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Abstract: The space-fractional stochastic approximate long water wave equation (SFSALWWE) is
considered in this work. The Riccati equation method is used to get analytical solutions of the
SFSALWWE. This equation has never been examined with stochastic term and fractional space at the
same time. In general, the noise term that preserves the symmetry reduces the domain of instability.
To check the impact of Brownian motion on these solutions, we use a MATLAB package to plot 3D
and 2D graphs for some analytical fractional stochastic solutions.
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1. Introduction

Stochastic differential equations (SDEs) are extremely suitable for representing a
wide range of physical phenomena in various fields such as biology, chemistry, physics,
engineering, oceanography, environmental sciences, etc. [1–3]. SDEs are particularly
important in explaining all dynamical systems in which particle-physics influences are
either ignored or recognized perturbations. They could be considered as an extension of
dynamical systems theory to models with noise. This external stochastic effect is always
present in real systems because they cannot be completely isolated from their surroundings.

From another perspective, fractional derivatives are utilized to characterize numerous
physical phenomena in mathematical biology, engineering applications, electromagnetic
theory, signal processing, and different scientific studies. For example, the fractional
derivative is used throughout the fields of signal processing, viscoelasticity, control theory,
optics, dynamical system, controller tuning, and seismic wave analysis. Many articles are
published about certain attributes of fractional partial differential equations (FPDEs), such
as techniques for solution stability, the uniqueness and existence of solutions, and numerical
and exact solutions [4–9]. Recently, much time and effort have gone into developing exact
solutions for FPDEs, and many strong methods have been created for instance-modified trial
equation, exp-function, (G′/G)-expansion, sine–cosine, Jacobi elliptic function, modified
trial equation, tanh–sech, and modified Kudryashov Methods [10–22].

A few articles, such as [23–27], have investigated the acquired exact solutions for frac-
tional SDEs. As a result, we treat here the following space-fractional stochastic approximate
long water wave equation (SFSALWWE) with multiplicative noise:
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dϕ + [
1
2
D2α

y ϕ− ϕDα
y ϕ−Dα

y ψ]dt = ρϕdβ (1)

dψ− [Dα
y(ϕψ) +

1
2
D2α

y ψ]dt = ρψdβ, (2)

where Dα is the conformable fractional derivative (CFD) [28], ρ is a noise intensity, β(t) is
the Brownian motion, and ϕdβ and ψdβ are multiplicative noise in the Itô sense.

Many researchers have acquired the precise solutions of SFSALWWE (Equations (1) and (2))
with α = 1 and ρ = 0 by utilizing different techniques, including the (G′/G)-expansion method [29],
improved (G′/G)-expansion [30], and generalized extended tanh-function [31]. Moreover, the
fractional deterministic approximate long water wave equation (i.e., Equations (1) and (2) with ρ = 0)
has been solved via various methods, such as eyp(−φ(ς))-expansion [32,33], the fractional sub-
equation [34], (G′/G)-expansion [35], and generalized Kudryashov [36].

Our aim here is to utilise the Riccati equation method to secure the exact fractional-
stochastic solutions of the SFSALWWE (Equations (1) and (2)) since the exact solutions
of the stochastic approximate long water wave equation have not been studied. Hence,
the novelty of this article is to obtain exact solutions to such equations. The effects of
multiplicative noise on these solutions are also looked into, and we deduce that t he
noise term that preserves the symmetry stabilizes the obtained solutions. This is the first
publication to discover the exact solution to the SFSALWWE (Equations (1) and (2)) by
using a conformable fractional derivative.

The following is how this article will be structured: In the next section, we define
and declare the features of CFD. In Section 3, the wave equation for the SFSALWWE
(Equations (1) and (2)) is obtained, while in Section 4, we use the Riccati equation method
to attain the analytical stochastic solutions of the SFSALWWE (Equations (1) and (2)).
In Section 5, we exhibit multiple graphs to clarify the effect of multiplicative noise on
SFSALWWE solutions. In Section 6, we present the physical interpretation of our results.
In the end, we introduce the paper’s conclusions.

2. Conformable Derivative and Its Properties

We discuss here the basic definition, theorem, and properties of a CFD [28].

Definition 1. Let f : (0, ∞)→ R, then the CFD of f of order α is defined as

Tα
y f (y) = lim

h→0

f (y + hy1−α)− f (y)
h

.

Theorem 1. Let f , g : (0, ∞)→ R be differentiable, and also α differentiable functions, then the
next rule holds:

Tα
y( f ◦ g)(y) = y1−αg′(y) f ′(g(y)).

