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Abstract: In this paper we consider two situations. In the first, all kinematic chains are elastic, while
the second situation is characterized by one rigid kinematic chain, with the rest of them being elastic.
In addition, the kinematic joints are considered to be rigid. The calculations are performed using the
screw coordinates. For the free vibrations of the rigid solid we determined the rigidity matrix and the
eigenpulsations in both cases. It was proved that the results in the second case cannot be considered
as limits for the results of the first situation, putting infinite values for the elements of the rigidity
matrix of one kinematic chain. We also developed the theory for the forced vibrations of the system.
A numerical application is considered and a great variety of cases are developed and discussed.
The results obtained for the forced vibrations are presented and discussed. The paper combines
elastic and rigid kinematic chains, as well as general configurations of the kinematic chains. The
method presented here may be used for any number of kinematic chains, no matter if the structure is
symmetrical or asymmetrical.

Keywords: rigidity matrix; screw coordinates; free and forced vibrations; elastic kinematic chains;
rigid kinematic chain

1. Introduction

In practice, there exist very different structures where spatial kinematic chains support a
rigid platform. The paper proposes a general approach toward the dynamic modelling of such
systems. The main focus is on the vibrational analysis of a Gough–Stewart type of platform.

This platform has several applications and can be purchased and adapted to many
applications as made distinct by the payloads. The possibility of a dynamic model, such as
the one herein developed, allows the establishment of a mobile payload, supporting the
kinematic chains’ stiffness and driving laws consistent with the accuracy requirements.

The problems concerning the platforms are very different. Usually the platforms are
studied from the kinematic or dynamic point of view. The references can be divided into
two categories: papers in which the rigid solid (platform) is hung by rigid elements, and
papers in which one or more of the elements are elastic.

Paper [1] considers a general platform for which the authors perform an analysis of
the mobility, describe its finite kinematics and realize the direct and inverse analysis of
the displacements. The approach is based on the theory of screw coordinates. Different
types of parallel manipulators are studied in [2–4], the authors realizing the analysis of the
displacements, infinitesimal kinematics, and determination of the singular positions, with
the calculations being performed with the use of the screw coordinates. Yi and Kim [5]
consider combinations of parallel mechanisms having a common platform and study
their synthesis in the same coordinates. In reference [6] the authors discuss the study of
the mobility of the parallel manipulators using the intersection of the screw manifolds,
while Nazari et al. [7] treat the problem of the mobility and the kinematic analysis of a
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particular manipulator of type 3-CRRR (where C stands for cylindrical, and R for rotational
kinematic joint). Bu et al. [8] analyze a series–parallel manipulator with a platform of type
2 (SP+SPR+SPU) (where S means spherical, P means prismatic, R stands for rotational,
while U means universal kinematic joint) from the point of view of the rigidity and elastic
deformations of different elements. The case of a platform attached to a manipulator for
ophthalmology, taking into account the inertia, is discussed in [9]. A general case of a
manipulator with parallel kinematics can be found in [10].

Zhao et al. [11] use the principle of the invariance of the terminal constraints that
resulted from the theory of screw coordinates for kinematic chains with zero, one, two,
three, four, or five terminal constraints and apply the obtained results to a Stewart platform
for which the terminal constraints are of the following types: spherical joint, cylindrical
joint, or universal joint (Hook). A more complex approach in which one considers the
rotations of the legs about their own axis is presented in [12]. A robust solution obtained
on the basis of the kinematic analysis is presented in reference [13], while the singularities
of the working space are discussed in [14]. The properties that resulted from the symmetry
of the platform are studied in [15]. The dynamics of a platform acted on by a pneumatic
actuator, considering the inertia of the actuators, is studied in [16], while the dynamics
of the platform acted on by linear actuators is described in [17,18]. The dynamics of
the Stewart platform are studied with the aid of the principle of virtual work [19], or
with the aid of the equations of classical mechanics considering a certain delay for the
answer [20]. Reference [21] considers a Stewart platform for which a combination of
methods are presented for the mathematical representation of its direct kinematics as well
as algorithms of optimization. Reference [22] considers a Stewart platform for which the
jerk of the mobile platform is studied, as well as the possibilities for reducing this jerk. Bai
et al. [23] obtain the automatic generation of the equations of motion and the concept of
adaptive control for the dynamic analysis of the platform. The dynamic of the platform for
an asymmetric load is studied with the Lagrange equations [24]; the singularities of the
platform and their analysis are described in [25], while the control using Lyapunov-type
methods is studied in [26]. The equations of motion can be obtained with the aid of the
principle of superposition [27,28]. Lazard and Merlet [29] proved that a Stewart platform
can have a maximum of 12 configurations and constructed such a platform. The control of
the trajectory such that the positioning error tends to zero is described in [30]. The control
of the trajectory using some approximate inverse dynamics is presented in [31].

A comparative kinematic study between the original Gough platform and the Stewart
platform was performed by Gallardo-Alvarado [32]. The determination of forces and
moments is described in [33]. The parametric vibrations of a symmetric Stewart platform
are studied in [34], and their damping in [35]. The study of some defects for a Stewart
platform is discussed in [36], the solution being given with the aid of a control. The theory
of graphs is also used in the study of the behavior [37] and dynamic analysis [38] of a
Stewart platform. Optimization problems for the Stewart platforms are solved in [39–46].

The analysis of the rigidity of the kinematic chains is presented in [47], and the calculation
of the rigidity matrix of a robot is presented in [48]. Other situations of Stewart platforms are
studied in [49] by considering the flexibility of the upper shell, and in [50] by considering that
some kinematic joints are flexible, while others are rigid, the dynamics of which are presented
in [51]. Other different situations of platforms with elastic elements are described in [52–58].
The approaches are based on the Kane’s equations, principle of virtual work, linearization
of the equations of motion, introduction of certain redundant actuators, or finite elements
method [59]. An excellent state of the art example can be found in [60]. The stochastic control
of structures influenced by random excitations (earthquakes) using the Monte Carlo method
and a new proposed algorithm is discussed in [61], with the authors considering that the loads
and stiffness are variable parameters. The numerical results proved that the mass is the most
important parameter that influences the control response.

One says that the rigid solid is hung when it is linked to the base (the fixed rigid
solid), in the most general case, by kinematic chains. The kinematic chains are linked to the
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rigid solid and to the base either by kinematic linkages or by clamping. In particular, the
kinematic chain may be reduced to a single element. Moreover, the intermediary kinematic
chains may contain either rigid or elastic elements (bars).

Generally speaking, the references consider that the kinematic chains are identical
or symmetric chains. Moreover, the payload is symmetric. The situation in which the
kinematic chains are unsymmetrical [60] is not a common one and the calculations are
performed only in particular cases. The combination of rigid and elastic kinematic chains is
new and has not been studied before. If the payload is unsymmetrical, then the forces in the
elements and the reactions in the kinematic joints are different; consequently, the structure
may be unsymmetrical. Our goal is to discuss the most general case of a rigid solid hung
by several kinematic chains (not necessary identical or having a symmetrical distribution),
one of these kinematic chains having rigid elements. The calculation is performed using
screw coordinates.

2. Vibrations of the Rigid Solid Hung by Several Elastic Kinematic Chains and One
Kinematic Chain with Rigid Elements
2.1. Generalities

The mobile structures with rigid elements are the so-called Stewart platforms, which
are used as components of the industrial robots. The most general schema is captured in
Figure 1 where, at the points A1, A2, . . . , A6, one has spherical kinematic linkages with
the finger (kinematic linkages of the fourth class), and at the points B1, B2, . . . , B6, one has
kinematic linkages of the fifth class (usually hydraulic actuators), while at the points D1,
D2, . . . , D6, one has spherical joints.

Figure 1. The most general schema of a Stewart platform.

The mobility M is given by the relation

M = 6n− 5c5 − 4c4 − 3c3 (1)

where n is the number of elements, c5 is the number of kinematic linkages of the fifth
class, c4 is the number of kinematic linkages of the fourth class, while c3 is the number of
kinematic linkages of the third class; since n = 13, c5 = 6, c4 = 6, and c3 = 6, one deduces
M = 6; hence, the mobility is equal to the number of the driving elements.

A similar construction is that of the following mechanism of the satellites captured in
Figure 2; it has two degrees of mobility, the mechanism being actuated by the rotational
motors M1 and M2. Moreover, in this case n = 8, c5 = 6, c4 = 1, c3 = 4, and M = 2.
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Figure 2. Following mechanism of a satellite.

The structures of the parallel robots and of the follower antennas have been well
studied as kinematics, dynamics, and automation in numerous papers.

The structures of the type that are a rigid solid hung by kinematic chains with the
mobility M ≤ 0 are called fixed, while if the elements of their kinematic chains are elastic,
then they become vibratory structures.

The mobile structures in which the driving elements are blocked also become vibratory
structures; in this case the mobility equals zero (M = 0).

We consider the system in Figure 3, with mobility M ≤ 0, and consisting of a rigid
solid hung by one kinematic chain with rigid elements (denoted by ABCD), and by several
kinematic chains with elastic elements (in Figure 3 we presented only one denoted by
EFGH). Moreover, all the kinematic linkages are represented by small circles, no matter
their conventional representations.

Figure 3. General system.
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2.2. Notations

We use the following notations:

- Bxyz (Figure 4)—the local reference system for the rigid bar BC;
- Exyz, Fxyz, Gxyz, . . . (Figure 5)—local reference systems of the elastic bars, where the

axes Ex, Fx, Gx, . . . are along the bars, and the axes Ey, Ez, Fy, Fz, Gy, Gz, . . . are the
inertial axes of the cross-sections, which pass through the points E, F, G, . . .

Figure 4. Local reference system of a rigid bar.

Figure 5. Local reference systems of the elastic bars.

The rest of the notations are given in the nomenclature.

2.3. Small Displacements

The total displacement in the kinematic joint B reads

[UB]{ξB} (2)

Similar relations may be written for the point C.
If we denote

[UBC] =
[
[UB] [UC]

]
(3)

{ξBC} =
[
{ξB}
{ξC}

]
(4)

then one may write the matrix relation

{∆} =
[
[UB] [UC]

]
{ξBC} (5)
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2.4. The Rigidity Matrix

The rigidity matrix [k] of the bar relative to the local reference system reads (see
Appendix A)

[k] =



0 0 0 EA
l 0 0

0 0 6EIz
l2 0 12EIz

l3 0

0 − 6EIy
l2 0 0 0 12EIy

l3
GIx

l 0 0 0 0 0
0 4EIy

l 0 0 0 − 6EIy
l2

0 0 4EIz
l 0 6EIz

l2 0


(6)

while the flexibility matrix [h] = [k]−1 is

[h] =



0 0 0 l
GIx

0 0

0 0 l3

2EIy
0 l

EIy
0

0 − l2

2EIz
0 0 0 l

EIz
l

EA 0 0 0 0 0
0 l3

3EIz
0 0 0 − l2

2EIz

0 0 l3

3EIy
0 l2

2EIy
0


(7)

In the general reference system, this results in

[K] = [T][k][T]−1 (8)

[K]−1 = [T][k]−1[T]−1 = [T][h][T]−1 (9)

The matrix of rigidity of the kinematic chain EFGH, considered as a rigid bent bar, is[ ~
KEH

]
=
[
[KEF]

−1 + [KFG]
−1 + [KGH ]

−1
]−1

(10)

Denoting [UFG] for the matrix

[UFG] =
[
[UF] [UG]

]
(11)

one obtains the rigidity matrix [KEH ] of the elastic kinematic chain EFGH

[KEH ] =
[ ~
KEH

]
−
[ ~
KEH

]
[UFG]

[
[UFG]

T[η]
[ ~
KEH

]
[UFG]

]−1
[UFG]

T[η]
[ ~
KEH

]
(12)

3. Calculation of the Displacement

Let us consider that the rigid solid is acted on by the force {F} and one asks for the
determination of the displacement {∆}.

