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1 Department of Mathematics and Computer Science, İstanbul Kültür University, 34158 Istanbul, Turkey;
asnfigen@hotmail.com

2 Department of Mathematics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
* Correspondence: luminita.cotirla@math.utcluj.ro

Abstract: We create two Sakaguchi-type function classes that are starlike and convex with respect to
their symmetric points, including a q-difference operator, which may have symmetric or assymetric
properties, in the open unit disc. We first obtain sufficient coefficient bounds for these functions. In
view of these bounds, we obtain quasi-Hadamard products and several partial sums for these function
classes. Moreover, the special values of the parameters provided the corresponding consequences of
the partial sums.
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1. Introduction

A can be used to denote the family of holomorphic (analytic) functions with the expansion

f (ε) = ε +
∞

∑
`=2

a`ε` (1)

in the open-unit disc D := {ε : |ε| < 1}. If a function f is one-to-one in D, then it is
called univalent in D . Let S be the subclass of A comprising all univalent functions in A.
Comprehensive details on univalent functions can be found in [1].

Quantum calculus is an approach to examining the calculus without using the limits.
The most important step in q-calculus was discoverd by Jackson, who defined the useful
formulas of q-integral and q-derivative operators (see [2–4]). Later, q-calculus has attracted
the attention of researchers due to its applications in several areas of mathematics, such as
combinatorics, ordinary fractional calculus, basic hypergeometric functions, orthogonal
polynomials, and, more recently, in geometric function theory.

In 1909, Jackson [2] introduced the operator

(Dq f )(ε) =
f (ε)− f (qε)

(1− q)ε
, (ε 6= 0), (Dq f )(0) = f ′(0)

which is said to be q-derivative (or q-difference) operator of a function f . By taking q-
derivative of the function f in the form (1), we can see that

(Dq f )(ε) = 1 +
∞

∑
`=2

[`]qa`ε`−1,

where

[`]q =
1− q`

1− q
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is called q-number of `. The parameter q is assumed to be within the range (0, 1). Clearly,
Dq → d

dε as q→ 1−. For more details, one can see the books and papers on q-derivative [5–22]
and references therein.

Sakaguchi [23] defined function f ∈ A as starlike with respect to its symmetric points
if, for each r less than and sufficiently close to one, and each ξ on the circle |ε|= r, the
angular velocity of f (ε) at about the point f (−ξ) is positive at ε = −ξ as ε traverses the
circle |ε|= r in the positive direction, i.e.,

Re
(

ε f ′(ε)
f (ε)− f (−ξ)

)
> 0 for ε = ξ, |ξ| = r.

Denote by S∗s the class of starlike functions with respect to symmetric points is given by

Re
(

ε f ′(ε)
f (ε)− f (−ε)

)
> 0, (ε ∈ D).

The above function is univalent in D because ( f (ε)− f (−ε))/2 is a starlike function
in D.

Denote by Cs the class of convex functions with respect to symmetric points, character-
ized by (Das and Singh [24])

Re
(

(ε f ′(ε))′

( f (ε)− f (−ε))′

)
> 0, (ε ∈ D).

In [25], Owa et al. generalized the aforementioned classes and defined class S∗s (σ, t) by

Re
(
(1− t)ε f ′(ε)
f (ε)− f (tε)

)
> σ, |t| ≤ 1, t 6= 1

for some σ (0 ≤ σ < 1) and for every ε ∈ D. They also defined class Cs(σ, t), where
f ∈ Cs(σ, t) if and only if ε f ′S∗s (σ, t).

Motivated by q-difference operator, we define two new Sakaguchi-type function
classes as follows.

Definition 1. Let q ∈ (0, 1), 0 ≤ σ < 1, |t|≤ 1, t 6= 1 and ε ∈ D, a function f ∈ A is a member
of the class Sq

s (σ, t) if and only if

Re
(
(1− t)εDq( f (ε))

f (ε)− f (tε)

)
> σ. (2)

We call Sq
s (σ, t) the class of q-starlike functions with respect to symmetric points of order σ.