Let us state some properties of the CFD:

1. Dα
y [a f (y) + `g(y)] = aDα

y f (y) + `Dα
y g(y), a, ` ∈ R

2. Dα
y [C] = 0, C is a constant

3. Dα
y [yγ] = γyγ−α, γ ∈ R

4. Dα
y g(y) = y1−α dg

dy

3. Wave Equation for SFSALWWE

We take the wave transformation

ϕ(y, t) = u(η)e(ρβ(t)− 1
2 ρ2t), ψ(y, t) = ve(ρβ(t)− 1

2 ρ2t), η =
1
α

yα + ωt, (3)
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in order to get the wave equation of SFSALWWE (Equations (1) and (2)). Where u
and v are deterministic functions and ω is a constant. Substituting Equation (3) into
Equations (1) and (2) and using

dϕ = [(ωu′ +
1
2

ρ2u− 1
2

ρ2u)dt + ρudβ]e(ρβ(t)− 1
2 ρ2t),

dψ = [(ωv′ +
1
2

ρ2v− 1
2

ρ2v)dt + ρvdβ]e(ρβ(t)− 1
2 ρ2t),

Dα
y ϕ = u′e(ρβ(t)− 1

2 ρ2t), D2α
y ϕ = u′′e(ρβ(t)− 1

2 ρ2t), (4)

D2α
y ψ = v′′e(ρβ(t)− 1

2 ρ2t), Dα
y ψ = v′e(ρβ(t)− 1

2 ρ2t),

Dα
y(ϕψ) = (uv)′e(2ρβ(t)−ρ2t),

where + 1
2 ρ2u and + 1

2 ρ2v are the Itô correction terms, we have

ωu′ +
1
2

u′′ − uu′e(ρβ(t)− 1
2 ρ2t) − v′ = 0 (5)

ωv′ − 1
2

v′′ − (uv)′e(ρβ(t)− 1
2 ρ2t) = 0. (6)

Taking expectation E(·) for Equations (5) and (6) and taking into consideration that u
and v are deterministic function, we attain

ωu′ +
1
2

u′′ − uu′e−
1
2 ρ2tE(eρβ(t))− v′ = 0, (7)

ωv′ − 1
2

v′′ − (uv)′e−
1
2 ρ2tE(eρβ(t)) = 0. (8)

Since β(t) is standard normal distribution, then E(eρβ(t)) = e
ρ2
2 t. Now Equations (7) and (8)

have the form

ωu′ +
1
2

u′′ − uu′ − v′ = 0, (9)

ωv′ − 1
2

v′′ − (uv)′ = 0. (10)

Integrating Equations (9) and (10) once in terms of η and setting integration constants
equal to zero yields

v = ωu +
1
2

u′ − 1
2

u2, (11)

ωv− 1
2

v′ − (uv) = 0. (12)

Substituting Equations (9) and (11) into (12), we get

u′′ − 2u3 + 6ωu2 − 4ω2u = 0. (13)

4. Analytical Solutions for SFSALWWE

We use here the Riccati equation method in order to find the solutions of Equation (13).
Consequently, we acquire the analytical solutions of the SFSALWWE (Equations (1) and (2)).
Initially, we suppose the solution of Equation (13) is

u =
N

∑
i=1

aiχ
i, (14)

where χ solves
χ′ = χ2 + `, (15)
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where ` is a unknown constant. We note that Equation (15) has various types of solutions
according to:

Family I: If ` = 0, then

χ(η) =
−1
η

. (16)

Family II: If ` > 0, then

χ(η) =
√
` tan(

√
`η) or χ(η) = −

√
` cot(

√
`η). (17)

Family III: If ` < 0, then

χ(η) = −
√
−` tanh(

√
−`η) or χ(η) = −

√
−` coth(

√
−`η). (18)

Now, to determine the parameter N in Equation (14), we balance u3 with u′′ in
Equation (13) to get

N = 1.

Rewriting Equation (14) with N = 1 as

u = a0 + a1χ. (19)

Differentiating Equation (19) twice, we have

u′′ = 2a1`χ + 2a1χ3. (20)

Putting Equations (19) and (20) into Equation (13), we obtain

(2a1 − 2a3
1)χ

3 − 6(a0a2
1 −ωa2

1)χ
2

−2(−a1`+ 3a2
0a1 − 6ωa1a0 + 2ω2a1)χ

−2(2a0ω2 − 3ωa2
0 + a3

0) = 0.

Equating each coefficient of χj to zero for j = 0, 1, 2, 3, we have

2a0ω2 − 3ωa2
0 + a3

0 = 0,

−a1`+ 3a2
0a1 − 6ωa1a0 + 2ω2a1 = 0,

a0a2
1 −ωa2

1 = 0,

and
2a1 − 2a3

1 = 0.

Solving these equations, we obtain the next two sets:

Set I: a0 = ω, a1 = 1, ` = −ω, (21)

and
Set II: a0 = ω, a1 = −1, ` = −ω. (22)

For Set I: According to Equation (15), the solution of the traveling wave Equation (13) is
Family I-1: If ` = 0 (i.e., ω = 0), then

u1(η) =
1
η

.

Using Equation (11), we obtain

v1 = − 1
η2 .
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Family II-1: If ` > 0 (i.e., ω < 0), then

u2(η) = ω +
√
−ω tan(

√
−ωη).

Using Equation (11), we have

v2 =
1
2

ω2 − 1
2

ω.

Family III-1: If ` < 0 (i.e., ω > 0), then

u2(η) = ω−
√

ω tanh(
√

ωη).

Using Equation (11), we get

v2 =
1
2

ω2 − 1
2

ω.