The force that acts upon the kinematic chain at the point H is given by

{FH} = [KEH ]{∆} (13)

Isolating the rigid solid, one obtains the equality

{FD}+ ∑ [KEH ]{∆} = {F} (14)

using the notation
[K] = ∑[KEH ] (15)

it results in the relation
{FD}+ [K]{∆} = {F} (16)
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Assuming that the weights of the bars are negligible, one obtains

{FD} = {FC} = {FB} (17)

and
[UBC]

T[η]{FD} = {0} (18)

Thus, we obtain the equality

[UBC]
T[η]{FD} = {0} (19)

or, equivalently
[UBC]

T[η][K][UBC]{ξBC} = [UBC]
T[η]{F} (20)

wherefrom
{ξBC} =

[
[UBC]

T[η][K][UBC]
]−1

[UBc][η]{F} (21)

with
{∆} = [UBC]{ξBC} (22)

Other approaches that use the screw coordinates are described in [1–4,19,22,32]. The
formulae presented above are equivalent to those reported in the references mentioned
above.

4. The Equation of the Free Vibrations

Knowing that the matrix of the screw (plückerian) coordinates of the inertial force is
given by −[M]

{ ..
∆
}

, then from Equation (19) one obtains the matrix differential equation

[UBC]
T[η][M][UBC]

[ ..
ξBC

]
+ [UBC]

T[η][K][UBC]{ξBC} = {0} (23)

From the last equation one determines {ξBC}, and from Equation (22) one obtains the
displacement {∆}.

Moreover, the displacements in the kinematic linkages F and G are given by

{ξFG} =
[
[UFG]

T[η]
[ ~
KEH

]
[UFG]

]−1
[UFG]

T[η]
[ ~
KEH

]
{∆} (24)

5. The Equation of the Forced Vibrations

In this case we have to correct the right-hand term in Equation (23) resulting in

[UBC]
T[η][M][UBC]

[ ..
ξBC

]
+ [UBC]

T[η][K][UBC]{ξBC} = [UBC]
T[η]{F} (25)

where {F} is the matrix of the screw coordinates of the forces that act upon the
rigid solid. Relative to the system OXYZ, considering that the resultant force is F =
FXi + FYj + FZk, while the resultant moment reads MO = MOXi + MOYj + MOZk, then
the matrix {F} takes the form

{F} =
[

FX FY FZ MOX MOY MOZ
]T (26)

Different formulae for certain particular cases are presented in [34,44,48,51]. The
Equations (23) and (25) represent the most general case.

6. Example

We consider the Stewart platform captured in Figure 6. The triangles A1 A2 A3 and
C1C2C3 are equilateral with edges equal to l

√
3

2 and l
√

3, respectively. The origin O is the
center of the weight of the shell A1 A2 A3. The common length of the bars AiBi, i = 1, 3, is
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2l, and the common length of the bars BiCi, i = 1, 3, is l. The bars AiBi, i = 1, 3, form an
angle of 30◦ with the normal to the plane A1 A2 A3, while the bars BiCi, i = 1, 3, form an
angle of 30◦ with the normal to the plane C1C2C3. Both planes A1 A2 A3 and C1C2C3 are
considered to be horizontal. Consequently, the measures of the angles AiBiCi are all equal
to 90◦. At the points Ai, i = 1, 3, there exist spherical joints, while at the points Bi, i = 1, 3,
there exist prismatic joints.

Figure 6. Numerical application.

The numerical values are, E = 2.1× 1011 N/m2 and G = 8× 1010 N/m2; the mass of
the shell A1 A2 A3, m = 10 kg.

For the case of free vibrations, we will consider a few cases:

(i) l = 0.2 m, d1 = d2 = d3 = 0.01 m (the diameters of the bars for each kinematic chain,
d1 corresponds to the bars of the kinematic chain A1B1C1 etc.);

(ii) l = 0.5 m, d1 = d2 = d3 = 0.01 m;
(iii) l = 0.2 m, d1 = 0.03 m, d2 = 0.01 m, d3 = 0.01 m;
(iv) l = 0.2 m, d1 = 0.03 m, d2 = 0.01 m, d3 = 0.02 m.

For each case we will discuss the following situations: (a) all the kinematic chains
AiBiCi, i = 1, 3, consisting of elastic elements, and (b) the kinematic chain A1B1C1 is
compounded by rigid elements, while the kinematic chains A2B2C2 and A3B3C3 are formed
by elastic bars.

The complete calculations are presented only for the first case in Appendix B.
The matrix differential systems in each case are presented in Appendix C.

6.1. Case (i)

(a) If we consider that all the kinematic chains contain only elastic elements, then the
eigenpulsations are p1 ≈ 25.36 s−1, p2 ≈ 8.87 s−1 (for θx and δy), p3 ≈ 25.36 s−1,
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p4 ≈ 8.87 s−1 (for θy and δx), p5 ≈ 30.27 s−1 (for θz), and p6 ≈ 10.51 s−1 (for δz); they
form two pairs of doubly degenerate ones (p1, p3, and p2, p4, respectively), and a pair
of singly degenerate one s(p5, p6).

(b) If the kinematic chain A1B1C1 consists of rigid elements, then the corresponding
eigenvalues are p1 ≈ 25.83 s−1, p2 ≈ 13.49 s−1, (for θx and θz), p3 ≈ 12.54 s−1, and
p4 ≈ 8.96 s−1 (for θy and δX).

(c) The correspondences mentioned above between the eigenpulsations and the kinematic
parameters (at points (a) and (b)) also hold true for the rest of the cases.

6.2. Case (ii)

Proceeding in a similar way, one obtains the following values:
(a) if all kinematic chains consist of elastic elements, then the eigenpulsations are

given by p1 ≈ 6.42 s−1, p2 ≈ 2.24 s−1, (for θx and δy), p3 ≈ 6.42 s−1, p4 ≈ 2.24 s−1 (for θy
and δx), p5 ≈ 7.66 s−1 (for θz), and p6 ≈ 2.66 s−1 (for δz).

Again, the eigenpulsations form two pairs of doubly degenerate ones (p1, p3, and
p2, p4, respectively), and a pair of singly degenerate ones (p5, and p6). Denoting by
p(case i)

i , and p(case ii)
i , i = 1, 6, the corresponding eigenpulsations in the first and the

second case, respectively, we have that p(case i)
i

p(case ii)
i

= constant, that is, one may determine the

eigenpulsations in the case of when all kinematic chains are elastic ones knowing only a set
of eigenpulsations for a certain length l.

(b) if the kinematic chain A1B1C1 consists of rigid elements, then it results in the
eigenpulsations: p1 ≈ 3.41 s−1, p2 ≈ 6.53 s−1 (for θx and θz), and p3 ≈ 2.26 s−1, and
p4 ≈ 3.17 s−1 (for θy and δx). Again, denoting p(case i)

i , and p(case ii)
i , i = 1, 4, for the

corresponding eigenpulsations in the first and the second case, respectively, we have that
p(case i)

i

p(case ii)
i

= constant; that is, one may determine the eigenpulsations in the case of when

a kinematic chain consists of rigid elements knowing only a set of eigenpulsations for a
certain length l. Moreover, the constant that gives the ration in the case when all kinematic
chains are elastic ones is equal to the constant value of the ratio in the case when one
kinematic chain consists of rigid elements.

We may conclude that by changing the length l, the structures of the systems that give
the eigenpulsations remain the same; that is, the symmetry cannot be destroyed.

6.3. Case (iii)

The results are as follows:

(a) if all kinematic chains consist of elastic elements, then the eigenpulsations read
now p1 ≈ 177.01 s−1, p2 ≈ 25.83 s−1, p3 ≈ 13.42 s−1 (for θx, θz, and δy), and
p4 ≈ 189.55 s−1, p5 ≈ 12.49 s−1, and p6 ≈ 8.94 s−1 (for θy, δx, and δz);

(b) if the kinematic chain A1B1C1 consists of rigid elements, then one obtains the eigen-
pulsations p1 ≈ 25.83 s−1, p2 ≈ 13.49 s−1 (for θx and θz), and p3 ≈ 12.54 s−1, and
p4 ≈ 8.96 s−1 (for θy and δx).

6.4. Case (iv)

The numerical results are:

(a) if all kinematic chains consist of elastic elements, then one obtains the eigenpulsations
p1 ≈ 194.39 s−1, p2 ≈ 184.60 s−1, p3 ≈ 80.14 s−1, p4 ≈ 45.66 s−1, p5 ≈ 14.66 s−1, and
p6 ≈ 10.82 s−1;

(b) if the kinematic chain A1B1C1 consists of rigid elements, then one obtains the eigen-
pulsations p1 ≈ 80.86 s−1, p2 ≈ 48.64 s−1, p3 ≈ 14.69 s−1, and p4 = 10.86 s−1.

One may easily observe that there exists no obvious mathematical expression that
connects the values of the eigenpulsations obtained, considering that all kinematic chains
consist of elastic elements to the values of the eigenpulsations obtained in the case in which
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one kinematic chain consists of rigid elements. Moreover, the corresponding values of the
eigenvalues are very different from case to case.

Determination of the eigenvalues is also considered in [51] for a particular mechanical
system. The authors calculated only the first three eigenpulsations.

It is interesting to see the variations in the eigenpulsations in the functions of different
geometrical and mechanical parameters. The standard values of the parameters are those
presented above. Further on, the values of the parameters are the standard ones, excepting
those parameters for which we specify other values.

The authors are not aware of the existence of a similar study in the references.

6.5. Dependency on the Diameters of Bars

First of all, we consider that all bars (no matter if they are elastic of rigid) have the
same diameter. Four cases are considered. In the first case the diameters are equal, that is,
d1 = d2 = d3; in the second case the relation between the diameter d1 and the diameters d2
and d3 is given by d2 = d3 = d1

2 ; the third case is similar to the second one, but d2 = d3 = d1
4 ;

finally, the fourth situation is characterized by d2 = d1
5 , and d3 = d1

10 .
In all diagrams the subscript index e means that the eigenvalues are calculated con-

sidering that all kinematic chains consist of elastic elements, while the subscript index r
means that the eigenvalues are calculated considering that one kinematic chain consists of
rigid elements.