Definition 2. Let q ∈ (0, 1), 0 ≤ σ < 1, |t|≤ 1, t 6= 1 and ε ∈ D, a function f ∈ A is a member
of the class Cq

s (σ, t) if and only if

Re
(
(1− t)Dq(εDq f (ε))

Dq( f (ε)− f (tε))

)
> σ. (3)

We call Cq
s (σ, t) the class of q-convex functions with respect to symmetric points of order σ.

For special parameter values, these classes reduce to the following known classes:

(1) Letting q → 1− in Definitions 1 and 2, we obtain the classes S∗s (σ, t) and Cs(σ, t)
defined by Owa et al. [25].

(2) Letting q → 1−, σ = 0 and t = −1 in Definitions 1 and 2, we obtain the classes S∗s
(Sakaguchi [23]) and Cs (Das and Singh [24]).
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(3) Letting q→ 1− and t = 0 in Definitions 1 and 2, we obtain the classes S∗(σ) of starlike
functions of order σ and C(σ) of convex functions of order σ.

T can be used to indicate the class of analytic functions with negative coefficients in
the form

f (ε) = a1ε−
∞

∑
`=2

a`ε`, (a1 > 0, a` ≥ 0). (4)

We also define the classes

T Sq
s (σ, t) := T ∩ Sq

s (σ, t),

T Cq
s (σ, t) := T ∩ Cq

s (σ, t).

For special parameter values, these classes reduce to the following classes with nega-
tive coefficients:

(1) Letting q → 1−, we obtain the classes T Sq
s (σ, t) =: T S∗s (σ, t) and T Cq

s (σ, t) =:
T Cs(σ, t).

(2) Letting q → 1− and t = 0, we obtain the classes T Sq
s (σ, t) =: T S∗(σ) of starlike

functions of order σ and T Cq
s (σ, t) =: T C(σ) of convex functions of order σ defined

by Silverman [26].

For the functions f given by (4) and g(ε) = b1ε − ∑∞
`=1 b`ε` (b1 > 0, b` ≥ 0), the

quasi-Hadamard product is defined by

f (ε) ∗ g(ε) = a1b1ε−
∞

∑
`=2

a`b`ε`.

Owa [27] defined the quasi-Hadamard product of two or more functions, and later
Kumar [28] studied quasi-Hadamard products of certain function classes. Let the functions
fi (i = 1, . . . , m) and gj (j = 1, . . . , k) with the series expansions

fi(ε) = a1,iε−
∞

∑
`=2

a`,iε
`, (a1,i > 0; a`,i ≥ 0) (5)

gj(ε) = b1,jε−
∞

∑
`=2

b`,jε
`, (b1,j > 0; b`,j ≥ 0) (6)

be analytic in D. Using h, denote the product f1 ∗ f2 ∗ . . . ∗ fm ∗ g1 ∗ g2 ∗ . . . ∗ gk, which is
defined by

h(ε) =
{ m

∏
i=1

a1,i

k

∏
j=1

b1,j

}
ε−

∞

∑
`=2

{ m

∏
i=1

a`,i

k

∏
j=1

b`,j

}
ε`. (7)

The studies of partial sums was first initiated by Sheil-Small [29] in 1970. He proved
that inf Re{ f (ε)/ fk(ε)} for f ∈ C(0) occurs when k = 1. In [30], Silvia studied the
sharp lower bounds on Re{ f (ε)/ fk(ε)} of the starlike, and convex functions of order σ.
Furthermore, Silverman [31] introduced several type-partial sums for starlike, and convex
functions. In view of these previous works, we seek the ratios of a function in the form (4)
to its sequence of partial sums fk(ε) = a1ε−∑k

`=2 a`ε` when the coefficients of the function
f are adequately small.

To do this, we first introduce sufficient coefficient estimates for the function classes
T Sq

s (σ, t) and T Cq
s (σ, t). In Section 3, we introduce a quasi-Hadamard product of for these

function classes using their coefficient estimates. In Section 4, we obtain the ratios of the
function in the form (4) to its sequence of partial sums fk when the coefficients of the
function f in the classes T Sq

s (σ, t) and T Cq
s (σ, t) are sufficiently small, and obtain lower

bounds for the ratios of Re{ f (ε)/ fk(ε)}.
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2. Coefficient Bounds

We first provide sufficient coefficient estimates for the classes T Sq
s (σ, t) and T Cq

s (σ, t).

