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Abstract: One of the most challenging tasks in physics has been understanding the route an out-of-
equilibrium system takes to its thermalized state. This problem can be particularly overwhelming
when one considers a many-body quantum system. However, several recent theoretical and experi-
mental studies have indicated that some far-from-equilibrium systems display universal dynamics
when close to a so-called non-thermal fixed point (NTFP), following a rescaling of both space and time.
This opens up the possibility of a general framework for studying and categorizing out-of-equilibrium
phenomena into well-defined universality classes. This paper reviews the recent advances in ob-
serving NTFPs in experiments involving Bose gases. We provide a brief introduction to the theory
behind this universal scaling, focusing on experimental observations of NTFPs. We present the
benefits of NTFP universality classes by analogy with renormalization group theory in equilibrium
critical phenomena.
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1. Introduction

Although studying closed interacting quantum many-body systems is challenging,
some theories have successfully described aspects of these systems [1]. Quantum statisti-
cal mechanics provides a good description of many physical systems in thermodynamic
equilibrium. However, most natural phenomena occur under conditions outside equilib-
rium. This brings us to a new challenge in searching for descriptions of out-of-equilibrium
conditions that allow a reasonable understanding of the observations.

Some observables are insensitive to initial conditions and system parameters in cer-
tain situations, leading to universal phenomena. In the case of far-from-equilibrium initial
conditions, this can be observed well before an equilibrium or a quasi-stationary state is
reached. This has been investigated in a wide variety of systems such as the inflation in the
early Universe [2–6], heavy-ion collisions producing quark–gluon matter [7–10], and cold-
gas systems, in both theory [5,11–17] and experiments [18–21]. A universal spatio-temporal
scaling emerges, independent of the initial state or microscopic parameters.

It has been suggested that the universal scaling observed in these far-from-equilibrium
isolated systems is due to the presence of non-thermal fixed points (NTFPs) [4,5,9,13,22].
In the literature, it is possible to find evidence of non-thermal universality classes encom-
passing a variety of systems. These are far away from any phase transitions; hence, their
mechanism cannot be the same as that of the well-known critical phenomena and their
characteristic exponents. Another difference is that no fine-tuning of the parameters is
required to observe the characteristic scaling provided by nearby NTFPs, unlike in equi-
librium critical phenomena, where system variables need to be tuned to specific critical
values. This is evidenced by the universal scaling for several different initial states in
NTFP investigations.

Recently, with the advent of Bose–Einstein condensates (BECs) [23], the possibility of
carrying out controlled experiments has become a reality, opening a window of opportunity
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to investigate intrinsic properties of these systems or even classify them according to their
pattern of time evolution.

The production of an out-of-equilibrium BEC can be achieved experimentally in sev-
eral ways, one of them being via so-called “quantum quenching”. The system, initially in
equilibrium, is represented by a Hamiltonian H(α0), where α0 is a set of system parameters.
Then, an abrupt change is made to a new situation described by a Hamiltonian H(α1),
where α1 is a new collection of parameters. In this case, the system leaves the equilibrium
condition, having its previous state determined by H(α0) as its initial condition. Its tem-
poral evolution is unitary and governed by the new Hamiltonian H(α1). The operator
U = exp[−iH(α1)t/h̄] determines what happens until the system can decay to a new state
of H(α1). One example corresponds to abrupt potential changes, when only a few degrees
of freedom are present, allowing a simplified system evolution. This simplicity can change
when dealing with a system with many degrees of freedom, which is the case in a many-
body quantum system. Each subsystem can see the rest as a reservoir, and the final time
evolution can take quite complicated routes. There are many open questions, including the
fundamental question of how the system evolves temporally toward equilibrium, or even
how to quantify the out-of-equilibrium state and identify which system components are
determinant in the typical relaxation time for a new state of equilibrium.

Since there are many quench protocols that can be employed to produce out-of-
equilibrium BECs, some even preserving symmetries present in the equilibrium state,
the question of whether a system can approach a NTFP arises. In general, this depends
strongly on the chosen initial conditions, which should correspond to extreme out-of-
equilibrium configurations [24]. For example, in the case of a dilute Bose gas, this could
be achieved by populating only modes below a certain momentum scale Q. The initial
state, a constant momentum distribution for k < Q that drops abruptly at k = Q, is
strongly overpopulated at low momenta (compared to the final equilibrium distribution).
Hence, the subsequent dynamics is of particle transport toward lower momenta and
energy migration to high momenta. If the spatio-temporal scaling presented in Section 2 is
observed, then this is a “smoking gun” indicating a nearby NTFP [24].