The variations in the eigenpulsations in the function of the diameter d1 are given in
Figure 7. The diameter varies between 0.001 m and 0.05 m. The eigenpulsations decrease
in order; that is, the eigenpulsation p1 is the greatest, while the eigenpulsation p6 (when all
kinematic chains are elastic), or the eigenpulsation p4 (when one kinematic chain is rigid)
is the smallest. The codification of colors is as follows: blue means the first eigenpulsation,
green means the second, red means the third, cyan stands for the fourth eigenpulsation,
magenta for the fifth, while yellow stands for the sixth.
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Figure 7. Diagrams of variations pi = pi(d): (a) first case, (b) second case, (c) third case, and
(d) fourth case; subscript index e means that all kinematic chains are elastic ones, while subscript
index r signifies that one kinematic chain consists of rigid elements. In (a1) only four eigenpulsations
are distinct: p1, p2 = p3, p4, and p5 = p6; in (b1,c1) only five eigenpulsations are distinct: p1, p2, p3,
p4 = p5, and p6, while in (d1) all six eigenpulsations are distinct. The first three considered cases are
cases of degeneracy (the first is of double degeneracy, while the second and the third are of simple
degeneracy). The last case is a regular one. The degeneracy does not imply a diminishing of the
number of eigenvalues in the situation of a kinematic chain with rigid elements (see (a2,b2,c2,d2)).

Recalling the results from the previous paragraphs, we have to observe that in the
degeneracy cases, some eigenpulsations have equal values; that is, in a few of the next
diagrams one may observe a smaller number of curves.

For instance, referring to the first case when all kinematic chains are elastic ones
(see Section 6.1), then the actual eigenpulsation p1 corresponds to the eigenpulsation p5 in
Section 6.1, the actual eigenpulsations p2 = p3 correspond to the eigenpulsations p1 = p3 in
Section 6.1, the actual eigenpulsation p4 corresponds to the eigenpulsation p6 in Section 6.1,
while the actual eigenpulsations p5 = p6 correspond to the eigenpulsations p2 = p4 in
Section 6.1. When one kinematic chain consists of rigid elements, then the correspondence
is as follows: the actual eigenpulsations p1, p2, p3, and p4 correspond to the eigenpulsations
p1, p3, p4, and p2, respectively, in Section 6.1.

Similar correspondences may be stated for the rest of the cases.
All eigenpulsations present a parabolic variation increasing on the entire interval

of the diameter. One cannot determine a mathematical formula to link the eigenvalues
obtained when all the kinematic chains are elastic to the eigenvalues obtained when one
kinematic chain has rigid elements.

The eigenpulsations do not depend on the diameters of the bars forming the rigid
kinematic chain.

6.6. Dependency on the Length of Bars

In this situation we will also consider four cases: the first case is the standard one; the
second case is defined by d1 = 0.02 m, and d2 = d3 = 0.01 m; the third case is characterized
by d1 = 0.03 m, and d2 = d3 = 0.02 m, while for the fourth case, the values are d1 = 0.03 m,
d2 = 0.01 m, and d3 = 0.02 m.
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Again the codifications for the subscript indices e and r hold true.
The diagrams of variation are captured in Figure 8. The common length of the bars

varies between 0.01 m and 1 m. The codification of colors remains the same.
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Figure 8. Diagrams of variations pi = pi(l): (a) first case, (b) second case, (c) third case, and (d)
fourth case; subscript index e means that all kinematic chains are elastic ones, while subscript index r
signifies that one kinematic chain consists of rigid elements. In (a1) only four eigenpulsations are
distinct: p1, p2 = p3, p4, and p5 = p6; in (b1,c1) only five eigenpulsations are distinct: p1, p2, p3,
p4 = p5, and p6, while in (d1) all six eigenpulsations are distinct. The first three considered cases are
cases of degeneracy (the first is of double degeneracy, while the second and the third cases are of
simple degeneracy). The last case is a regular one. The degeneracy does not imply a diminishing of
the number of eigenvalues in the situation of a kinematic chain with rigid elements (see (a2,b2,c2,d2)).

All curves have decreasing shapes, with a vertical asymptote at l = 0, and correspond-
ing horizontal asymptotes for l → ∞ . These results are expected to be obtained due to the
contribution of the length l in the expressions of the components of the matrices

[
Ksystem

]
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and, consequently, the expressions of different coefficients of the matrix differential systems
of equations.

We also have degeneracy cases, which imply that not all curves may be seen in all
diagrams.

6.7. Dependency on the Mass of the Shell

In this situation we consider the same four cases as in the Section 6.6.
Again the codifications for the subscript indices e and r, and the codification of the

colors hold true.
The diagrams of variation are captured in Figure 9. The mass of the shell varies

between 1 kg and 100 kg. The codification of colors remains the same.
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Figure 9. Diagrams of variations pi = pi(m): (a) first case, (b) second case, (c) third case, and
(d) fourth case; subscript index e means that all kinematic chains are elastic ones, while subscript
index r signifies that one kinematic chain consists of rigid elements. In (a1) only four eigenpulsations
are distinct: p1, p2 = p3, p4, and p5 = p6; in (b1,c1) only five eigenpulsations are distinct: p1, p2, p3,
p4 = p5, and p6, while in (d1) all six eigenpulsations are distinct. The first three considered cases are
cases of degeneracy (the first is of double degeneracy, while the second and the third cases are of
simple degeneracy). The last case is a regular one. The degeneracy does not imply a diminishing of
the number of eigenvalues in the situation of a kinematic chain with rigid elements (see a2,b2,c2,d2).
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All diagrams are decreasing curves as one expected. The curves have parabolic
shapes. The results are explained by the contribution of the mass m in the expressions of
the components of the matrices

[
Ksystem

]
and, consequently, the expressions of different

coefficients of the matrix differential systems of equations.
We also have degeneracy cases, which imply that all curves may be seen in all diagrams.

6.8. Dependency on the Elasticity Modulus

E and G denote the generic values of the elasticity modulus and shear modulus,
respectively, G = E

1+ν , ν = 0.33. We consider the following cases: the first case is defined
by E1 = E2 = E3 = E and G1 = G2 = G3 = E; the second case is defined by E1 = E,
E2 = E3 = E

2 and G1 = G, G2 = G3 = G
2 ; the third case is characterized by E1 = E,

E2 = E3 = E
4 and G1 = G, G2 = G3 = G

4 ; the fourth case is characterized by E1 = E,
E2 = E

2 , E3 = E
5 and G1 = G, G2 = G

2 , G3 = G
5 . The rest of the parameters are those from

the standard case.
Again the codifications for the subscript indices e and r hold true.
The diagrams of variation are captured in Figure 10. The elasticity modulus varies

between 108 N/m2 and 3× 1011 N/m2. The codification of colors remains the same.
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(d) fourth case; subscript index e means that all kinematic chains are elastic ones, while subscript
index r signifies that one kinematic chain consists of rigid elements. In (a1) only four eigenpulsations
are distinct: p1, p2 = p3, p4, and p5 = p6; in (b1,c1) only five eigenpulsations are distinct: p1, p2,
p3, p4 = p5, and p6; in (d1) all six eigenpulsations are distinct. The first three considered cases are
cases of degeneracy (the first is of double degeneracy, while the second and the third are of simple
degeneracy). The last case is a regular one. The degeneracy does not imply a diminishing of the
number of eigenvalues in the situation of a kinematic chain with rigid elements (see a2,b2,c2,d2).

In this situation, the curves have shapes similar to the square root function. The
explanation of these results is similar to the previous ones.

6.9. Forced Vibrations

We will consider the following cases. In all situations the force F1 acts upon the
shell at the point A1 and it is situated along the OX-axis, the force F2 acts at the point
A2 and it is situated along the OY-axis, while the force M3 acts at the point A3 and it is
situated along the OZ-axis. We may state F1 = F1i, F2 = F2j and F3 = F3k. Taking into
account that OA1 = l

2 i, OA2 = − l
4 i + l

√
3

4 j, OA3 = − l
4 i− l

√
3

4 j, A1A2 = − 3l
4 i + l

√
3

4 j,

A1A3 = − 3l
4 i− l

√
3

4 j, OA1 × F1 = 0, OA2 × F2 = −F2
l
4 k, OA3 × F3 = −F3

l
√

3
4 i + F3

l
4 j,

A1A2 × F2 = −3F2
l
4 k, A1A3 × F3 = −F3

l
√

3
4 i + 3F3

l
4 j, this results in the screw coordinates

of the forces in the case when all the kinematic chains are elastic ones

{F} =
[

F1 F2 F3 −F3
l
√

3
4 F3

l
4 −F2

l
4

]T
(27)

and in the case when the first kinematic chain is a rigid one

{F} =
[

F1 F2 F3 −F3
l
√

3
4 3F3

l
4 −3F2

l
4

]T
(28)

respectively.
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Other approaches based on Newton–Euler equations are detailed in [16,20], while
in [17] the equations of motion are obtained using the Kane equations.

Reference [51] limits the study to the first few eigenpulsations and concludes that the
resonance does not appear for the considered case.

In [21] only the largest eigenvalue is considered for the study of the stability.
We can see that the behavior of the system is more complex and the beating phe-

nomenon may be caused by one or more eigenvalues, or by a subharmonic or a superhar-
monic resonance.

For all cases the following parameters are considered to have constant values:
m = 10 kg, E1 = E2 = E3 = E, G1 = G2 = G3 = G, with E = 2.1× 1011 N/m2, and
G = 8× 1010 N/m2.

The expressions of the forces F1, F2, and F3 are as follows

F1 = F01 sin(ω1t), F2 = F02[1 + sin(ω2t)],F3 = F03[1 + sin(ω3t) + sin(ω4t)] (29)

where the values of the parameters F01, F02, F03,ω1,ω2,ω3, andω4 are specified in each
case.

The first case is defined by F01 = 1 N, F02 = 2 N, F03 = 3 N, ω1 = 20π s−1,
ω2 = 30π s−1,ω3 = 40π s−1,ω4 = 50π s−1, l = 0.2 m, d1 = 0.01 m, d2 = 0.01 m, d3 = 0.01 m.
The diagrams are captured in Figure 11.
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Figure 11. Time histories in the first case: (a) θx = θx(t) (blue), θy = θy(t) (green), θz = θz(t)
(red) (all kinematic chains are elastic), (b) δx = δx(t) (blue), δy = δy(t) (green), δz = δz(t) (red) (all
kinematic chains are elastic), (c) θx = θx(t) (blue), θy = θy(t) (green), θz = θz(t) (red) (one kinematic
chain is rigid), and (d) δx = δx(t) (one kinematic chain is rigid). This case is one of double degeneracy.

The eigenpulsations for the situation in which all kinematic chains are elastic ones are
p1 ≈ 30.27 s−1 ≈ 9.64π s−1, p2 = p3 ≈ 25.36 s−1 ≈ 8.07π s−1, p4 ≈ 10.51 s−1 ≈ 3.35π s−1,
and p5 = p6 ≈ 8.87 s−1 ≈ 2.82π s−1, while for the situation in which one kinematic
chain consists of rigid elements the eigenpulsations read p1 ≈ 25.83 s−1 ≈ 8.22π s−1,
p2 ≈ 13.49 s−1 ≈ 4.29π s−1, p3 ≈ 12.54 s−1 ≈ 3.99π s−1, and p4 ≈ 8.96 s−1 ≈ 2.85π s−1.
This case is a case of degeneracy (see the previous paragraphs).

