indirect measurements focus on the use of a main
electricity meter to indicate the operating status and energy consumption characteristics of
electrical appliances [3]. Non-intrusive load monitoring is becoming increasingly important
in terms of information needs for power management, and more and more smart meters
are being installed in the power grid [4].

NLIM classification is based on the sampling rate: a high sampling rate (<1 s), low
sampling rate (1 s–15 min), or very low sampling rate (15 min–1 h). The implementation of
complex features such as harmonics, transients, or current–voltage relationships requires
a high sampling rate from a dedicated meter [5]. A smart meter with a communication
interface of 1 Hz [6,7] is an example of a low sampling rate. Automatic meter reading
(AMR) corresponding to every 10, 15, 30, and 60 min [8–10] is a very low sampling rate data
collection method. In this study, a single master point energy meter was used to achieve
an active power sampling rate of 1 Hz. In recent years, several electricity consumption
datasets have been made publicly available for testing the NILM algorithm. The best-
known and most widely used dataset that records power consumption at 1 sample per
second is the Reference Energy Classification (REDD) dataset [7]. Other datasets include the
Building-Level Labeled Electricity Disaggregation (BLUED) dataset [11], which contains 8
days of household electricity data, and the dataset measured every 1 min known as the
Almanac of Minutely Power (AMPds) [12,13], which contains two years of data. Event-
based algorithms can be classified into two categories as follows [14]: an event-based
algorithm is a load signature detection algorithm that assumes that only one electrical
device changes state at a given time, and a non-event-based algorithm in the case of a
meter installation with a low reading frequency of once every 1–15 min is developed with
a hidden Markov model to evaluate the operating conditions of the electrical device based
on the total active power. Classification by a data disaggregation algorithm can be divided
into two types [15]: supervised learning, i.e., using unique electrical device data to train the
system to recognize patterns and discriminate the data, and unsupervised learning [4,16],
in which the data are discriminated assuming that similar features come from the same
type of devices, and then the data are divided into groups for devices. Moreover, natural
language processing has been used to solve the NILM problem [16–19]. The relationship
between different device models or sub-models connected in a chain has been used for
disaggregation for NILM [20,21].

In this article, we present our work to develop a low-cost embedded NILM using
only one microcontroller. The proposed method presented in this article for detecting
the first change in the data set is based on estimating the reference line using polynomial
equations and then finding the intersection between the data set and the reference line.
Four features of symmetry patterns are extracted containing the following information: the
value of symmetry change in active power (∆P), the value of symmetry change in reactive
power (∆Q), the amount of incremental and decremental changes from a set of active power
by estimated reference lines using polynomial equations, and equations for the starting
characteristics of electrical appliances obtained via polynomial curve fitting.
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2. Principle of Nonintrusive Load Monitoring

Indirect measurements of the energy consumption of household electrical appliances
are a core concept of non-intrusive load monitoring. Household electrical data are collected
at the main circuit and then extracted to obtain the power consumption and operating time
of appliances classified as a system.

The NILM system consists of components as shown in Figure 1, which are divided
into four parts as follows [22]:

• Data monitoring is the part that measures and records the data used for disaggregation.
There are various electricity meters that measure the gross weight of a building [15,23],
such as smart meters;

• Event detection is the part that detects changes in electrical values that represent a
change in the operating conditions of electrical appliances [24];

• Feature extraction of electrical data from the main meter is the extraction of certain
features in relation to time;

• Classification is the part that breaks down or groups the electrical appliances that have
been analyzed using the features extracted from the meter data.
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In addition to the four main components mentioned above, there are other components:
a training dataset or specific data on electrical appliances and a display part, which displays
the energy consumption of each electrical appliance to consumers as information in order
to save energy in the household.