Lemma 1. If a function f given by (4) holds

∞

∑
`=2

(
|[`]q − υ`|+ (1− σ)|υ`|

)
|a`| ≤ (1− σ)a1, (8)

where υ` = 1 + t + t2 + . . . + t`−1, then f is a member of the class Sq
s (σ, t).

Proof. Assume that (8) holds; then, we need to prove that∣∣∣∣ (1− t)εDq( f (ε))
f (ε)− f (tε)

− 1
∣∣∣∣ < 1− σ.

Thus, we observe

(1− t)εDq( f (ε))
f (ε)− f (tε)

− 1 =
−∑∞

`=2([`]q − υ`)a`ε`

a1ε−∑∞
`=2 a`υ`ε`

=
−∑∞

`=2([`]q − υ`)a`ε`−1

a1 −∑∞
`=2 a`υ`ε`−1 ,

which provides ∣∣∣∣ (1− t)εDq( f (ε))
f (ε)− f (tε)

− 1
∣∣∣∣ ≤ ∑∞

`=2|[`]q − υ`||a`|
a1 −∑∞

`=2|a`||υ`|
.

Therefore, if (8) holds, then we have∣∣∣∣ (1− t)εDq( f (ε))
f (ε)− f (tε)

− 1
∣∣∣∣ < 1− σ.

Hence, the proof is completed.

Lemma 2. If a function f given by (4) holds

∞

∑
`=2

[`]q
(
|[`]q − υ`|+ (1− σ)|υ`|

)
|a`| ≤ (1− σ)a1, (9)

where υ` = 1 + t + t2 + . . . + t`−1, then f is a member of the class T Cq
s (σ, t).

Proof. In view of the Alexander [32] relation f ∈ T Cq
s (σ, t) if and only if ε f ′ ∈ T Sq

s (σ, t).
Thus, by using (3) and (4), we obtain the result.

To further prove these results, we need to define a class T Sq
c,s(σ, t) as follows:

Lemma 3. A function f in the form (4) is a member of the class T Sq
c,s(σ, t) if

∞

∑
`=2

[`]cq
(
|[`]q − υ`|+ (1− σ)|υ`|

)
|a`| ≤ (1− σ)a1, (10)

where υ` = 1 + t + t2 + . . . + t`−1, satisfies for all fixed non-negative real numbers c.

We observe that for all real number c, the class T Sq
c,s(σ, t) consists of the functions in

the form

f (ε) = a1ε−
∞

∑
`=2

(1− σ)a1

[`]cq
(
|[`]q − υ`|+ (1− σ)|υ`|

) ϕ`ε
`,
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where a1 > 0, ϕ` ≥ 0, ∑∞
`=2 ϕ` ≤ 1. For such functions, the following inclusion rela-

tion holds:

(i) For c = 1, T Sq
1,s(σ, t) ≡ T Cq

s (σ, t).
(ii) For c = 0, T Sq

0,s(σ, t) ≡ T Sq
s (σ, t).

(iii) T Sq
c1,s(σ, t) ⊂ T Sq

c2,s(σ, t), (c1 > c2 ≥ 0).
(iv) T Sq

c,s(σ, t) ⊂ . . . ⊂ T Sq
2,s(σ, t) ⊂ T Sq

1,s(σ, t) ⊂ T Sq
0,s(σ, t).

3. Quasi-Hadamard Products

Here, we present three theorems related to the quasi-Hadamard product for functions
in the classes T Sq

s (σ, t) and T Cq
s (σ, t).

Theorem 1. Let the functions fi (i = 1, 2, . . . , m), given by (5), be a member of the class T Sq
s (σ, t).

Then, the product f1 ∗ f2 ∗ . . . ∗ fm belongs to the class T Sq
m−1,s(σ, t).