The curves of variations are periodical ones.
For the second case the parameters are F01 = 1 N, F02 = 2 N, F03 = 3 N,ω1 = 20π s−1,

ω2 = 30π s−1, ω3 = 40π s−1, ω4 = 50π s−1, l = 0.2 m, d1 = 0.02 m, d2 = 0.01 m, and
d3 = 0.01 m. The diagrams are captured in Figure 12.
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Figure 12. Time histories in the second case: (a) θx = θx(t) (blue), θy = θy(t) (green), θz = θz(t)
(red) (all kinematic chains are elastic), (b) δx = δx(t) (blue), δy = δy(t) (green), δz = δz(t) (red) (all
kinematic chains are elastic), (c) θx = θx(t) (blue), θy = θy(t) (green), θz = θz(t) (red) (one kinematic
chain is rigid), and (d) δx = δx(t) (one kinematic chain is rigid). This case is one of single degeneracy.

The eigenpulsations for the situation in which all kinematic chains are elastic ones
are p1 ≈ 85.00 s−1 ≈ 27.06π s−1, p2 ≈ 80.80 s−1 ≈ 25.72π s−1, p3 ≈ 25.81 s−1 ≈
8.21π s−1, p4 ≈ 13.06 s−1 ≈ 4.16π s−1, p5 ≈ 12.41 s−1 ≈ 3.95π s−1, and p6 ≈ 8.96 s−1 ≈
2.85π s−1, while for the situation in which one kinematic chain consists of rigid elements
the eigenpulsations read p1 ≈ 25.83 s−1 ≈ 8.22π s−1, p2 ≈ 13.49 s−1 ≈ 4.29π s−1, p3 ≈
12.54 s−1 ≈ 3.99π s−1, and p4 ≈ 8.96 s−1 ≈ 2.85π s−1. This case is also of degeneracy
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because d2 = d3. Moreover, we may see that the eigenpulsations in the case when one
kinematic chain consists of rigid elements are equal to those obtained in the same situation
in the first case.

The curves of variations are also periodical ones.
For the third case the parameters are F01 = 1 N, F02 = 2 N, F03 = 3 N,ω1 = 20π s−1,

ω2 = 30π s−1, ω3 = 40π s−1, ω4 = 50π s−1, l = 0.2 m, d1 = 0.03 m, d2 = 0.02 m, and
d3 = 0.02 m. The diagrams are presented in Figure 13.
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Figure 13. Time histories in the third case: (a) θx = θx(t) (blue), θy = θy(t) (green), θz = θz(t)
(red) (all kinematic chains are elastic), (b) δx = δx(t) (blue), δy = δy(t) (green), δz = δz(t) (red) (all
kinematic chains are elastic), (c) θx = θx(t) (blue), θy = θy(t) (green), θz = θz(t) (red) (one kinematic
chain is rigid), and (d) δx = δx(t) (one kinematic chain is rigid). This case is also a case of single
degeneracy. Moreover, the beating phenomenon is presented.

The eigenpulsations in the case of all elastic kinematic chains read p1 ≈ 195.95 s−1 ≈
62.37π s−1, p2 ≈ 195.03 s−1 ≈ 62.08π s−1, p3 ≈ 103.01 s−1 ≈ 32.79π s−1, p4 ≈ 48.81 s−1 ≈
15.54π s−1, p5 ≈ 48.50 s−1 ≈ 15.44π s−1, and p6 ≈ 35.82 s−1 ≈ 11.40π s−1, while in
the case when one kinematic chain consists of rigid elements the eigenpulsations are
p1 ≈ 103.32 s−1 ≈ 32.89π s−1, p2 ≈ 53.96 s−1 ≈ 17.18π s−1, p3 ≈ 50.18 s−1 ≈ 15.97π s−1,
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and p4 ≈ 35.86 s−1 ≈ 11.41π s−1. Because some eigenpulsations are very closed to 2ω2 or
ω2
2 , the beating phenomenon appears in the next diagrams. The curves are periodical ones.

The fourth case is characterized by F01 = 1 N, F02 = 2 N, F03 = 3 N, ω1 = 20π s−1,
ω2 = 30π s−1, ω3 = 40π s−1, ω4 = 50π s−1, l = 0.2 m, d1 = 0.03 m, d2 = 0.01 m, and
d3 = 0.02 m. The diagrams are presented in Figure 14.
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Figure 14. Time histories in the fourth case: (a) θx = θx(t) (blue), θy = θy(t) (green), θz = θz(t)
(red) (all kinematic chains are elastic), (b) δx = δx(t) (blue), δy = δy(t) (green), δz = δz(t) (red)
(all kinematic chains are elastic), (c) θx = θx(t) (blue), θy = θy(t) (green), θz = θz(t) (red) (one
kinematic chain is rigid), and (d) δx = δx(t) (one kinematic chain is rigid). This case is a regular one
(no degeneracy); the beating phenomenon is present.

The eigenpulsations are now: p1 ≈ 194.38 s−1 ≈ 61.88π s−1, p2 ≈ 184.60 s−1 ≈
58.76π s−1, p3 ≈ 80.14 s−1 ≈ 25.51π s−1, p4 ≈ 45.66 s−1 ≈ 14.53π s−1, p5 ≈ 14.66 s−1 ≈
4.67π s−1, p6 ≈ 10.82 s−1 ≈ 3, 44π s−1, and p1 ≈ 80.86 s−1 ≈ 25.47π s−1, p2 ≈ 48.64 s−1 ≈
15.48π s−1, p3 ≈ 14.69 s−1 ≈ 4.68π s−1, p4 ≈ 10.86 s−1 ≈ 3.45π s−1 for the case when all
kinematic chains are elastic ones, and the case when one kinematic chain consists of rigid



Symmetry 2022, 14, 770 37 of 56

elements, respectively. Again, because some eigenpulsations are very closed to 2ω2 or ω2
2 ,

the beating phenomenon appears in the next diagrams. The curves are also periodical ones.
The fifth case is characterized by F01 = 1 N, F02 = 2 N, F03 = 3 N, ω1 = 20π s−1,

ω2 = 30π s−1, ω3 = 40π s−1, ω4 = 50π s−1, l = 0.5 m, d1 = 0.01 m, d2 = 0.01 m, and
d3 = 0.01 m. The diagrams are presented in Figure 15.
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Figure 15. Time histories in the fifth case: (a) θx = θx(t) (blue), θy = θy(t) (green), θz = θz(t)
(red) (all kinematic chains are elastic), (b) δx = δx(t) (blue), δy = δy(t) (green), δz = δz(t) (red) (all
kinematic chains are elastic), (c) θx = θx(t) (blue), θy = θy(t) (green), θz = θz(t) (red) (one kinematic
chain is rigid), and (d) δx = δx(t) (one kinematic chain is rigid). This case is one of double degeneracy.

The eigenpulsations are p1 ≈ 7.66 s−1 ≈ 2.44π s−1, p2 = p3 ≈ 6.42 −1 ≈ 2.04π s−1,
p4 ≈ 2.66 s−1 ≈ 0.85π s−1, and p5 = p6 ≈ 2.24 s−1 ≈ 0.71π s−1 when all the kinematic
chains are elastic ones, and p1 ≈ 6.53 s−1 ≈ 2.08π s−1, p2 ≈ 3.41 s−1 ≈ 1.09π s−1,
p3 = 3.17 s−1 ≈ 1.01π s−1, and p4 ≈ 2.27 s−1 ≈ 0.72π s−1 when one kinematic chain
consists of rigid elements (see also the Section 6.2).

The curves of variation are periodical ones.
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The sixth case is defined by F01 = 1 N, F02 = 2 N, F03 = 3 N, ω1 = 20π s−1,
ω2 = 20π s−1, ω3 = 20π s−1, ω4 = 20π s−1, l = 0.2 m, d1 = 0.03 m, d2 = 0.01 m,
and d3 = 0.02 m. The diagrams are presented in Figure 16.
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Figure 16. Time histories in the sixth case: (a) θx = θx(t) (blue), θy = θy(t) (green), θz = θz(t)
(red) (all kinematic chains are elastic), (b) δx = δx(t) (blue), δy = δy(t) (green), δz = δz(t) (red)
(all kinematic chains are elastic), (c) θx = θx(t) (blue), θy = θy(t) (green), θz = θz(t) (red) (one
kinematic chain is rigid), and (d) δx = δx(t) (one kinematic chain is rigid). This case is a regular one
(no degeneracy is present).

The eigenpulsations are p1 ≈ 194.38 s−1 ≈ 61.88π s−1, p2 ≈ 184.60 s−1 ≈ 58.76π s−1,
p3 ≈ 80.14 s−1 ≈ 25.51π s−1, p4 ≈ 45.66 s−1 ≈ 14.53π s−1, p5 ≈ 14.66 s−1 ≈ 4.67π s−1,
p6 ≈ 10.82 s−1 ≈ 3, 44π s−1, and p1 ≈ 80.86 s−1 ≈ 25.47π s−1, p2 ≈ 48.64 s−1 ≈
15.48π s−1, p3 ≈ 14.69 s−1 ≈ 4.68π s−1, p4 ≈ 10.86 s−1 ≈ 3.45π s−1 for the case when all
kinematic chains are elastic ones, and the case when one kinematic chain consists of rigid
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elements, respectively (see also the fourth case). In this situation we do not have the beating
phenomenon. The curves are also periodical ones.

Finally, the seventh case is defined by F01 = 1 N, F02 = 2 N, F03 = 3 N,ω1 = 20π s−1,
ω2 = 30π s−1, ω3 = 40π s−1, ω4 = 50π s−1, l = 0.5 m, d1 = 0.03 m, d2 = 0.01 m, and
d3 = 0.02 m. The diagrams are captured in Figure 17.
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Figure 17. Time histories in the seventh case: (a) θx = θx(t) (blue), θy = θy(t) (green), θz = θz(t)
(red) (all kinematic chains are elastic), (b) δx = δx(t) (blue), δy = δy(t) (green), δz = δz(t) (red)
(all kinematic chains are elastic), (c) θx = θx(t) (blue), θy = θy(t) (green), θz = θz(t) (red) (one
kinematic chain is rigid), and (d) δx = δx(t) (one kinematic chain is rigid). This case is a regular
one (no degeneracy is present). The beating phenomenon appears only in the situation in which all
kinematic chains are elastic ones.
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The eigenpulsations for the situation in which all kinematic chains are elastic ones
read p1 ≈ 155.52 s−1 ≈ 49.50π s−1, p2 ≈ 147.69 s−1 ≈ 47.01π s−1, p3 ≈ 64.11 s−1 ≈
20.41π s−1, p4 ≈ 36.54 s−1 ≈ 11.63π s−1, p5 ≈ 11.70 s−1 ≈ 3.73π s−1, and p6 ≈ 8.66 s−1 ≈
2.76π s−1, while for the situation in which one kinematic chain consists of rigid elements
the eigenpulsations are p1 ≈ 20.46 s−1 ≈ 6.51π s−1, p2 ≈ 12.31 s−1 ≈ 3.92π s−1, p3 ≈
3.72 s−1 ≈ 1.18π s−1, and p4 ≈ 2.75 s−1 ≈ 0.87π s−1. Because in the case when all kinematic
chains are elastic ones two eigenpulsations are closed toω1 andω4, the phenomenon of
beating appears in this case. This statement does not hold true for the case in which one
kinematic chain consists of rigid elements.

The curves of variation are also periodical ones.
Similar results are presented in [43] for the situation with damping. Periodicity of the

vibrations was also reported in [49].