3. Load Model

Measurement of the energy consumption of electrical appliances for energy conserva-
tion requires all appliances to be measured to determine the potential for energy savings,
especially in terms of maintenance and operation. Table 1 shows the percentage of house-
holds in Thailand ranked by ownership of electrical appliances and the corresponding
energy consumption [25–27]. From the data in Table 1, when analyzing the percentage
of household energy consumption, it can be concluded that air conditioners consume the
most energy because they are appliances that consume a lot of electricity and have a long
operating time even if they are not in use all day. The next appliance is the refrigerator,
which does not consume a lot of electricity but is in operation all day. When analyzing the
percentages of energy consumption for the whole country, the refrigerator is the appliance
with the highest energy consumption; this is different from the percentages of household
energy consumption because the ownership rate of air conditioners is much lower than
the ownership rate of refrigerators. This article breaks down the electrical appliance con-
sumption rates for the air conditioner, refrigerator, television, electric kettle, electric iron,
microwave oven, rice cooker, and washing machine.



Symmetry 2022, 14, 279 4 of 21

Table 1. Percentages of households classified by ownership of electrical appliances with their
proportion of energy consumption.

Appliance
Percentage of
Ownership of
Appliance (%)

Average Power (Watts)
Percentage of Energy
Consumption in the

Residence (%)

Percentage of Energy
Consumption in the

Country (%)

Lighting 99.9 42 9 15
Electric Fan 98.8 60 8 14
Television 94.2 69 8 14

Rice cooker 91.4 750 4 6
Refrigerator 90.6 103 17 26
Electric iron 80.2 1015 1 1

Kettle 78.6 700 1 2
Washing machine 68.8 267 1 1

Air conditioner 29.4 1150 45 19
Microwave oven 24.7 1310 1 1

Others - - 5 1

The operating load model was used for pretraining in this article [28–30]. A typical
energy meter was selected to record the characteristics of electrical devices. The active
power, reactive power, current, and voltage measured by the energy meter were recorded
in the memory of the microcontroller with a sampling rate of 1 Hz. The signatures of the
devices are shown in Figure 2.
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The signatures of the appliances may be displayed as follows:

• The air conditioner is overloaded when switched on. Active power and inductive
reactive power are components of these devices;

• The refrigerator is associated with a very high rise in P–Q when it is first switched on.
Active power and inductive reactive power are components of this appliance;

• The electric iron, rice cooker, and kettle are resistive loads that have only active power.
After the first time in the range, the electric iron will work for a narrow period like a
pulse signal;

• When starting a television, it will switch between high and low active power before it
reaches a steady state. Active power and capacitive reactive power are components of
these devices;

• Active power and inductive reactive power are components of microwave ovens;
• A washing machine is an appliance that operates in many patterns of electrical power

per use.

Normally, the switch-on power of the electrical appliances fluctuates, while a certain
value is given when they are switched off, as shown in Figure 3. The on and off active and
reactive power levels of the electrical appliances are symmetrical, as shown in Figure 4. The
symmetrical characteristics can be used to determine the operating power as information
for grouping electrical appliances.
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4. Proposed Embedded NILM Software

The overall process of the proposed NILM algorithm is shown in Figure 5 as follows:
The microcontroller requests data from the meter every 1 s, which includes voltage, current,
active power, reactive power, and power. In the first round, 30 datapoints are requested,
and in the next round, 1 datapoint is requested at a time on a first-in, first-out basis.

• To detect the changes in the data series, we first use change detection by estimating the
reference line using polynomial equations and then finding the intersection between
the data set and the reference line. If we first find a rising edge and then a falling edge
in the same set of data, this indicates a pulsed electrical device. If the timing of the rising
edge is far from the timing of the falling edge, an iron or kettle could be in operation.

• A three-point method is used to calculate ∆P and ∆Q [28–31]. There are nine possible
patterns for this method. A Flat–Flat pattern means a stable condition of the load;
otherwise, there are instabilities. To find a Flat–Flat pattern, it can be expressed as
Equation (1):

||Pt3 − Pt2| − |Pt2 − Pt1|| < threshold (1)

where Pt3, Pt2, and Pt1 are the active power as a function of time at t1, t2, and t3,
respectively.