Proof. To prove the theorem, we need to show that

∞

∑
`=2

[
[`]m−1

q
(
|[`]q − υ`|+ (1− σ)|υ`|

) m

∏
i=1

a`,i

]
≤ (1− σ)

m

∏
i=1

a1,i.

Since fi ∈ T S
q
s (σ, t), we have

∞

∑
`=2

(
|[`]q − υ`|+ (1− σ)|υ`|

)
a`,i ≤ (1− σ)a1,i (11)

for all i = 1, 2, . . . , m; thus,(
|[`]q − υ`|+ (1− σ)|υ`|

)
a`,i ≤ (1− σ)a1,i

or
a`,i ≤

1− σ(
|[`]q − υ`|+ (1− σ)|υ`|

) a1,i.

The right hand side of the last inequality is no bigger than [`]−1
q a1,i and we obtain

a`,i ≤ [`]−1
q a1,i (12)

for every i = 1, 2, . . . , m.
By making use of the inequality (12) for i = 1, 2, . . . , m− 1 and the inequality (11) for

i = m, we obtain

∞

∑
`=2

[
[`]m−1

q
(
|[`]q − υ`|+ (1− σ)|υ`|

) m

∏
i=1

a`,i

]

≤
∞

∑
`=2

[
[`]m−1

q
(
|[`]q − υ`|+ (1− σ)|υ`|

)
a`,m

{
[`]
−(m−1)
q

m−1

∏
i=1

a1,i

}]

=
∞

∑
`=2

(
|[`]q − υ`|+ (1− σ)|υ`|

)
a`,m

{ m−1

∏
i=1

a1,i

}
≤ (1− σ)

m

∏
i=1

a1,i.

Since T Sq
m−1,s(σ, t) ⊂ T Sq

m−2,s(σ, t) ⊂ . . . ⊂ T Sq
0,s(σ, t) ≡ T Sq

s (σ, t); therefore,

f1 ∗ f2 ∗ . . . ∗ fm ∈ T Sq
m−1,s(σ, t).



Symmetry 2022, 14, 709 6 of 11

Thus, the proof is completed.

With q→ 1−, Theorem 1 leads to the next result.

Corollary 1. Let the functions fi (i = 1, 2, . . . , m), given by (5), be a member of the class
T S∗s (σ, t). Then, the product f1 ∗ f2 ∗ . . . ∗ fm belongs to the class T Sm−1,s(σ, t).

Theorem 2. Let the functions fi (i = 1, 2, . . . , m), given by (5), be a member of the class T Cq
s (σ, t).

Then, the product f1 ∗ f2 ∗ . . . ∗ fm belongs to the class T Sq
2m−1,s(σ, t).

Proof. We need to prove that

∞

∑
`=2

[
[`]2m−1

q
(
|[`]q − υ`|+ (1− σ)|υ`|

) m

∏
i=1

a`,i

]
≤ (1− σ)

m

∏
i=1

a1,i.

Since fi ∈ T C
q
s (σ, t), we have

∞

∑
`=2

[`]q
(
|[`]q − υ`|+ (1− σ)|υ`|

)
a`,i ≤ (1− σ)a1,i (13)

for each i = 1, 2, . . . , m; thus,

[`]q
(
|[`]q − υ`|+ (1− σ)|υ`|

)
a`,i ≤ (1− σ)a1,i

or
a`,i ≤

1− σ

[`]q
(
|[`]q − υ`|+ (1− σ)|υ`|

) a1,i.

The right side is no bigger than [`]−2
q a1,i. Thus,

a`,i ≤ [`]−2
q a1,i (14)

for every i = 1, 2, . . . , m.
By making use of the inequality (14) for i = 1, 2, . . . , m− 1 and the inequality (13) for

i = m, we obtain

∞

∑
`=2

[
[`]2m−1

q
(
|[`]q − υ`|+ (1− σ)|υ`|

) m

∏
i=1

a`,i

]

≤
∞

∑
`=2

[
[`]2m−1

q
(
|[`]q − υ`|+ (1− σ)|υ`|

)
a`,m

{
[`]
−2(m−1)
q

m−1

∏
i=1

a1,i

}]

=
∞

∑
`=2

[`]q
(
|[`]q − υ`|+ (1− σ)|υ`|

)
a`,m

{ m−1

∏
i=1

a1,i

}
≤ (1− σ)

m

∏
i=1

a1,i.