7. Conclusions

In this paper we considered a rigid solid hung by kinematic chains in the most general
case. When all kinematic chains are elastic ones we determined the general matrix equation of
free vibration and we proved that in the case in which the mechanical system presents certain
symmetries, the system of differential equations separates into new systems (the situation of
degeneracy) from which one may determine the eigenpulsations. The same statement holds
true for the situation in which one kinematic chain consists of rigid elements. In the most
general case, the system has six or four different eigenpulsations, respectively.

Some degrees of freedom are common to both cases, but there exists no formula to
calculate the eigenpulsations of one case knowing the values of the eigenpulsations of the
other case.

If the system is acted on by harmonic forces, it is possible to obtain the beating
phenomenon in both cases (all kinematic chains are elastic, and one kinematic chain is rigid,
respectively), or in only one case. The motion is always a periodic one.

The calculations are performed using the screw coordinates and the corresponding
results are presented in matrix form. The method presented here may be used for any rigid
solid hung by kinematic chains, no matter if the kinematic chains form a symmetrical or an
unsymmetrical structure. There is no limit for the number of kinematic chains. Moreover,
these kinematic chains may be different.

The case for more than one rigid kinematic chain is more complicated because one
has to determine the possible motions of the rigid solid considering only these kinematic
chains. This will be our future goal.
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Nomenclature

OXYZ
the general reference system (the system of the principal axes of
inertia for the rigid solid

[RB], g, . . . , [RG], . . .
the rotational matrices of the local references systems with respect
to the general reference system

XB, YB, ZB, XC, YC, ZC, . . . , XG, the coordinates of the points B, C, . . . , G, . . . relative to the
YG, ZG, . . . general reference system

[GB], [GC], . . . , [GG], . . .

the translational matrices in the form

[GB] =

 0 −ZB YB

ZB 0 −XB

YB XB 0

, . . .

[TB], [TC], . . . , [TG], . . .

the matrices of position given by

[TB] =

[
[RB] [0]

[GB][RB] [RB]

]
, . . .

θ, δ
the small angular displacement, and the small linear displacement,
respectively, of the rigid solid

θX , θY , θZ, and δX , δY , δZ
the projections of the vectors θ, and δ, respectively, onto the axes
OX, OY, and OZ

{∆}
the column matrix of the displacements of the rigid solid,

{∆} =
[
θX θY θZ δX δY δZ

]T

{ξB}
the column matrices of the possible displacements ξ

(1)
B , ξ

(2)
B , . . . ,

at the kinematic joint B, in the motion of the element BC with

respect to the element AB,{ξB} =
[

ξ
(1)
B ξ

(2)
B . . .

]T

[uB] the matrix of the screw coordinates of the kinematic joint B
[UB] the matrix given by[UB] = [TB][uB]

E, G the Young modulus, and the shear modulus, respectively, of a bar

A, and Ix, Iy, Iz
the area, and the moments of inertia, respectively, of the
homogeneous bar

l the length of a homogeneous bar
[k] the rigidity matrix of a bar relative to the local reference system
[h] the flexibility matrix of a bar relative to the local reference system

[η] the matrix given by[η] =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


m, and JX , JY , JZ

the mass, and the central principal moments of inertia, respectively,
of the rigid solid

[M] the matrix[M] =



0 0 0 m 0 0
0 0 0 0 m 0
0 0 0 0 0 m
JX 0 0 0 0 0
0 JY 0 0 0 0
0 0 JZ 0 0 0


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Appendix A

Let us consider a bar AB and a system of coordinates Axyz, where the axis Ax is
along the bar. The displacements of the end A are dAx (translation along the Ax axis, θAx
(rotation about the same axis), dAy (translation along the Ay axis), θAy (rotation about the
Ay axis), dAz, and θAz (translation along and rotation about the Az axis). Analogically, the
displacements of the point B are d∗Bx, θ∗Bx, d∗By, θ∗By, d∗Bz, and θ∗Bz.

The axial force (along the Ax axis) is given by

fAx =
EA

l
(dAx − d∗Bx) (A1)

while the torsional moments (about the same axis) reads

mAx =
GIx

l
(θAx − θ∗Bx) (A2)

With the aid of the Euler–Bernoulli relation

EIz
d2y
dx2 = −mz(x) (A3)

where
mz(x) = mAz − fAyx (A4)

and taking into account that

θz =
dy
dx

(A5)

and the initial conditions (at x = 0, y = dAy, and θz = θAz, while at x = l, y = d∗By, and
θz = θ∗Bz), it results in the relations

fAy =
6EIz

l2 θAz +
6EIz

l2 θ∗Bz +
12EIz

l3 dAy +
12EIz

l3 d∗By (A6)

mAz =
4EIz

l
θAz +

2EIz

l
θ∗Bz +

6EIz

l2 dAy −
6EIz

l2 d∗By (A7)

Analogically, one obtains

fAz = −
6EIy

l2 θAy −
6EIy

l2 θ∗By +
12EIy

l3 dAz −
12EIy

l3 d∗Bz (A8)

mAy =
4EIy

l
θAy +

2EIy

l
θ∗By −

6EIy

l2 dAz +
6EIy

l2 d∗Bz (A9)

Using the previous expressions, one obtains

{fA} = [kAB]{dA} − [k∗AB]{d∗B} (A10)

Knowing that
{d∗B} = [T∗AB]

−1{dB} (A11)

[kAB] = [k∗AB][T
∗
AB]
−1 (A12)

this results in
{fA} = [kAB]{{dA} − {dB}} (A13)

Defining now the relative displacement

{dAB} = {dA} − {dB} (A14)
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results in
{fA} = [kAB]{dAB} (A15)

Appendix B

The complete calculation for the first case is given below.
For the kinematic chain A1B1C1 the calculation schema is captured in Figure A1.

Figure A1. Calculation schema.

It successively results in

[
RA1

]
=

 0.5 0 0.866
0 1 0

−0.866 0 0.5

,
[
GA1

]
=

 0 0 0
0 0 −0.1
0 0.1 0

,

[
TA1

]
=



0.5 0 0.866 0 0 0
0 1 0 0 0 0

−0.866 0 0.5 0 0 0
0 0 0 0.5 0 0.866

0.087 0 −0.05 0 1 0
0 0.1 0 −0.866 0 0.5

,

[
RB1

]
=

 −0.5 0 0.866
0 1 0

−0.866 0 −0.5

,
[
GB1

]
=

 0 0.346 0
−0.346 0 −0.3

0 0.3 0

,
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[
TB1

]
=



−0.5 0 0.866 0 0 0
0 1 0 0 0 0

−0.866 0 −0.5 0 0 0
0 0.346 0 −0.5 0 0.866

0.433 0 −0.15 0 1 0
0 0.3 0 −0.866 0 −0.5

,

[
RA2

]
=

 −0.25 −0.866 −0.433
0.433 −0.5 0.75
−0.866 0 0.5

,
[
GA2

]
=

 0 0 0.087
0 0 0.05

−0.087 −0.05 0

,

[
TA2

]
=



−0.25 −0.866 −0.433 0 0 0
0.433 −0.5 0.75 0 0 0
−0.866 0 0.5 0 0 0
−0.075 0 0.043 −0.25 −0.866 −0.433
−0.433 0 0.025 0.433 −0.5 0.75

0 0.1 0 −0.866 0 0.5

,

[
RB2

]
=

 0.25 −0.866 −0.433
−0.433 −0.5 0.75
−0.866 0 −0.5

,
[
GB2

]
=

 0 0.346 0.260
−0.346 0 0.15
−0.260 −0.15 0

,

[
TB2

]
=



0.25 −0.866 −0.433 0 0 0
−0.433 −0.5 0.75 0 0 0
−0.866 0 −0.5 0 0 0
−0.375 0.173 0.130 0.25 −0.866 −0.433
−0.217 0.3 0.075 −0.433 −0.5 0.75

0 0.3 0 0.866 0 −0.5

,

[
RA3

]
=

 −0.25 0.866 −0.433
−0.433 −0.5 −0.75
−0.866 0 0.5

,
[
GA3

]
=

 0 0 −0.087
0 0 0.05

0.087 −0.05 0

,

[
TA3

]
=



−0.25 0.866 −0.433 0 0 0
−0.433 −0.5 −0.75 0 0 0
−0.866 0 0.5 0 0 0
0.075 0 −0.0433 −0.25 0.866 −0.433
−0.043 0 0.025 −0.433 −0.5 −0.75

0 0.1 0 −0.866 0 0.5

,

[
RB3

]
=

 0.25 0.866 −0.433
0.433 −0.5 −0.75
−0.866 0 −0.5

,
[
GB3

]
=

 0 0.346 −0.260
−0.346 0 0.15
0.260 −0.15 0

,

[
TB3

]
=



0.25 0.866 −0.433 0 0 0
0.433 −0.5 −0.75 0 0 0
−0.866 0 −0.5 0 0 0
0.375 −0.173 −0.130 0.25 0.866 −0.433
−0.217 −0.3 0.075 0.433 −0.5 −0.75

0 0.3 0 −0.866 0 −0.5

,

[
uA1

]
=
[
uA2

]
=
[
uA3

]
=



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

,
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[
UA1

]
=



0.5 0 0.866
0 1 0

−0.866 0 0.5
0 0 0

0.087 0 −0.05
0 0.1 0

,

[
UA2

]
=



−0.25 −0.866 −0.433
0.433 −0.5 0.75
−0.866 0 0.5
−0.075 0 0.043
−0.043 0 0.025

0 0.1 0

,

[
UA3

]
=



−0.25 0.866 −0.433
−0.433 −0.5 −0.75
−0.866 0 0.5
0.075 0 −0.043
−0.043 0 0.025

0 0.1 0

,

[
uB1

]
=
[
uB2

]
=
[
uB3

]
=
[

0 0 0 1 0 0
]T,

[
UB1

]
=



0
0
0
−0.5

0
−0.866

,
[
UB2

]
=



0
0
0

0.25
−0.433
−0.866

,
[
UB3

]
=



0
0
0

0.25
0.433
−0.866

,

[
kA1B1

]
=
[
kA2B2

]
=
[
kA3B3

]

=



0 0 0 8.247× 107 0 0
0 0 1.546× 104 0 1.546× 105 0
0 −1.546× 104 0 0 0 1.546× 105

392.7 0 0 0 0 0
0 2061.7 0 0 0 −1.564× 104

0 0 20647 0 1.564× 104 0

 ,

[
kB1C1

]
=
[
kB2C2

]
=
[
kB3C3

]

=



0 0 0 4.123× 107 0 0
0 0 3.866× 103 0 1.933× 104 0
0 −3.866× 103 0 0 0 1.933× 104

196.3 0 0 0 0 0
0 1.03× 103 0 0 0 −3.865× 103

0 0 1.03× 103 0 3.865× 103 0

 ,

[
KA1B1

]

=



0 3.551× 106 0 2.073× 107 0 −3.564× 107

1.399× 104 0 2.319× 104 0 1.546× 105 0
0 −6.020× 106 0 −3.564× 107 0 6.189× 107

1.644× 103 0 2.062× 103 0 1.339× 104 0
0 6.225× 105 0 3.550× 106 0 −6.020× 106

2.062× 103 0 3.902× 103 0 2.319× 104 0

 ,



Symmetry 2022, 14, 770 49 of 56

[
KA2B2

]