In experiments, preparing and maintaining a closed system can be very challenging.
Cold-atom systems are, in this sense, very close to the ideal. Isolation allows experimental
access by external agents in a controlled manner. The isolation of trapped condensates and
the excellent control of quantum states are fundamental elements required to achieve long
coherence times, an essential feature in out-of-equilibrium studies since the coherence time
must be of at least the same order as the temporal scale of the dynamics involved.

Some clarification about the scope of this review is in order. We chose to focus our
attention on experiments involving Bose gases [18–21]. Although this corresponds only to
a small part of all research being conducted on NTFPs, we consider these examples to be
illustrative of the field. Notably, it is possible to present straightforward applications of the
theory without exploring its inner workings. For readers that wish to do so, we provide
references that may be helpful [17,24,25]. One of the motivations is to use cold-atom setups
to simulate the dynamics of currently inaccessible systems; for example, the inflation of the
early Universe. This is counter-intuitive because cold-atom systems are in the low-energy
regime, whereas the early Universe is at the other end of the energy spectrum. It is only
possible through the universal scaling due to the presence of NTFPs.

This paper is organized as follows. In Section 2, we introduce the universal scaling
provided by NTFPs and related quantities of interest. Section 3 presents four experiments
dealing with NTFPs in Bose gas systems: a quasi-one-dimensional Bose gas in Section 3.1;
a spin-1 condensate in Section 3.2; a homogeneous condensate in three-dimensions in
Section 3.3; and a turbulent harmonically trapped BEC in Section 3.4. Finally, a summary is
given in Section 4.
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2. Universal Scaling and NTFPs

Our goal in this section is to present the universal scaling function and its associated
exponents. The motivations, details, and derivations regarding the NTFP theory can be
found in [17,24,25] and the references therein. The theory developed for NTFPs is inspired
by equilibrium renormalization group theory where, in the vicinity of a phase transition,
the correlations are self-similar (independent of the resolution). Thus, scaling the spatial
resolution by a parameter s creates a correlation function that depends on the distance x
between two points behave according to C(x; s) = sζ f (x/s). In this way, the correlation
is characterized exclusively by a universal exponent ζ and a function f . A fixed point in
equilibrium critical phenomena corresponds to a situation where varying s does not change
C(x; s), meaning that the universal function is a power law, f (x) ∝ x−ζ . In physical systems,
this behavior is approximate, and information may be retained about characteristic scales.

Non-thermal fixed points in the dynamics of far-from-equilibrium systems are anal-
ogous to fixed points in critical equilibrium phenomena, with the distinction that the
former uses the time t as the scale parameter. Near NTFPs, the correlations take the form
C(x, t) = tα f (t−βx), now with two universal exponents. Universality classes, in this con-
text, correspond to the same exponents α and β and a scaling function f . Figure 1 shows a
schematic time evolution for a system that encounters an NTFP.

Initial conditions

Non-thermal fixed point

Equilibrium

No fine-tuning

Universal scalingT
im

e
ev
ol
u
ti
on

Figure 1. Illustration of the dynamics of a system passing near an NTFP. For several initial conditions
(the key idea being that no fine-tuning is needed), the system can pass near a non-thermal fixed point.
The correlation functions show a spatio-temporal scaling with a universal function when that occurs.
After some time, the system leaves the vicinity of the NTFP and reaches equilibrium.

In the case of cold bosonic gases, the momentum distribution can be used to character-
ize the time evolution of the system. Consider an isotropic momentum distribution, i.e., a
distribution that is only a function of k = |k| and time, n(k, t). The total number of particles
N(t) is obtained by integrating the momentum distribution,

N(t) =
∫

ddk n(k, t). (1)