Since T Sq
2m−1,s(σ, t) ⊂ T Sq

2m−2,s(σ, t) ⊂ . . . ⊂ T Sq
1,s(σ, t) ≡ T Cq

s (σ, t); hence,

f1 ∗ f2 ∗ . . . ∗ fm ∈ T Sq
2m−1,s(σ, t).

This is the desired result.

Using q→ 1−, Theorem 2 gives the following result.

Corollary 2. Let the functions fi (i = 1, 2, . . . , m), given by (5), be a member of the class T Cs(σ, t).
Then, the product f1 ∗ f2 ∗ . . . ∗ fm belongs to the class T S2m−1,s(σ, t).
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Theorem 3. Let the functions fi (i = 1, 2, . . . , m), given by (5), be in the class ∈ T Cq
s (σ, t), and

let the functions gj (j = 1, 2, . . . , k) given by (6) be in the class ∈ T Sq
s (σ, t). Then, the product

f1 ∗ f2 ∗ . . . ∗ fm ∗ g1 ∗ g2 ∗ . . . ∗ gk is in the class T Sq
2m+k−1,s(σ, t).

Proof. We need to prove that

∞

∑
`=2

[
[`]2m+k−1

q
(
|[`]q − υ`|+ (1− σ)|υ`|

){ m

∏
i=1

a`,i

k

∏
j=1

b`,j

}]
≤ (1− σ)

{ m

∏
i=1

a1,i

k

∏
j=1

b1,j

}
.

Since fi ∈ T C
q
s (σ, t), we have

∞

∑
`=2

[`]q
(
|[`]q − υ`|+ (1− σ)|υ`|

)
a`,i ≤ (1− σ)a1,i

for each i = 1, 2, . . . , m; thus,

a`,i ≤
1− σ

[`]q
(
|[`]q − υ`|+ (1− σ)|υ`|

) a1,i

and the right-hand side of the last inequality is no bigger than [`]−2
q a1,i. Thus,

a`,i ≤ [`]−2
q a1,i (15)

for each i = 1, 2, . . . , m. Similarly, since gj ∈ T S
q
s (σ, t), we have

∞

∑
`=2

(
|[`]q − υ`|+ (1− σ)|υ`|

)
b`,j ≤ (1− σ)b1,j. (16)

Hence, we can observe
b`,j ≤ [`]−1

q b1,j (17)

for every j = 1, 2, . . . , k.
By using inequality (15) for i = 1, 2, . . . , m, the inequality (17) for j = 1, 2, . . . , k− 1

and the inequality (16) for j = k, we obtain

∞

∑
`=2

[
[`]2m+k−1

q
(
|[`]q − υ`|+ (1− σ)|υ`|

){ m

∏
i=1

a`,i

k

∏
j=1

b`,j

}]

≤
∞

∑
`=2

[
[`]2m+k−1

q
(
|[`]q − υ`|+ (1− σ)|υ`|

)
b`,k

{
[`]−2m

q [`]
−(k−1)
q

m

∏
i=1

a1,i

k−1

∏
j=1

b1,j

}]

=
∞

∑
`=2

(
|[`]q − υ`|+ (1− σ)|υ`|

)
b`,k

{ m

∏
i=1

a1,i

k−1

∏
j=1

b1,j

}

≤ (1− σ)

{ m

∏
i=1

a1,i

k

∏
j=1

b1,j

}
.

Since T Sq
2m+k−1,s(σ, t) ⊂ T Sq

2m+k−2,s(σ, t) ⊂ . . . ⊂ T Cq
s (σ, t) ⊂ T Sq

s (σ, t); thus,

f1 ∗ f2 ∗ . . . ∗ fm ∗ g1 ∗ g2 ∗ . . . ∗ gk ∈ T S
q
2m+k−1,s(σ, t),

we can achieve the result.