• Pre-grouping of ∆P is divided into two conditions: by power size (<400 W and >400 W)
and by power factor (unity lagging and leading).

• Four features of symmetry pattern extractions are selected in this article: ∆P, ∆Q, and
the amount of intersection points (rising and falling edge) between the active power
data and the reference line estimated by polynomial equations, and polynomial curves
fitting the starting time of active power.

• Table 2 shows the conditions for classification. We start the grouping with the values
∆P and ∆Q. If the results of discrimination are unclear, the other characteristics must
be used, as shown in Table 2, and Equation (2) is used for the final elimination of that
grouping which has the most accurate correlation value:

P(t) + jQ(t) = ∑n
i=1 ai(t)(Pi + jQi) + e(t) (2)
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where P(t) is the total active power, Q(t) is the total reactive power, ai(t) is the state of
electrical appliance i (1: ON, 0: OFF), Pi is the threshold active power of appliance i.
Qi is the threshold reactive power of appliance i, n is the number of appliances that
can be distinguished, and e(t) is the error of electrical power.

Table 2. Conditions of classification.

Appliance Active Power
Threshold (W)

Reactive Power
Threshold (Var)

Chance to Pulse
in One Data Set

Amount of
Rising/Falling

Starting Curve
Fitting

Air conditioner 950 200 0 1/1 Overshoot
Refrigerator 90 80 0 1/1 High Overshoot
Television 50 −6 0 2/1 2 Steps

Electric iron 1000 0 3 1/1 1 Step
Kettle 700 0 1 1/1 1 Step

Rice cooker 600 0 0 1/1 1 Step
Microwave oven 1350 100 2 2/1 2 Steps
Washing machine 200 120 5 >2/>2 Triangle

The energy efficiency evaluation is an assessment of the correctness of disaggregation
of the energy consumption of electrical appliances from the total electrical energy [7] with
1 h interval time and 1 month period time, defined formally as:

ET
Acc = 1− ∑P

i=1 ∑N
i=1

∣∣ŷi
t − yi

t
∣∣

2×∑P
t=1 ∑N

t=1
∣∣yi

t
∣∣ (3)

Ei
Acc = 1− ∑P

i=1
∣∣ŷi

t − yi
t
∣∣

2×∑P
t=1

∣∣yi
t
∣∣ (4)

where ET
Acc is the accuracy of the total energy consumption estimation, Ei

Acc is the accuracy
of estimating the energy consumption of device i, Ŷk

t is the accumulated energy in time t of
device i estimated from NILM, Yi

t is the accumulated energy in time t of device i read from
the meter, P is the total testing period, and N is the number of target appliances.

We used confusion matrix assessment [32] to evaluate the accuracy of the prediction
to identify appliances.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

Accuracy =
TP + TN

(TP + FP) + (FN + TN)
(7)

F1-score = 2× Precision× Recall
Precision + Recall

(8)

Here, TP refers to the total number of true positives, TN refers to the total number
of true negatives, FP refers to the total number of false positives, and FN refers to the
total number of false negatives. Precision is the detection accuracy, Recall is the accuracy
of appliance disaggregation, Accuracy is the total accuracy, and the F1-score is the average
ability of the system to disaggregate appliances.
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5. Proposed NILM System Implementation

The components of the embedded NILM box and the individual meter were similar,
but they were different in the proposed programming within the microcontroller. The
hardware diagram was based on Figures 6 and 7 with an NB-IoT board as an additional
option for cases where the installation site does not have internet access. The actual device
is shown in Figure 8. The electrical value is measured using an SM120 single-phase power
meter. The ESP32 microcontroller model, which operates at a speed of 160 MHz and has
large memory and built-in WIFI, was selected to read the data in Modbus RTU protocol
over RS485 every 1 s. ThingSpeak was the cloud server used in this article. The installation
of the NILM embedded box is shown in Figure 9.
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6. Results and Discussion