We provide the d-dimensional expression, since we cover the cases d = 1, 2, and 3
in this review. The fluctuations in the total number of particles in cold-gas experiments
are relatively small due to the low temperatures involved and the high levels of control
that one can exert over these systems. However, unwanted losses occur mainly due
to the heating of the sample. For this reason, several experimental studies report the
momentum distribution normalized by the total number of particles at a given time,
n̄(k, t) ≡ n(k, t)/N(t). In theoretical and numerical investigations, N is a fixed number
and this distinction is irrelevant.
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The universal scaling displayed by a system in the vicinity of an NTFP is given by

n̄(k, t) =
(

t
t0

)α

f

[(
t
t0

)β

k

]
. (2)

where α and β are scaling exponents, f is a universal scaling function, and t0 is an arbitrary
reference time within the time interval where the scaling takes place. From this definition
of the scaling exponents, it is possible to see that the sign of α is related to the direction of
the particle transport. Positive values indicate particles migrating toward lower momenta,
whereas negative values increase the population of the high-momentum components.

Global Observables

Besides the important result of Equation (2), there are also global observables of
interest when dealing with systems that display universal scaling due to the presence of
nearby NTFPs. The main difference is that these quantities are computed in the infrared
(IR) scaling region, kD 6 (t/t0)

βk 6 kc, where kD is the smallest wave vector that can be
measured (inversely proportional to the largest length scale of the system D, typically its
size) and kc defines the cut-off where the universal scaling takes place.

One of the observables is the number of particles in the scaling region,

N̄(t) =
∫

k6
(

t
t0

)−β
kc

ddk n̄(k, t) ∝
(

t
t0

)α−dβ

. (3)

A necessary condition for Equation (2) to hold is that N̄(t) is constant during the time
interval where the universal scaling is observed. The time dependence N̄(t) ∝ tα−dβ can
be derived straightforwardly by inserting Equation (2) into Equation (3) and changing the
variables of integration.

The moments of the momentum distribution can also be computed in the region of the
universal scaling. The second moment has the physical interpretation of the mean kinetic
energy per particle in the scaling region,

M̄2(t) =
∫

k6
(

t
t0

)−β
kc

ddk
k2n̄(k, t)

N̄(t)
∝
(

t
t0

)−2β

. (4)

Its time dependence, M̄2 ∝ t−2β, can also be derived using Equations (2) and (3).
Hence, the sign of β is related to the direction of the energy transport. For β > 0, the energy
leaves the scaling region and migrates to higher momenta, whereas a negative sign indicates
an energy increase in the IR scaling interval.

These are not the only global observables that can be defined. For example, in Section 3.2
we encounter another quantity, relevant in the context of a spinor condensate.

3. Experiments
3.1. One-Dimensional Bose gas

The authors in [18] produced a one-dimensional Bose gas by strongly quenching a
three-dimensional one. They reported a universal scaling in the time-dependent momentum
distribution due to the presence of an NTFP.

These authors employed 87Rb atoms, which correspond to a repulsively interacting
Bose gas in a very elongated (quasi-1D) harmonic trap. At the beginning of the experiment,
the thermal gas was just above the critical temperature. During the quench, the trap depth
was ramped linearly, such that its final value was below the first radially excited state. This
causes the evaporation of atoms occupying higher energy states. Finally, the depth of the
trap was raised to close the trap. The resulting Bose gas was in a far-from-equilibrium
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condition, and its evolution was recorded after a time t. They were able to probe the system
using both the in situ density and the momentum distribution, which is the quantity of
interest for the universal scaling in the form of Equation (2).

Some aspects of the momentum distribution at early and late times were known.
The authors provided a quantitative description of the initial state in terms of solitonic
defects [14,26]. Since the quenching procedure is almost instantaneous, the initial state had
a large population of high-energy modes, which makes the observation of the universal
dynamics associated with NTFPs possible when the system relaxes. During the time
evolution of the system, a peak appears at low momenta, indicative of the formation of
the quasi-condensate. The system reaches a thermal quasi-condensate state at late times,
which is described by a Lorentzian function (its width is inversely proportional to the
temperature).

The normalized momentum distributions are shown in Figure 2a. As time progresses,
the distribution increases (decreases) at low (high) momenta, signaling the formation of the
quasi-condensate. In Figure 2b, the authors provide the scaled curves using Equation (2)
with α = 0.09(5) and β = 0.10(4). All curves, below a cut-off value kc indicated by a dashed
line in the figure, collapse into a single universal function. Both exponents are positive,
indicating that particles migrate toward the low-momenta region, and energy flows in the
high-momenta direction. This is consistent with the formation of a quasi-condensate after
the quenching procedure is performed. The theoretical study in [5] predicts a value of
β = 1/2, independent of the dimension d, for far-from-equilibrium dynamics in an isolated
Bose gas following a strong quench. The authors of [18] provide arguments for why this
theory does not apply fully to their system.