=



−1.543× 106 8.777× 105 −2.009× 104 5.299× 106 −8.911× 106 1.782× 107

−2.660× 106 −1.543× 106 −1.160× 104 −8.911× 106 1.559× 107 −3.087× 107

5.366× 106 3.098× 106 0 1.782× 107 −3.087× 107 6.189× 107

4.673× 105 2.688× 105 −1.031× 103 1.543× 106 −2.660× 106 5.366× 106

2.688× 105 1.569× 105 1.786× 103 8.777× 105 −1.543× 106 3.098× 106

−1.031× 103 1.786× 103 3.902× 103 −2.009× 104 −1.160× 104 0


[
KA3B3

]

=



−1.543× 106 8.777× 105 2.009× 104 5.299× 106 8.911× 106 1.782× 107

−2.660× 106 1.543× 106 −1.160× 104 8.911× 106 1.559× 107 3.087× 107

−5.366× 106 3.098× 106 0 1.782× 107 3.087× 107 6.189× 107

4.673× 105 −2.688× 105 −1.031× 103 −1.543× 106 −2.660× 106 5.366× 106

−2.688× 105 1.569× 105 −1.786× 103 8.777× 105 1.543× 106 3.098× 106

−1.031× 103 −1.786× 103 3.902× 103 2.009× 104 −1.160× 104 0


[
KB1C1

]

=



0 −8.933× 106 0 1.032× 107 0 1.785× 107

1.004× 104 0 3.866× 103 0 1.933× 104 0
0 −1.546× 107 0 1.785× 107 0 3.093× 107

5.461× 103 0 1.982× 103 0 1.004× 104 0
0 7.734× 106 0 −8.933× 106 0 −1.546× 107

1.982× 103 0 9.848× 102 0 3.866× 103 0

 ,

[
KB2C2

]

=



−3.864× 106 −2.241× 106 −3.348× 103 2.595× 106 −4.462× 106 −8.923× 106

6.703× 106 3.864× 106 −1.933× 103 −4.462× 106 7.747× 106 1.546× 107

1.339× 107 7.730× 106 0 −8.923× 106 1.546× 107 3.093× 107

5.802× 106 3.347× 106 −9.910× 102 −3.864× 106 6.702× 106 1.339× 107

3.347× 106 1.938× 106 1.717× 103 −2.241× 106 3.864× 106 7.730× 106

−9.910× 102 1.717× 103 9.848× 102 −3.348× 103 −1.933× 103 0


[
KB3C3

]

=



3.864× 106 −2.241× 106 3.348× 103 2.595× 106 4.462× 106 −8.923× 106

6.702× 106 −3.864× 106 −1.933× 103 −4.462× 106 7.747× 106 −1.546× 107

−1.339× 107 7.730× 106 0 −8.923× 106 −1.546× 107 3.093× 107

5.802× 106 −3.347× 106 −9.910× 102 3.864× 106 6.702× 106 −1.339× 107

−3.347× 106 1.938× 106 −1.717× 103 2.241× 106 −3.864× 106 7.730× 106

−9.910× 102 −1.717× 103 9.848× 102 3.348× 103 −1.933× 103 0


[ ~
KA1C1

]

=



0 −1.023× 103 0 3.543× 103 0 −1.672× 103

1.186× 103 0 6.428× 102 0 3.145× 103 0
0 −9.810× 103 0 −1.672× 103 0 5.693× 103

6.071× 102 0 2.366× 102 0 1.186× 103 0
0 2.354× 103 0 −1.023× 103 0 −9.810× 103

2.366× 102 0 2.708× 102 0 6.428× 102 0

 ,
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[ ~
KA2C2

]

=



7.070× 101 −1.146× 103 −5.567× 102 3.245× 103 −1.723× 102 8.361× 102

1.064× 103 −7.070× 101 −3.214× 102 −1.723× 102 3.444× 103 −1.448× 103

8.495× 103 4.905× 103 0 8.361× 102 −1.448× 103 5.693× 104

1.917× 103 7.565× 102 −1.183× 102 7.070× 101 1.064× 103 8.495× 103

7.565× 102 1.044× 103 2.049× 102 −1.146× 103 −7.070× 101 4.905× 103

−1.183× 102 2.049× 103 2.708× 102 −5.567× 102 −3.214× 102 0


[ ~
KA3C3

]

=



−7.070× 101 −1.146× 103 5.567× 102 3.245× 103 1.723× 102 8.361× 102

1.064× 103 7.070× 101 −3.214× 102 1.723× 102 3.444× 103 1.448× 103

−8.495× 103 4.905× 103 0 8.361× 102 1.448× 103 5.693× 104

1.917× 103 −7.565× 102 −1.183× 102 −7.070× 101 1.064× 103 −8.495× 103

−7.565× 102 1.044× 103 −2.049× 102 −1.146× 103 7.070× 101 4.905× 103

−1.183× 102 −2.049× 103 2.708× 102 5.567× 102 −3.214× 102 0



[
UA1B1

]
=



0.5 0 0.866 0
0 1 0 0.343

−0.866 0 0.5 0
0 0 0 −0.5

0.087 0 −0.05 0
0 0.1 0 −0.866

,

[
UA2B2

]
=



−0.25 −0.866 −0.433 0
0.433 −0.5 0.75 0
−0.866 0 0.5 0
−0.075 0 0.043 0.25
−0.043 0 0.025 −0.433

0 0.1 0 −0.866

,

[
UA3B3

]
=



−0.25 0.866 −0.433 0
−0.433 −0.5 −0.75 0
−0.866 0 0.5 0
0.075 0 −0.043 0.25
−0.043 0 0.025 0.433

0 0.1 0 −0.866

,

[
KA1C1

]

=



0 6.377× 101 0 1.104× 103 0 −6.377× 102

0 0 7.636× 101 0 7.636× 102 0
0 −3.682× 101 0 −6.377× 102 0 3.682× 102

0 0 0 0 0 0
0 3.682 0 6.377× 101 0 −3.682× 101

0 0 7.636 0 7.636× 101 0

 ,

[
KA2C2

]

=



2.761× 101 1.594× 101 −6.613× 101 8.488× 102 −1.476× 102 3.188× 102

−4.782× 101 −2.761× 101 −3.818× 101 −1.476× 102 1.019× 103 −5.522× 102

3.188× 101 1.841× 101 0 3.188× 102 −5.522× 102 3.682× 102

2.761 1.594 0 2.761× 101 −4.782× 101 3.188× 101

1.594 0.920 0 1.594× 101 −2.761× 101 1.841× 101

0 0 7.636 −6.613× 101 −3.818× 101 0


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[
KA3C3

]

=



−2.761× 101 1.594× 101 6.613× 101 8.488× 102 1.476× 102 3.188× 102

−4.782× 101 2.761× 101 −3.818× 101 −1.476× 102 1.019× 103 5.522× 102

−3.188× 101 1.841× 101 0 3.188× 102 5.522× 102 3.682× 102

2.761 −1.594 0 −2.761× 101 −4.782× 101 −3.188× 101

−1.594 0.920 0 1.594× 101 2.761× 101 1.841× 101

0 0 7.636 6.613× 101 −3.818× 101 0



[M] =



0 0 0 10 0 0
0 0 0 0 10 0
0 0 0 0 0 10

1.25× 10−2 0 0 0 0 0
0 1.25× 10−2 0 0 0 0
0 0 1.25× 10−2 0 0 0

.

Appendix C

The matrix differential systems for each considered case are given below.
For the first case (Section 6.1):

(a) if we consider that all the kinematic chains contain only elastic elements, then we
obtain [

Ksystem
]

=



0 9.565× 101 0 2.802× 103 0 0
−9.565× 101 0 0 0 2.802× 103 0

0 0 0 0 0 1.104× 103

5.522 0 0 0 −9.565× 101 0
0 5.522 0 9.565 0 0
0 0 2.291× 101 0 0 0


and the matrix differential system

..
θX + 4.418× 102θX − 7.652× 103δY = 0 ,
..
θY + 4.418× 102θY + 7.652× 103δX = 0 ,

..
θZ + 9.163× 102θZ = 0 ,

..
δX + 9.565θY + 2.802× 102δX = 0 ,
..
δY − 9.565θX + 2.802× 102δY = 0 ,

..
δZ + 1.104× 102δZ = 0 .

The previous system separates into{ ..
θX + 4.418× 102θX − 7.652× 103δY = 0 ,

..
δY − 9.565θX + 2.802× 102δY = 0 ,{ ..

θY + 4.418× 102θY + 7.652× 103δX = 0 ,
..
δX + 9.565θY + 2.802× 102δX = 0 ,

..
θZ + 9.163× 102θZ = 0,
..
θZ + 9.163× 102θZ = 0;

(b) If the kinematic chain A1B1C1 consists of rigid elements, then it results in
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[
Ksystem

]

=



0 3.188× 101 0 1.698× 103 0 6.377× 102

−9.565× 101 0 −7.636 0 2.038× 103 0
0 3.682× 101 0 6.377× 102 0 7.363× 102

0 0 0 0 −9.565× 101 0
0 1.841 0 3.188× 101 0 3.682× 101

0 0 1.527× 101 0 −7.636× 101 0


and the matrix differential system

..
θx + 5.154× 101θx + 1.488× 102θz = 0 ,
..
θy + 1.104× 102θy − 2.952× 102δx = 0 ,
..
θz − 5.399× 102θx + 7.977× 102θz = 0 ,

..
δx − 4.782θy + 1.273× 102δx = 0 ,

which separates into the systems{ ..
θx + 5.154× 101θx + 1.488× 102θz = 0 ,
..
θz − 5.399× 102θx + 7.977× 102θz = 0 ,{ ..
θy + 1.104× 102θy − 2.592× 102δx = 0 ,

..
δx − 4.782θy + 1.273× 102δx = 0 .

For the second case (Section 6.2):

(a) if all kinematic chains consist of elastic elements, then the system of differential
equations reads 

..
θx + 2.827× 101θx − 1.959× 102δy = 0 ,
..
θy + 2.827× 101θy + 1.959× 102δx = 0 ,

..
θz + 5.864× 101θz = 0 ,

..
δx + 1.530θy + 1.793× 101δx = 0 ,
..
δy − 1.530θx + 1.793× 101θy = 0 ,

..
δz + 7.069δz = 0,

which separates into the systems{ ..
θx + 2.827× 101θx − 1.959× 102δy = 0 ,

..
δy − 1.530θx + 1.793× 101δy = 0 ,{ ..

θy + 2.827× 101θy + 1.959× 102δx = 0 ,
..
δx + 1.530θy + 1.793× 101δx = 0 ,

..
θz + 5.864× 101θz = 0,

..
δz + 7.069δz = 0;

(b) if the kinematic chain A1B1C1 consists of rigid elements, then it results in the following
system of differential equations

..
θx + 3.299θx + 9.522θz = 0 ,
..
θy + 7.069θy − 7.557δx = 0 ,

..
θz − 3.145× 101θx + 5.105× 101θz = 0 ,

..
δx − 0.765θy + 8.149δx = 0 ,
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which separates into the systems{ ..
θx + 3.299θx + 9.522θz = 0 ,

..
θz − 3.455× 101θx + 5.105× 101θz = 0 ,{ ..

θy + 7.069θy − 7.557δx = 0 ,
..
δx − 0.765θy + 8.149δx = 0 .