The test installation in House 1 for a period of 30 days from 1 September 2019 to
30 September 2019 was implemented to classify eight types of appliances. A typical
power meter was installed directly with the electrical appliances to compare with the
disaggregated data from the proposed NILM and determine their accuracy. The data from
the typical power meter and the proposed NILM were sent to the internet server in real
time as shown in Figure 10. At the beginning of the system installation, the data were
grouped from the symmetric ∆P and ∆Q values that occur over time to form a database
for identifying the device type, as shown in Figure 11. The active and reactive power
values were determined for the records in the database to group the devices. The power
values obtained during startup show high power dissipation, while the stop values are
low. Due to the symmetrical characteristics of the power during the on time and the off
time, the power value determined in the off time was selected for recording in the database.
Figures 12 and 13 show an example of the display when the electrical appliances were
turned on or off, for which four data sets were compared.

Figures 14 and 15 show the total and appliance power from the meter and appliance
power from NILM from example data for 15–16 September 2019. Figures 16 and 17 show
the hourly total energy consumption and air conditioner energy consumption during
September measured by the meter and estimated from the proposed NILM.
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Figure 12. Comparison of the active power of the air conditioner between direct measurements and
estimation by NILM. (a) Total active power measured by the main meter; (b) Active power of the
air conditioner measured by the meter connected directly to the appliance; (c) Total active power
from the power of all electrical appliances broken down by the NILM; (d) Active power of the air
conditioner broken down by the NILM.

Figures 16 and 17 show that the hourly electricity consumption estimated by the
NILM method is similar to that from direct meter measurements in terms of both energy
consumption and duration. An assessment was made based on the Confusion Matrix
method according to Equations (5)–(8); the system tested had 5860 changes in electrical
appliance performance, among which the proposed method detected 5398 changes in the
timing of the data.

The evaluation results shown in Table 3 and Figure 18 have an average accuracy
F1-score of 0.90. The device with the lowest F1-score was the television as it was similar to
other devices that were not among the electrical appliances considered, such as a fan, etc.,
followed by the rice cooker, because it changes an average of twice a day and looks like a
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kettle; therefore, there is a chance of error in distinguishing these devices, but most devices
could be distinguished with a very good rating.
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Figure 13. Comparison of the active power of the washing machine between direct measurements
and estimation by NILM. (a) Total active power measured by the main meter; (b) Active power of
the washing machine measured by the meter connected directly to the appliance; (c) Total active
power from the power of all electrical appliances broken down by the NILM; (d) Active power of the
washing machine broken down by the NILM.
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Table 3. Assessment scores of appliance disaggregation.

Appliance Total Events TP FP FN TN Precision Recall Accuracy F1-Score

Air conditioner 2540 2454 21 40 2923 0.99 0.98 0.99 0.99
Refrigerator 1543 1329 105 216 3964 0.93 0.86 0.94 0.89
Television 125 97 60 28 5241 0.62 0.78 0.98 0.69

Electric iron 790 738 22 52 4638 0.97 0.93 0.99 0.95
Kettle 290 238 21 46 5139 0.92 0.84 0.99 0.88

Rice cooker 52 44 10 8 5344 0.81 0.85 0.99 0.83
Microwave oven 230 223 4 7 5171 0.98 0.97 0.99 0.98
Washing machine 290 275 4 15 5119 0.99 0.95 0.99 0.97
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The results of the validity assessment of the energy consumption values, according
to Equations (2) and (3), are shown in Table 4 and Figure 19, showing a graph comparing
the cumulative energy consumption in each hour of the day of electrical appliances in
September from direct measurements and the proposed NILM estimates, with similar
results. For the evaluation results per device, the air conditioner has the highest accuracy
score of 0.96, while the TV has the worst evaluation result because it has low power
consumption and a low F1-score. Another interesting device is the washing machine,
which attained an F1-score as high as 0.97 but a power accuracy score of 0.86 because of
the washing machine’s motor spinning back and forth, making the estimated power less
than the active power consumption from direct measurement with the meter. This result in
Figure 20 shows that the difference in total electrical energy consumption for the whole
month was 9.5 kWh or 6.10%.