Figure 2. Universal scaling dynamics observed by the authors of [18]. (a) Time evolution of the
normalized momentum distributions. (b) Momentum distributions scaled according to Equation (2).
All the curves collapse into a single function, signaling the universal scaling. Reprinted by permission
from Springer Nature Customer Service Centre GmbH: Springer Nature, Nature, Erne et al., Universal
dynamics in an isolated one-dimensional Bose gas far from equilibrium, © 2018.

As well as analyzing the momentum distributions, the authors also computed the num-
ber of particles and the mean kinetic energy per particle in the scaling region (Equations (3)
and (4)). The quantity N̄ was approximately constant in that region, which is consistent
with the time-dependence prediction of Equation (3), i.e., N̄(t) ∝ tα−dβ, since d = 1 and
the authors found α ≈ β. Moreover, the M̄2 ∝ t−2β behavior was also verified in the region
of interest. As expected, both quantities showed a different time dependence outside the
scaling region.

3.2. Spinor Bose Gas

The authors in [19] observed universal dynamics in a quasi-one-dimensional spinor
Bose gas [27] by analyzing spin correlations. They employed a 87Rb gas in the F = 1
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hyperfine state, which has three possible magnetic sublevels: mF = −1, 0, 1. Hence, it
behaves as a spin-1 system with ferromagnetic interactions [28]. Initially, all atoms are in
the mF = 0 state. The system is driven far from equilibrium by a sudden change in the
energy splitting of the sublevels, producing excitations in the Fx − Fy plane.

Although both this system and the one presented in Section 3.1 are quasi-one-dimensional
systems, the degrees of freedom and underlying physics are quite different. Hence, the func-
tion entering into the scaling described by Equation (2) is not as straightforward as being
simply the momentum distribution. For details regarding the function and the measure-
ments, the reader is referred to [19]. Here, we present only a brief overview.

First, the authors computed the mean spin length, 〈|F⊥(t)|〉, where F⊥ = Fx + iFy. A lo-
cal angle was defined and extracted using θ(y, t) = arcsin(Fx(y, t)/〈|F⊥(t)|〉). Fluctuations
were probed by means of a two-point correlation function, C(y, y′; t) = 〈θ(y, t)θ(y′, t)〉.
Finally, the desired function is the structure factor, which is the averaged Fourier transform:

fθ(k, t) =
∫

dy
∫

dȳ C(y + ȳ, y; t)e−2πikȳ. (5)

Although the derivation of the function defined in Equation (5) may seem more
intricate than the more familiar momentum distribution of Section 3.1, both are functions of
momentum and time and are determined by experimental parameters and the initial state.

In Figure 3a the authors present the time evolution of the structure factor. It is possible
to see a shift toward lower momenta as time passes. When the scaling of Equation (2)
is applied to the data, all the points collapse into a single universal curve, as shown in
Figure 3b. The exponents employed were α = 0.33(8) and β = 0.54(6).

Figure 3. Universal scaling in a spinor Bose gas [19]. (a) Time evolution of the structure factor
(Equation (5)). (b) After the scaling of Equation (2) has been applied, the curves collapse into a
universal function. Reprinted by permission from Springer Nature Customer Service Centre GmbH:
Springer Nature, Nature, Prüfer et al., Observation of universal dynamics in a spinor Bose gas far
from equilibrium, © 2018.

The authors also find a relevant global observable
∫

dk fθ(k, t), which is an approxi-
mately conserved quantity during the evolution. The arguments used in Section 2 can be
employed to derive its time dependence ∝ tα−β. The observed migration of the conserved
quantity toward lower momenta is consistent with β > 0.

Although the values of the exponents do not strictly correspond to α ≈ β, as one
would expect from α− dβ = 0, we should keep in mind that this system is composed of
Ns = 3 unidimensional Bose gases, for which there are no theoretical predictions. For other
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systems described by O(Ns) symmetric models and d > 2, the universal value of β ≈ 0.5
has been predicted [5].