For the third case (Section 6.3):

(a) if all kinematic chains consist of elastic elements, then the system of differential
equations takes the form

..
θx + 4.418× 102θx − 7.652× 103δy = 0 ,

..
θy + 2.400× 104θy + 4.157× 105δx − 2.356× 105δz = 0 ,

..
θz + 2.535× 104θz + 2.443× 105δy = 0 ,

..
δx + 5.196× 102θy + 9.144× 103δx − 5.101× 103δz = 0 ,

..
δy − 9.565θx + 6.109× 102θz + 6.389× 103δy = 0 ,

..
δz − 2.945× 102θy − 5.101× 103δx + 3.055× 103δz = 0 ,

which separates into the systems
..
θx + 4.418× 102θx − 7.652× 103δy = 0 ,
..
θz + 2.535× 104θz + 2.443× 105δy = 0 ,

..
δy − 9.565θx + 6.109× 102θz + 6.389× 103δy = 0 ,


..
θy + 2.400× 104θy + 4.157× 105δx − 2.356× 105δz = 0 ,
..
δx + 5.196× 102θy + 9.114× 103δx − 5.101× 103δz = 0 ,
..
δz − 2.945× 102θy − 5.101× 103δx + 3.055× 103δz = 0 ;

(b) if the kinematic chain A1B1C1 consists of rigid elements, then one obtains the following
system of differential equations

..
θx + 5.154× 101θx + 1.488× 102θz = 0 ,
..
θy + 1.104× 102θy − 2.952× 102δx = 0 ,
..
θz − 5.399× 102θx + 7.977× 102θz = 0 ,

..
δx − 4.782θy + 1.273× 102δx = 0 ,

which separates into the systems{ ..
θx + 5.154× 101θx + 1.488× 102θz = 0 ,
..
θz − 5.399× 102θx + 7.977× 102θz = 0 ,

{ ..
θy + 1.104× 102θy − 2.952× 102δx = 0 ,

..
δx − 4.782θy + 1.273× 102δx = 0 .

For the fourth case (Section 6.4):

(a) if all kinematic chains consist of elastic elements, then one obtains the system of

differential equation



..
θx + 3.755× 103θx − 1.913× 103θy

−3.313× 104δx − 6.504× 104δy − 3.826× 105δz = 0,
..
θy − 1.913× 103θx + 2.511× 104θy

+4.348× 105δx + 3.313× 104δy − 2.135× 105δz = 0,
..
θz + 2.993× 104θz + 3.967× 104δx + 2.214× 105δy = 0,

..
δx − 4.142× 101θx + 5.435× 102θy + 3.919× 101θz
+1.039× 104δx + 2.214× 102δy − 4.622× 103δz = 0

..
δy − 8.130× 101θx + 4.142× 101θy + 5.536× 102θz
+2.214× 102δx + 7.918× 103δy + 8.283× 102δz = 0,

..
δz − 4.782× 101θx − 2.669× 102θy

−4.662× 103δx + 8.283× 102δy + 3.607× 103δz = 0;



Symmetry 2022, 14, 770 54 of 56

(b) if the kinematic chain A1B1C1 consists of rigid elements, then one obtains the system
of differential equations

..
θx + 4.382× 102θx − 2.009× 103θy + 1.265× 103θz + 2.255× 104δx = 0 ,
..
θy + 1.966× 103θx + 9.387× 102θy − 1.687× 103θz − 2.509× 103δx = 0 ,
..
θz − 4.589× 103θx − 5.467× 103θy + 6.780× 103θz + 4.437× 104δx = 0 ,
..
δx + 1.726× 102θx − 4.065× 101θy − 7.572× 101θz + 1.082× 103δx = 0 .

References
1. Gallardo-Alvarado, J.; Posadas-Garcia, J.-d.-D. Mobility analysis and kinematics of the semi-general 2 (3-RPS) series-parallel

manipulator. Robot. Comput.-Integr. Manuf. 2013, 29, 463–472. [CrossRef]
2. Gallardo-Alvarado, J.; Camarillo-Gomez, K.A.; García-Murillo, M.A. A Gough/Stewart-type platform under a combined scheme

of actuation. Int. J. Adv. Manuf. Technol. 2013, 68, 981–991. [CrossRef]
3. Gallardo-Alvarado, J.; Rodriguez-Castro, R.; Aguilar-Nájera, C.R.; Pérez-González, L. A novel six-degrees-of-freedom series-

parallel manipulator. J. Mech. Sci. Technol. 2012, 26, 1901–1909. [CrossRef]
4. Gallardo-Alvarado, J.; García-Murillo, M.A.; Nazul Islam, M.; Abedinnasab, M.H. A simple approach to solving the kinematics of

the 4-UPS/PS (3RIT) parallel manipulator. J. Mech. Sci. Technol. 2016, 30, 2303–2309. [CrossRef]
5. Yi, B.-J.; Kim, W.K. Task-oriented type synthesis of the lower-mobility parallel mechanisms with a common platform. J. Mech. Sci.

Technol. 2018, 32, 5373–5387. [CrossRef]
6. Bu, W.; Yan, S.; Chen, J.; An, X. Mobility analysis for parallel manipulators based on intersection of screw manifolds. J. Mech. Sci.

Technol. 2016, 30, 4345–4352. [CrossRef]
7. Nazari, A.A.; Hasani, A.; Beedel, M. Screw theory-based mobility analysis and projection-based kinematic modeling of a 3-CRRR

parallel manipulator. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 357. [CrossRef]
8. Hu, B.; Lu, Y.; Tan, Q.; Yu, J.; Han, J. Analysis of stiffness and elastic deformation of a 2 (SP+SPR+SPU) serial-parallel manipulator.

Robot. Comput.-Integr. Manuf. 2011, 27, 418–425. [CrossRef]
9. Kong, Y.; Cheng, G.; Guo, F.; Gu, W.; Zhang, L. Inertia matching analysis of a 5-DOF hybrid optical machining manipulator. J.

Mech. Sci. Technol. 2019, 33, 4991–5002. [CrossRef]
10. Wang, Q.; Su, J.; Lv, Z.; Zhang, L.; Lin, H.; Xu, G. Efficient hybrid method for forward kinematics analysis of parallel robots based

on signal decomposition and reconstruction. Adv. Mech. Eng. 2017, 9, 1–14. [CrossRef]
11. Zhao, J.-S.; Fen, Z.-J.; Zhou, K.; Gao, Y.-F. The design kinematic chains based on the principle of invariable terminal constraints.

Int. J. Adv. Manuf. Technol. 2005, 26, 138–143. [CrossRef]
12. Afroun, M.; Dequidt, A.; Vermeiren, L. Revisiting the inverse dynamics of the Gough-Stewart platform manipulator with special

emphasis on universal-prismatic-spherical leg and internal singularity. Proc. Int. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2012,
226, 2422–2439. [CrossRef]

13. Hernández Martinez, E.E.; Valdez Peña, S.I.; Sánchez Soto, E. Towards a Robust Solution of the Non-linear Kinematics for the
General Stewart Platform with Estimation of Distribution Algorithms. Int. J. Adv. Robot. Syst. 2013, 10, 1–11. [CrossRef]

14. Li, B.; Cao, Y.; Zhang, Q.; Wang, C. Singularity Representation and Workspace Determination of a Special Class of the Gough-
Stewart Platforms. Int. J. Adv. Robot. Syst. 2013, 10, 1–13. [CrossRef]

15. Müller, A.; Shai, O. A systematic approach to the instantaneous duality of mechanisms and its application. Proc. Int. Inst. Mech.
Eng. Part C J. Mech. Eng. Sci. 2016, 230, 437–444. [CrossRef]

16. Andrievskiy, B.R.; Arseniev, D.G.; Zegzhda, S.A.; Kazunin, D.V.; Kuznetsov, N.V.; Leonov, G.A.; Tovstik, P.E.; Tovstik, T.P.;
Yushkov, M.P. Dynamics of a Stewart platform. Vestn. St. Petersburg Univ. Math. 2017, 50, 297–309. [CrossRef]

17. S, umnu, A.; Güzelbey, I.H.; Çakir, M.V. Simulation and PID control of a Stewart platform with linear motor. J. Mech. Sci. Technol.
2017, 31, 345–356. [CrossRef]

18. Meng, Q.; Zhang, T.; He, J.-F.; Song, J.-Y.; Han, J.-W. Dynamic modeling of a 6-degree-of-freedom Stewart platform driven by a
permanent synchronous motor. J. Zhanjiang Univ. Sci. C (Comput. Electron.) 2010, 11, 751–761. [CrossRef]

19. Kalani, H.; Rezaei, A.; Akbarzadeh, A. Improved general solution for the dynamic modeling of Gough-Stewart platform based on
principle of virtual work. Nonlinear Dyn. 2016, 83, 2393–2418. [CrossRef]

20. Leonov, G.A.; Zegzhda, S.A.; Zuev, S.M.; Ershov, B.A.; Kazunin, D.V.; Kostygova, D.M.; Kuznetsov, N.V.; Tovstik, P.E.; Tovstik,
T.P.; Yushkov, M.P. Dynamics and Control of the Stewart platform. Dokl. Phys. 2014, 59, 405–410. [CrossRef]

21. Jakobovič, D.; Budin, L. Forward Kinematics of a Stewart Platform Mechanism. In Proceedings of the INES 2002, 6th International
Conference on Intelligent Engineering Systems, Opatija, Croatia, 26–29 May 2002.

22. Gallardo-Alvarado, J. Jerk distribution of a 6-3 Gough-Stewart platform. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2003, 217,
77–84. [CrossRef]

23. Bai, X.; Junkins, J.L.; Turner, J.D. Dynamic Analysis and Adaptive Control of a Stewart Platform Using a Novel Automatic
Differentiation Method. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Keystone, CO, USA,
21–24 August 2006.

http://doi.org/10.1016/j.rcim.2013.05.004
http://doi.org/10.1007/s00170-013-4889-x
http://doi.org/10.1007/s12206-012-0408-5
http://doi.org/10.1007/s12206-016-0439-4
http://doi.org/10.1007/s12206-018-1036-5
http://doi.org/10.1007/s12206-016-0849-3
http://doi.org/10.1007/s40430-018-1277-3
http://doi.org/10.1016/j.rcim.2010.09.002
http://doi.org/10.1007/s12206-019-0938-1
http://doi.org/10.1177/1687814017699094
http://doi.org/10.1007/s00170-003-1967-5
http://doi.org/10.1177/0954406211434485
http://doi.org/10.5772/52172
http://doi.org/10.5772/56792
http://doi.org/10.1177/0954406215615154
http://doi.org/10.3103/S1063454117030037
http://doi.org/10.1007/s12206-016-1238-7
http://doi.org/10.1631/jzus.C0910714
http://doi.org/10.1007/s11071-015-2489-z
http://doi.org/10.1134/S102833581409002X
http://doi.org/10.1243/146441903763049469


Symmetry 2022, 14, 770 55 of 56

24. Hajimirzaallan, H.; Ferraresi, C.; Moosavi, H.; Massah, M. An analytical method for the inverse dynamic analysis of the Stewart
platform with asymmetric-adjustable payload. Proc. Int. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2013, 227, 162–171. [CrossRef]