Hence, the analytical solutions of the SFSALWWE (Equations (1) and (2)), respec-
tively, are

ϕ1(y, t) = αy−αe(ρβ(t)− 1
2 ρ2t), (23)

ψ1(y, t) = −α2y−2αe(ρβ(t)− 1
2 ρ2t), (24)

ϕ2(y, t) = [ω +
√
−ω tan(

√
−ω

α
yα + ωt)]e(ρβ(t)− 1

2 ρ2t), (25)

ψ2(y, t) = (
1
2

ω2 − 1
2

ω + ωt)e(ρβ(t)− 1
2 ρ2t), (26)

and

ϕ3(y, t) = [ω−
√

ω tanh(
√

ω

α
yα + ωt)]e(ρβ(t)− 1

2 ρ2t), (27)

ψ3(y, t) = (
1
2

ω2 − 1
2

ω + ωt)e(ρβ(t)− 1
2 ρ2t). (28)

For Set II (Equation (22)): According to Equation (15), the solutions of Equation (13) are:
Family I-2: If ` = 0 (i.e., ω = 0), then

u4(η) =
−1
η

.

Using Equation (11), we obtain
v4 = 0.

Family II-2: If ` > 0 (i.e., ω < 0), then

u5(η) = ω−
√
−ω tan(

√
−ωη),

Using Equation (11), we have

v5 =
1
2

ω2 +
1
2

ω + ω tan2(
√
−ωη).

Family III-2: If ` < 0 (i.e., ω > 0), then

u6(η) = ω +
√

ω tanh(
√

ωη).

Using Equation (11), we get

v6 =
1
2

ω2 +
1
2

ω−ω tanh2(
√

ωη).
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Hence, the analytical solution of the SFSALWWE (Equations (1) and (2)), respec-
tively, are

ϕ4(y, t) = −αy−αe(ρβ(t)− 1
2 ρ2t), (29)

ψ4(y, t) = 0, (30)

ϕ5(y, t) = [ω +
√
−ω tan(

√
−ω

α
yα + ωt)]e(ρβ(t)− 1

2 ρ2t), (31)

ψ5(y, t) = [
1
2

ω2 +
1
2

ω + ω tan2(

√
−ω

α
yα + ωt)]e(ρβ(t)− 1

2 ρ2t), (32)

and

ϕ6(y, t) = [ω +
√

ω tanh(
√

ω

α
yα + ωt)]e(ρβ(t)− 1

2 ρ2t), (33)

ψ6(y, t) = [
1
2

ω2 +
1
2

ω−ω tanh2(

√
ω

α
yα + ωt)]e(ρβ(t)− 1

2 ρ2t). (34)

5. The Influence of Noise

In this manuscript, we investigate the effect of the noise term on the SFSALWWE
(Equations (1) and (2)) solutions. To study the impact of multiplicative noise on these
solutions, we employ MATLAB tools to display some graphs for various noise strength
values. The solutions (31) and (32) for y ∈ [0, 6] and t ∈ [0, 5] are plotted below:

From Figures 1 and 2: we see that the surface is not flat and that there is some irregularity.
From Figures 3 and 4: we observe that after embedding noise and increasing its

strength by σ = 1, 2, the surface becomes significantly flatter after minor transit patterns.
We can deduce from Figures 1–5 below that the SFSALWWE (Equations (1) and (2))

solutions are affected by the multiplicative noise, which stabilizes them around zero.

Figure 1. 3D shapes of the solution (31) for σ = 0 and α = 0.3, 1.

Figure 2. 3D shapes of the solution (32) for σ = 0 and α = 0.3, 1.



Symmetry 2022, 14, 740 7 of 10

Figure 3. 3D shapes of the solution (31) for σ = 1, 2 and α = 0.3, 1.

Figure 4. 3D shapes of the solution (32) for σ = 1, 2 and α = 0.3, 1.
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Figure 5. 2D shapes of the solutions (31) and (32) with α = 1.

6. Physical Interpretation

The deterministic approximate long water wave equation (i.e., (Equations (1) and (2))
with σ = 0) is used in hydrodynamics to explain the propagation of waves in dissipative
and nonlinear media. When some external effect (random fluctuations) is considered, the
behavior of these waves changes as shown in Figures 1–4. As previously stated, external
influences have an effect on the waves and cause them to become stable, as displayed in
Figures 1–4 with σ 6= 0.

7. Conclusions

We looked at the space-fractional stochastic approximate long-water-wave equation
using conformable derivatives in this paper. The exact fractional stochastic solutions of
the SFSALWWE (Equations (1) and (2)) were obtained via the Riccati equation method.
These forms of solutions may be used for a broad range of curious and complicated
physical phenomena because Equations (1) and (2) are widely utilized in ocean and coastal
engineering; these forms are also advised for problems including water leakage in porous
subsurface stratum. Further, these equations are also used in hydrodynamics to depict
the propagation of waves in dissipative and nonlinear media. Finally, we showed how
multiplicative noise affects solution behavior and concluded that the solutions of the
SFSALWWE (Equations (1) and (2)) are stabilized around zero by multiplicative noise. We
can use Equations (1) and (2) with additive noise or infinite dimension multiplicative noise
in future research.
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