The test installation in House 2 for a period of 29 days from 1 February 2020 to
29 February 2020 was implemented to classify eight types of appliances. Figure 21 shows
the total and appliance power from the meter and appliance power from NILM in example
data for 11 February 2020. The evaluation results in Table 5 show an average accuracy
F1-score of 0.91. The lowest F1-score was obtained for the kettle because it changes an
average of twice a day.
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Table 4. Assessment of energy accuracy.

Appliance Total Energy
[Meter] (kWh)

Total Energy
[NILM] (kWh) Ei

Acc

Air conditioner 91.8 89.1 0.96
Refrigerator 34.5 31.4 0.90
Television 6.2 5.3 0.81

Electric iron 3.9 3.7 0.94
Kettle 7.1 6.1 0.87

Rice cooker 6.0 5.7 0.93
Microwave oven 2.4 1.9 0.89
Washing machine 5.2 4.2 0.86

Total 157 148 ET
Acc = 0.94
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Table 5. Assessment scores of appliance disaggregation (House 2).

Appliance Total Events TP FP FN TN Precision Recall Accuracy F1-Score

Air conditioner 1056 976 16 66 1116 0.98 0.94 0.96 0.96
Refrigerator 466 416 4 42 1688 0.99 0.91 0.98 0.95
Water heater 256 238 2 10 1868 0.99 0.96 0.99 0.98
Electric iron 300 244 4 20 1860 0.98 0.92 0.99 0.95

Kettle 42 40 19 2 2049 0.68 0.95 0.99 0.79
Rice cooker 46 42 4 4 2062 0.91 0.91 0.99 0.91

Microwave oven 20 14 2 6 2092 0.88 0.70 0.99 0.99
Washing machine 156 138 2 15 1968 0.99 0.90 0.99 0.94

The results of the validity assessment of the energy consumption values are shown
in Table 6. The result in Figure 22 shows that the difference in total electrical energy
consumption for the whole month was 11.7 kWh or 8.0%.

Table 6. Assessment of energy accuracy (House 2).

Appliance Total Energy
[Meter] (kWh)

Total Energy
[NILM] (kWh) Ei

Acc

Air conditioner 60.0 56.6 0.93
Refrigerator 37.7 36.6 0.95
Water heater 23.9 23.4 0.95
Electric iron 1.4 1.7 0.86

Kettle 3.0 2.6 0.92
Rice cooker 15.7 10.2 0.80

Microwave oven 0.7 0.6 0.86
Washing machine 3.3 2.3 0.83

Total 145 134 ET
Acc = 0.92

The test installation in House 3 for a period of 31 days from 1 March 2020 to 31 March 2020
was implemented to classify six types of appliances. Figure 23 shows the total and ap-
pliance power from the meter and appliance power from NILM with example data for
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14 March 2020. The evaluation results in Table 7 show an average accuracy F1-score of 0.88.
The lowest F1-score was obtained for a water pump.

Symmetry 2022, 13, x FOR PEER REVIEW 16 of 22 
 

 

Table 5. Assessment scores of appliance disaggregation (House 2). 

Appliance Total Events TP FP FN TN Precision Recall Accuracy F1-Score 
Air conditioner 1056 976 16 66 1116 0.98 0.94 0.96 0.96 

Refrigerator 466 416 4 42 1688 0.99 0.91 0.98 0.95 
Water heater 256 238 2 10 1868 0.99 0.96 0.99 0.98 
Electric iron 300 244 4 20 1860 0.98 0.92 0.99 0.95 

Kettle  42 40 19 2 2049 0.68 0.95 0.99 0.79 
Rice cooker 46 42 4 4 2062 0.91 0.91 0.99 0.91 

Microwave oven 20 14 2 6 2092 0.88 0.70 0.99 0.99 
Washing machine 156 138 2 15 1968 0.99 0.90 0.99 0.94 

The results of the validity assessment of the energy consumption values are shown 
in Table 6. The result in Figure 22 shows that the difference in total electrical energy con-
sumption for the whole month was 11.7 kWh or 8.0%. 