3.3. Homogeneous Three-Dimensional Bose Gas

The authors of [20] observed a bidirectional dynamical scaling in a homogeneous
three-dimensional Bose gas [29]. While the systems described in Sections 3.1 and 3.2
only report universal scaling in the IR region, the authors of [20] also observed scaling in
the ultraviolet (UV) region of the momentum distribution, hence the term bidirectional.
Although the authors found a different set of exponents for the universal scaling in each
region, these do not correspond to two different NTFPs. Instead, they are a consequence
of particle transport toward small momenta and energy transport toward large momenta,
in agreement with NTFP theory [24].

In their experiment, the authors employed 39K atoms in a cylindrical box, producing
a homogeneous 3D Bose gas. Their experimental protocol depended on the depth of the
optical box trap and the s-wave two-body scattering length a, which characterizes the
interparticle interactions. First, a cloud containing the atoms just above the condensation
temperature was prepared. The idea was to quickly remove atoms and energy from
the system to produce a far-from-equilibrium state. This was achieved by turning off
the interactions (a → 0) and lowering the depth of the trap so that high-energy atoms
evaporated. Since there are no interactions, the system does not thermalize. This step
removed ≈77% of the atoms and ≈98% of the energy such that, if it were in equilibrium,
a significant fraction of the system would condense. Next, the system was closed again
by increasing the depth of the trap potential. At t = 0, interactions were turned on again
(a 6= 0) and thermalization began to take place. After a variable time t, the momentum
distribution n(k, t) was obtained through absorption images. For long enough times,
the system reaches equilibrium with both condensed and thermal components.

During thermalization, the total number of particles N and total energy E are con-
served, but there are two distinctive flows in opposite directions as time progresses. The ma-
jority of particles migrate toward the IR region, consistent with the condensate formation,
but a small fraction of the atoms transfer the energy in the UV direction.

The presence of a nearby NTFP allows for the universal scaling of Equation (2) in a
time interval between the initial and equilibrium states. In Figure 4a, the authors show the
unscaled n(k, t) profiles. The UV region is described well by the exponents α = −0.70(7)
and β = −0.14(2) (Figure 4b), while the IR region collapses into a universal function with
α = 1.15(8) and β = 0.34(5) (Figure 4c).

Figure 4. Universal bidirectional scaling in a homogeneous Bose gas [20]. (a) Momentum distributions
as a function of time. (b) Scaling provided by Equation (2) with α = −0.70(7) and β = −0.14(2),
which collapses the curves into a universal function for the UV region. (c) The top panel shows
the low-momenta region of the momentum distributions, while the bottom one depicts the scaling
of Equation (2) with α = 1.15(8) and β = 0.34(5). Reprinted by permission from Springer Nature
Customer Service Centre GmbH: Springer Nature, Nature Physics, Glidden et al., Bidirectional
dynamic scaling in an isolated Bose gas far from equilibrium, © 2021.
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For a d-dimensional system with a dispersion relation of the form ω(k) ∝ kz, energy
density conservation requires α/β = d + z [17,24]. Hence, the UV scaling, where α/β ≈ 5,
is consistent with energy-conserving transport with a quadratic dispersion relation in 3D.
Moreover, weak-wave turbulence predicts a value of β = −1/6 for the UV dynamics [30,31],
close to that observed in [20].

For the IR region, α/β ≈ 3, consistent with particle conservation in d = 3 dimensions.
While several theoretical investigations predict β = 1/2 for the IR region [4,5,17], certain
conditions may yield β = 1/3 [24,32].

The authors of [20] also investigated a dynamical scaling depending on the interactions
t→ ta/a0, where a0 is a reference scattering length. The exponents obtained by this other
scaling were similar to those previously obtained.

3.4. Harmonically Trapped Three-Dimensional Bose gas

The authors in [21] investigated the emergence of universal scaling due to the presence
of NTFPs in a harmonically trapped three-dimensional Bose gas, driven to a turbulent state.

The experiment began with a cigar-shaped 87Rb BEC with a condensed fraction of
≈70% in equilibrium. The production of a far-from-equilibrium state was achieved by
a sinusoidal time-varying magnetic field gradient, such that it was not aligned with the
principal axes of the trap. This corresponds to rotations and distortions of the original
trap shape. The amplitude, frequency, and duration of the excitation could be varied and
controlled. At t = 0 the excitation was turned off, and the system was left to evolve in the
trap. After a time t, absorption images were taken to obtain the momentum distribution of
the system.