Using q→ 1−, the Theorem 3 gives the following result.
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Corollary 3. Let the functions fi (i = 1, 2, . . . , m), given by (5), be in the class ∈ T Cs(σ, t), and
let the functions gj (j = 1, 2, . . . , k) given by (6) be in the class ∈ T S∗s (σ, t). Then, the product
f1 ∗ f2 ∗ . . . ∗ fm ∗ g1 ∗ g2 ∗ . . . ∗ gk belongs to the class T S2m+k−1,s(σ, t).

4. Partial Sums

Here, we determine sharp lower bounds for the ratios of Re{ f (ε)/ fk(ε)} belonging to
the classes T Sq

s (σ, t) and T Cq
s (σ, t).

Theorem 4. If f ∈ T Sq
s (σ, t) in the form (4) holds (8), then

Re
(

f (ε)
fk(ε)

)
≥ 1− 1− σ

|[k + 1]q − υk+1|+ (1− σ)|υk+1|
(18)

with υk = 1 + t + t2 + . . . + tk−1. This result is sharp.

Proof. Let

λ` =
|[`]q − υ`|+ (1− σ)|υ`|

(1− σ)a1
, (` ≥ 2)

then λ`+1 > λ` > 1 (` ≥ 2), it follows from (8) that

k

∑
`=2
|a`|+ λk+1

∞

∑
`=k+1

|a`| ≤
∞

∑
`=2

λ`|a`| ≤ 1.

Thus we write

ψ1(ε) = 1 + λk+1

(
f (ε)
fk(ε)

− 1
)

= 1−
λk+1 ∑∞

`=k+1 a`ε`

a1ε−∑k
`=2 a`ε`

.

which is analytic in D with ψ1(0) = 1. It suffices to show that Reψ1(ε) > 0, or∣∣∣∣ψ1(ε)− 1
ψ1(ε) + 1

∣∣∣∣ ≤ 1;

then, we obtain

∣∣∣∣ψ1(ε)− 1
ψ1(ε) + 1

∣∣∣∣ ≤ λk+1
∞
∑

`=k+1
|a`|

2a1 − 2
k
∑
`=2
|a`| − λk+1

∞
∑

`=k+1
|a`|
≤ 1

which implies that
k

∑
`=2
|a`|+ λk+1

∞

∑
`=k+1

|a`| ≤ a1. (19)

To prove the inequality (18), it is sufficent to show that LHS of (19) is bounded above

by
∞
∑
`=2

λ`|a`|, that is,

k

∑
`=2

(λ` − 1)|a`|+
∞

∑
`=k+1

(λ` − λk+1)|a`| ≥ 0.
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If we take the sharp function

f (ε) = a1ε− (1− σ)a1

|[k + 1]q − υk+1|+ (1− σ)|υk+1|
εk+1;

then, fk(ε) = a1ε and

f (ε)
fk(ε)

→ 1− 1− σ

|[k + 1]q − υk+1|+ (1− σ)|υk+1|

as ε→ 1−. Thus, the proof is completed.

Setting q→ 1− and t = 0, we obtain the partial sums for the class T S∗(σ).

Corollary 4. If f ∈ T S∗(σ) of the form (4); then,

Re
(

f (ε)
fk(ε)

)
≥ 1− 1− σ

k + 1− σ
.

For k = 1, Corollary 4 reduces to the result obtained by Silvia.

Remark 1 ([30]). If f (ε) = ε−∑∞
`=2 a`ε` ∈ T S∗(σ); then,

Re
(

f (ε)
fk(ε)

)
≥ 1

2− σ
, k = 1, 2, . . . .

Theorem 5. If f ∈ T Cq
s (σ, t) in the form (4) holds (9), then

Re
(

f (ε)
fk(ε)

)
≥ 1− 1− σ

[k + 1]q(|[k + 1]q − υk+1|+ (1− σ)|υk+1|)
(20)

with υk = 1 + t + t2 + . . . + tk−1. This result is sharp.