Table 6. Assessment of energy accuracy (House 2). 

Appliance Total Energy 
[Meter] (kWh) 

Total Energy 
[NILM] (kWh) 𝑬𝑨𝒄𝒄𝒊  

Air conditioner 60.0 56.6 0.93 
Refrigerator 37.7 36.6 0.95 
Water heater 23.9 23.4 0.95 
Electric iron 1.4 1.7 0.86 

Kettle  3.0 2.6 0.92 
Rice cooker 15.7 10.2 0.80 

Microwave oven 0.7 0.6 0.86 
Washing machine 3.3 2.3 0.83 

Total 145 134 𝐸  = 0.92 

 
Figure 22. Proportions of energy consumed by electrical appliances measured by meter readings 
and estimated from NILM (House 2). 

The test installation in House 3 for a period of 31 days from 1 March 2020 to 31 March 
2020 was implemented to classify six types of appliances. Figure 23 shows the total and 

Figure 22. Proportions of energy consumed by electrical appliances measured by meter readings and
estimated from NILM (House 2).

Symmetry 2022, 13, x FOR PEER REVIEW 17 of 22 
 

 

appliance power from the meter and appliance power from NILM with example data for 
14 March 2020. The evaluation results in Table 7 show an average accuracy F1-score of 
0.88. The lowest F1-score was obtained for a water pump. 

 
Figure 23. Active power from direct measurements and estimation by NILM (14 March 2020). 

Table 7. Assessment scores of appliance disaggregation (House 3). 

Appliance Total Events TP FP FN TN Precision Recall Accuracy F1-Score 
Air conditioner 1899 1824 16 75 1718 0.99 0.96 0.97 0.97 

Refrigerator 1502 1308 105 214 2145 0.92 0.85 0.91 0.89 
Water heater 88 80 5 8 3473 0.94 0.90 0.99 0.92 
Water pump 206 162 50 44 3346 0.76 0.78 0.97 0.77 

Microwave oven 102 86 22 16 3450 0.79 0.84 0.98 0.81 
Washing machine 110 98 6 12 3454 0.94 0.89 0.99 0.91 

The results of the validity assessment of the energy consumption values are shown 
in Table 8. The result in Figure 24 shows that the difference in total electrical energy con-
sumption for the whole month was 37 kWh or 13.3%. 

Table 8. Assessment of energy accuracy (House 3). 

Appliance Total Energy 
[Meter] (kWh) 

Total Energy 
[NILM] (kWh) 𝑬𝑨𝒄𝒄𝒊  

Air conditioner 171.0 153.0 0.94 
Refrigerator 69.8 55.9 0.89 
Water heater 10.0 9.1 0.91 
Water pump 5.4 4.3 0.79 

Microwave oven 5.8 4.9 0.84 
Washing machine 14.1 12.6 0.86 

Total 277 240 𝐸  = 0.92 
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The results of the validity assessment of the energy consumption values are shown
in Table 8. The result in Figure 24 shows that the difference in total electrical energy
consumption for the whole month was 37 kWh or 13.3%.

The test results of the three sample houses and a summary of the comparisons accord-
ing to the proposed methods are shown in Table 9.

Continuous data on electrical appliances estimated by NILM can be used to plan the
maintenance of electrical appliances and to warn when the appliances are not in use.
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When the iron is plugged in and turned on, but not in use, it stays hot all the time and
consumes energy. Figure 25 shows a comparison of the active power when the electric iron
is in use and when it is not in use. When the electric iron is not in use, it is turned off for a
longer time and turned on for a shorter time, about 8 times per 20 min, and the duty cycle
is symmetrical, while when the electric iron is in use it is turned on more than 16 times per
20 min. The number of times the electric iron is turned on and off per interval can be used
to help decide whether to send a warning message to the homeowner.