The emergence of a turbulent state depends on the parameters of the excitation proto-
col, as identified by a characteristic power-law behavior. Figure 5a shows the time evolution
of the momentum distribution of a turbulent state. As time passes, the distribution shifts
toward high momenta, indicating the depletion of the condensate. The scaling employing
Equation (2) with α = −0.50(8) and β = −0.2(4) is shown in Figure 5b, which collapses all
curves into a single function.
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Figure 5. Universal scaling in a turbulent harmonically trapped Bose gas [21]. (a) Momentum
distributions of the turbulent state. (b) Scaled momentum distributions with α = −0.50(8) and
β = −0.2(4). Figure taken from [21].

The momentum distributions of Figure 5a were obtained via absorption images of the
cloud, corresponding to two-dimensional projections of a three-dimensional system. Using
the inverse Abel transform [33] and some assumptions, the authors in [21] were able to
reconstruct the three-dimensional momentum distributions (see Figure 6a). The exponents
determined using the two-dimensional projections did not provide the universal scaling,
as evidenced by Figure 6b. The authors showed that the exponents obtained through the
scaling of a projection were related to those of the isotropic three-dimensional distribution
through α3D = 3α/2 (β remains the same). Using α = −0.75 and β = −0.2, the collapse
into a universal function was much better adjusted, as shown in Figure 6c.
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Figure 6. (a) Three-dimensional momentum distribution reconstructed with the inverse Abel trans-
form. (b) Scaling provided by Equation (2) with α = −0.50 and β = −0.2, which are the same
exponents as those employed in the two-dimensional projection. (c) Scaling using α = −0.75 and
β = −0.2, corresponding to the prediction of the exponents for the three-dimensional case. The col-
lapse is much better than that shown in panel (b). The figure is taken from [21].

The global observables of Equations (3) and (4) were also computed in [21]. The
authors observed a slight decrease in the particle number in the scaling region, N̄ ∝ t−0.1,
and an increase in the mean kinetic energy consistent with M̄2 ∝ t−2β. These obser-
vations are consistent with the energy leaving the IR region and the depletion of the
condensate. The authors also presented the benefits of merging quantum turbulence
phenomena into a universality class of dynamically scaling systems characteristic of
NTFPs [5,13,17,22,24–26,31,34,35].

4. Final Remarks

In this review, we focused on experiments with Bose gases that, due to the presence of
NTFPs, display the spatio-temporal scaling of Equation (2). Table 1 contains a summary
of the systems and related exponents. Although we discussed these experiments only
in terms of dimensionality, the number of components, and the signs of the exponents,
these systems cover a wide range of scenarios.

Table 1. Summary of the exponents α and β found in the experiments covered in this review [18–21].
We indicate the dimensionality d, the number of components Ns, and the two different sets of
exponents found in [20,21].

Bose Gas d Ns α β

1D [18] 1 1 0.09(5) 0.10(4)

Spinor [19] 1 3 0.33(8) 0.54(6)

3D Homogeneous [20]
IR region 3 1 1.15(8) 0.34(5)
UV region 3 1 −0.70(7) −0.14(2)

Turbulent, harmonically trapped [21] 2D projection 2 1 −0.50(8) −0.2(4)
3D reconstruction 3 1 −0.75 −0.2

A common aspect of the experiments presented in this review is the relation followed
by the scaling exponents, α ≈ dβ, in the IR region. This is not surprising, since according to
Equation (3), N̄ ∝ tα−dβ and N̄(t) must be conserved during the interval where the scaling
occurs. Nevertheless, verifying these theoretical predictions experimentally in systems that
are so different from each other strengthens the claim regarding NTFPs.

In equilibrium critical phenomena, renormalization group theory and fixed points
lead to critical exponents [36], which provide a unified description in terms of universality
classes sharing the same exponents. The experimental evidence provided by the studies
presented in this review is crucial to providing something similar in isolated far-from-
equilibrium systems. Hopefully, the interplay between theory and experiments may lead
to classification schemes based on universal properties, which would be important for
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various systems. This would allow, for example, cold-atom experiments to be employed to
simulate different systems of the same universality class.
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