Proof. Let

η` =
[`]q(|[`]q − υ`|+ (1− σ)|υ`|)

(1− σ)a1
, (` ≥ 2)

then η`+1 > η` > 1 (` ≥ 2), it follows from (9) that

k

∑
`=2
|a`|+ ηk+1

∞

∑
`=k+1

|a`| ≤
∞

∑
`=2

η`|a`| ≤ 1,

thus, we write the analytic function

ψ2(ε) = 1 + ηk+1

(
f (ε)
fk(ε)

− 1
)

= 1−
ηk+1 ∑∞

`=k+1 a`ε`

a1ε−∑k
`=2 a`ε`

.

in D with ψ2(0) = 1. Therefore, we need to show that Reψ2(ε) > 0, or, equivalently, we
obtain ∣∣∣∣ψ1(ε)− 1

ψ1(ε) + 1

∣∣∣∣ ≤ ηk+1
∞
∑

`=k+1
|a`|

2a1 − 2
k
∑
`=2
|a`| − ηk+1

∞
∑

`=k+1
|a`|
≤ 1
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which indicates that
k

∑
`=2
|a`|+ ηk+1

∞

∑
`=k+1

|a`| ≤ a1. (21)

Since the LHS of (21) is bounded above by
∞
∑
`=2

η`|a`|, we can arrive at

k

∑
`=2

(η` − 1)|a`|+
∞

∑
`=k+1

(η` − ηk+1)|a`| ≥ 0;

hence, the proof is completed.
Consider the sharp function

f (ε) = a1ε− (1− σ)a1

[k + 1]q(|[k + 1]q − υk+1|+ (1− σ)|υk+1|)
εk+1;

then, fk(ε) = a1ε and

f (ε)
fk(ε)

→ 1− 1− σ

[k + 1]q(|[k + 1]q − υk+1|+ (1− σ)|υk+1|)

as ε→ 1−. Thus, the proof is completed.

Setting q→ 1− and t = 0, we obtain the partial sums for the class T C(σ).

Corollary 5. If f ∈ T C(σ) in the form (4), then

Re
(

f (ε)
fk(ε)

)
≥ 1− 1− σ

(k + 1)(k + 1− σ)
.

For k = 1, Corollary 5 reduces to the result obtained by Silvia.

Remark 2 ([30]). If f (ε) = ε−∑∞
`=2 a`ε` ∈ T C(σ), then

Re
(

f (ε)
fk(ε)

)
≥ 3− σ

4− 2σ
, k = 1, 2, . . . .

5. Concluding Remarks

Motivated by the recent applications of a q-difference operator in geometric function
theory, we defined two new subclasses of Sakaguchi-type function classes, which are
starlike and convex with respect to their symmetric points. We introduced sufficient
coefficient bounds for these function classes. By using these bounds, we obtained quasi-
Hadamard products and several partial sums for these function classes. We note that our
results naturally include several results that are known for those classes, which are listed
after Definitions 1 and 2.
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14. Oros, G.I.; Cotîrlǎ, L.I. Coefficient estimates and the Fekete-Szegö problem for new classes of m-fold symmetric bi-univalent

functions. Mathematics 2022, 10, 129.
15. Seoudy, T.M.; Aouf, M.K. Coefficient estimates of new classes of q-starlike and q-convex functions of complex order. J. Math.

Inequal. 2016, 10, 135–145.
16. Shamsan, H.; Latha, S. On generalized bounded Mocanu variation related to q-derivative and conic regions. Ann. Pure Appl.

Math. 2018, 17, 67–83.
17. Shehata, A. On q-Horn hypergeometric functions H6 and H7. Axioms 2021, 10, 336. https://doi.org/10.3390/axioms10040336
18. Shi, L.; Khan, Q.; Srivastava, G.; Liu, J.-L.; Arif, M. A study of multivalent q-starlike functions connected with circular domain.

Mathematics 2019, 7, 670.
19. Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory

of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344.
20. Srivastava, H.M.; Raza, N.; AbuJarad, E.S.A.; Srivastava, G.; AbuJarad, M.H. Fekete-Szegö inequality for classes of (p, q)-starlike

and (p, q)-convex functions. Revista Real Academia Ciencias Exactas Físicas Naturales Serie A Matemáticas 2019, 113, 3563–3584.
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