Table 7. Assessment scores of appliance disaggregation (House 3).

Appliance Total Events TP FP FN TN Precision Recall Accuracy F1-Score

Air conditioner 1899 1824 16 75 1718 0.99 0.96 0.97 0.97
Refrigerator 1502 1308 105 214 2145 0.92 0.85 0.91 0.89
Water heater 88 80 5 8 3473 0.94 0.90 0.99 0.92
Water pump 206 162 50 44 3346 0.76 0.78 0.97 0.77

Microwave oven 102 86 22 16 3450 0.79 0.84 0.98 0.81
Washing machine 110 98 6 12 3454 0.94 0.89 0.99 0.91

Table 8. Assessment of energy accuracy (House 3).

Appliance Total Energy
[Meter] (kWh)

Total Energy
[NILM] (kWh) Ei

Acc

Air conditioner 171.0 153.0 0.94
Refrigerator 69.8 55.9 0.89
Water heater 10.0 9.1 0.91
Water pump 5.4 4.3 0.79

Microwave oven 5.8 4.9 0.84
Washing machine 14.1 12.6 0.86

Total 277 240 ET
Acc = 0.92
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If the refrigerator door is not fully closed, the system can be checked by the actual
power drop rate, which is lower than that when the door is fully closed. As shown in
Figure 26, the active power drop rate is−0.0063 watt/second when the refrigerator door is not
fully closed, while the active power drop rate is −0.0168 watt/second when the refrigerator
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door is closed. The embedded NILM system can relay this information to the homeowner by
sending a message through the LINE notify application installed in the microcontroller.

Table 9. A summary of the results of disaggregation of electrical appliances by the proposed NILM
method for the three sample houses.

List House 1 House 2 House 3 Average

Number of appliances 8 8 6 -
Number of test days 30 29 31 -

Number of events 5860 2342 3907 -
Number of events detected 5398 2104 3558 -

Total energy [METER] (kWh) 157 145 277 -
Total energy [NILM] (kWh) 148 134 240 -

F1-score 0.90 0.91 0.88 0.897
ET

Acc 0.94 0.92 0.92 0.927
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When the ambient temperature is higher, the air conditioner tends to consume more
electricity, as shown in Figure 27. Some of this electricity is used for cooling. From the
results of continuous data measurement using the NILM principle, the relationship between
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the temperature and power can be derived as shown in Figure 27. The same approach can
be used to determine the optimum time to clean the air conditioner for better cooling.
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In addition, the data on each electrical appliance may be used for other purposes, such
as a notification that the kettle has boiled (to avoid having to restart the appliance, which
is not energy efficient), a notification that the washing machine has finished its cycle, or a
notification that the air conditioner is running outside of normal use.

7. Conclusions

In this article, we presented low-cost and real-time monitoring in a proposed NILM
system that uses only one microcontroller to operate all functions. From testing in selected
houses, the proposed NILM-based processor design obtained data from a low-sampling-
rate meter every 1 s and stored it as a dataset for processing. Active power change was
determined using the method of finding the intersection of the data set and the reference
line created by polynomial equations. The proposed method was able to detect 91.3% of
total change. The final identification of the dataset used four characteristic extractions:
∆P, ∆Q, number of intersections, and the curve fitting of the starting characteristics of
appliances. The accuracy of the system’s ability to disaggregate devices was found to be
0.897. The accuracy rating of the total electric electrical energy was 0.927. The proportions
of electrical energy consumed by the electrical appliances were comparable for both the
direct measured value from the meter and the estimated value from the proposed NILM
method. Through the internet platform, a detailed real-time graph showing the total power,
the status of the total electrical power consumption, and electrical power per device worked
correctly. Continuous recording of electrical appliances using the proposed NILM method
has a low investment cost but can be used to analyze the behavior of electrical appliances
for preventive maintenance and to provide alarms.
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