25. Zhou, H.; Cao, Y.; Li, B.; Wu, M.; Yu, J.; Chen, H. Position-Singularity Analysis of a Class of the 3/6-Gough-Stewart Manipulators
based on Singularity-Equivalent-Mechanism. Int. J. Adv. Robot. Syst. 2012, 9, 1–9. [CrossRef]

26. Zhao, Q.; Wang, N.; Spencer, B.F., Jr. Adaptive position tracking control of electro-hydraulic six-degree-of-freedom driving
simulator subject to perturbation. Simul. Trans. Soc. Modeling Simul. Int. 2015, 91, 265–275. [CrossRef]

27. Pedrammehr, S.; Mahboubkhah, M.; Khani, N. Improved dynamic equations for the generally configured Stewart platform
manipulator. J. Mech. Sci. Technol. 2012, 26, 711–721. [CrossRef]

28. Alyushin, Y.-A.; Elenev, S.-A. Mathematical Model of a Stewart Platform Motion. J. Mach. Manuf. Reliab. 2010, 39, 305–312.
[CrossRef]

29. Lazard, D.; Merlet, J.-P. The (true) Stewart platform has 12 configurations. In Proceedings of the 1994 IEEE International
Conference on Robotics and Automation, San Diego, CA, USA, 8–13 May 1994. [CrossRef]

30. Huang, C.-I.; Chang, C.-F.; Yu, M.-Y.; Fu, L.-C. Sliding-Mode Tracking Control of the Stewart Platform. In Proceedings of the 5th
Asian Control Conference, Melbourne, Australia, 20–23 July 2004. [CrossRef]

31. Lee, S.-H.; Song, J.-B.; Choi, W.-C.; Hong, D. Position control of Stewart platform using inverse dynamics control with approximate
dynamics. Mechatronics 2003, 13, 605–619. [CrossRef]

32. Gallardo-Alvarado, J. Enhancing the originality of the Stewart platform through its kinematic analyses. Proc. Int. Inst. Mech. Eng.
Part C J. Mech. Eng. Sci. 2012, 226, 3013–3025. [CrossRef]

33. Ke, W.; Fuzhou, D.; Xianzhi, Z. Algorithm and experiments of six-dimensional force/torque dynamic measurements based on a
Stewart platform. Chin. J. Aeronaut. 2016, 29, 1840–1851. [CrossRef]

34. Afzali-Far, B.; Lidström, P.; Nilsson, K. Parametric damped vibrations of Gough-Stewart platforms for symmetric configurations.
Mech. Mach. Theory 2014, 80, 52–69. [CrossRef]

35. Tang, J.; Cao, D.; Yu, T. Decentralized vibration control of a voice coil motor-based Stewart parallel mechanism: Simulation and
experiments. Proc. Int. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2018, 233, 132–145. [CrossRef]

36. Meng, Q.; Zhang, T.; He, J.-F.; Song, J.-Y.; Yuan, C.-Y. Fault-tolerant control under uncertain Stewart platform under loss of the
actuator effectiveness. Proc. Int. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2014, 228, 1286–1298. [CrossRef]

37. Zhao, Q.; Gao, F. Bond graph modelling of hydraulic six-degree-of-freedom motion simulator. Proc. Int. Inst. Mech. Eng. Part C J.
Mech. Eng. Sci. 2012, 226, 2887–2901. [CrossRef]

38. Damic, V.; Cohodar, M. Dynamic Analysis of Stewart Platform by Bond Graphs. Proceedia Eng. 2015, 100, 226–233. [CrossRef]
39. Halder, B.; Saha, R.; Sanyal, D. Semi-isotropic design of a Stewart platform through constrained optimization. Proc. Int. Inst.

Mech. Eng. Part C J. Mech. Eng. Sci. 2015, 231, 1897–1906. [CrossRef]
40. Xie, Z.; Li, G.; Liu, G.; Zhao, J. Optimal design of a Stewart platform using the global transmission index under determinate

constraint of workspace. Adv. Mech. Eng. 2017, 9, 1–14. [CrossRef]
41. Shao, Z.-F.; Tang, X.; Wang, L.-P. Optimum Design of 3-3 Stewart Platform Considering Inertia Property. Adv. Mech. Eng. 2013,

5, 249121. [CrossRef]
42. Tourajizadeh, H.; Yousefzadeh, M.; Tajik, A. Closed Loop Optimal Control of a Stewart Platform Using an Optimal Feedback

Linearization Method. Int. J. Adv. Robot. Syst. 2016, 13, 134. [CrossRef]
43. Taghizadeh, M.; Yarmohammadi, M.J. Development of a Self-tuning PID Controller on Hydraulically Actuated Stewart Platform

Stabilizer with Base Excitation. Int. J. Control Autom. Syst. 2018, 16, 2990–2999. [CrossRef]
44. Li, Y.; Yang, X.L.; Wu, H.T.; Chen, B. Optimal design of a six-axis vibration isolator via Stewart platform by using homogeneous

Jacobian matrix formulation based on dual quaternions. J. Mech. Sci. Technol. 2018, 32, 11–19. [CrossRef]
45. Keshtkar, S.; Poznyak, A.S.; Hernandez, E.; Oropeza, A. Adaptive Sliding Mode Controller Based on the “Super-Twist” State

Observer for Control of the Stewart Platform. Autom. Remote Control 2017, 78, 1218–1233. [CrossRef]
46. Yao, R.; Zhu, W.; Hunag, P. Accuracy Analysis of Stewart Platform Based on Interval Analysis Method. Chin. J. Mech. Eng. 2013,

26, 29–34. [CrossRef]
47. Sun, T.; Lian, B.; Song, Y. Stiffness analysis of a 2DoF over-constrained RPM with an articulated traveling platform. Mech. Mach.

Theory 2016, 96, 165–178. [CrossRef]
48. Wu, M.; Mei, J.; Zhao, Y.; Niu, W. Vibration reduction of delta robot based on trajectory planning. Mech. Mach. Theory 2020,

153, 104004. [CrossRef]
49. Wang, G.; Wang, L. Dynamics investigation of spatial parallel mechanism considering rod flexibility and spherical joint clearance.

Mech. Mach. Theory 2019, 117, 83–107. [CrossRef]
50. Liu, S.; Dai, J.; Sheng, G.; Li, A.; Cao, G.; Feng, S.; Meng, D. Dynamic analysis of spatial parallel manipulator with rigid and

flexible couplings. J. Cent. South Univ. 2017, 24, 840–853. [CrossRef]
51. Li, Y.; Zheng, H.; Chen, B.; Sun, P.; Wang, Z.; Shuai, K.; Yue, Y. Dynamic Modeling and Analysis of 5-PSS/UPU Parallel Mechanism

with Elastically Active Branched Chains. Chin. J. Mech. Eng. 2020, 33, 44. [CrossRef]
52. Jia, Y.-H.; Xu, S.-J.; Hu, Q. Dynamics of a spacecraft with large flexible appendage constrained by multi-strut passive damper.

Acta Mech. Sin. 2013, 29, 294–308. [CrossRef]
53. Zhao, Y.; Jin, Y.; Zhang, J. Kinetostatic Modeling and Analysis of an Exechon Parallel Kinematic Machine (PKM) Module. Chin. J.

Mech. Eng. 2016, 29, 33–44. [CrossRef]

http://doi.org/10.1177/1464419313477824
http://doi.org/10.5772/45664
http://doi.org/10.1177/0037549715571756
http://doi.org/10.1007/s12206-011-1231-0
http://doi.org/10.3103/S1052618810040011
http://doi.org/10.1109/ROBOT.1994.350969
http://doi.org/10.1109/ASCC.2004.184819
http://doi.org/10.1016/S0957-4158(02)00033-8
http://doi.org/10.1177/0954406212439383
http://doi.org/10.1016/j.cja.2016.10.015
http://doi.org/10.1016/j.mechmachtheory.2014.04.018
http://doi.org/10.1177/0954406218756941
http://doi.org/10.1177/0954406213507705
http://doi.org/10.1177/0954406212440067
http://doi.org/10.1016/j.proeng.2015.01.362
http://doi.org/10.1177/0954406215623576
http://doi.org/10.1177/1687814017720880
http://doi.org/10.1155/2013/249121
http://doi.org/10.5772/63546
http://doi.org/10.1007/s12555-016-0559-8
http://doi.org/10.1007/s12206-017-1202-1
http://doi.org/10.1134/S0005117917070049
http://doi.org/10.3901/CJME.2013.01.029
http://doi.org/10.1016/j.mechmachtheory.2015.09.008
http://doi.org/10.1016/j.mechmachtheory.2020.104004
http://doi.org/10.1016/j.mechmachtheory.2019.03.017
http://doi.org/10.1007/s11771-017-3486-9
http://doi.org/10.1186/s10033-020-00460-4
http://doi.org/10.1007/s10409-013-0005-6
http://doi.org/10.3901/CJME.2015.1012.120


Symmetry 2022, 14, 770 56 of 56

54. Jiao, J.; Wu, Y.; Yu, K.; Zhao, R. Dynamic modeling and experimental analyses of Stewart platform with flexible hinges. J. Vib.
Control 2018, 25, 151–171. [CrossRef]

55. Ebrahimi, S.; Eshaghiyeh-Firoozabadi, A. Dynamic Performance Evaluation of Serial and Parallel RPR Manipulators with Flexible
Intermediate Links. Iran. J. Sci. Technol. Trans. Mech. Eng. 2016, 40, 160–180. [CrossRef]

56. Yun, Y.; Li, Y. Design and analysis of a novel 6-DOF redundant actuated parallel robot with compliant hinges for high precision
positioning. Nonlinear Dyn. 2010, 61, 829–845. [CrossRef]

57. Ma, S.; Duan, W. Dynamic Coupled Analysis of the Floating Platform Using the Asynchronous Coupling Algorithm. J. Mar. Sci.
Appl. 2014, 13, 85–91. [CrossRef]

58. Inner, B.; Kucuk, S. A novel kinematic design, analysis and simulation tool for general Stewart platforms. Simul. Trans. Soc.
Modeling Simul. Int. 2013, 89, 876–897. [CrossRef]

59. Tabacu, S.; Negrea, R.F.; Negrea, D. Experimental, numerical and analytical investigation of 2D tetra-anti-chiral structure under
compressive loads. Thin-Walled Struct. 2020, 155, 106929. [CrossRef]

60. Furqan, M.; Suhaib, M.; Ahmad, N. Studies on Stewart platform manipulator: A review. J. Mech. Sci. Technol. 2017, 31, 4459–4470.
[CrossRef]

61. Pnevmatikos, N.G.; Thomos, G.C. Stochastic structural control under earthquake excitations. J. Struct. Control Health Monit. 2014,
21, 620–633. [CrossRef]

http://doi.org/10.1177/1077546318772474
http://doi.org/10.1007/s40997-016-0019-3
http://doi.org/10.1007/s11071-010-9690-x
http://doi.org/10.1007/s11804-014-1234-1
http://doi.org/10.1177/0037549713482733
http://doi.org/10.1016/j.tws.2020.106929
http://doi.org/10.1007/s12206-017-0846-1
http://doi.org/10.1002/stc.1589

	Introduction 
	Vibrations of the Rigid Solid Hung by Several Elastic Kinematic Chains and One Kinematic Chain with Rigid Elements 
	Generalities 
	Notations 
	Small Displacements 
	The Rigidity Matrix 

	Calculation of the Displacement 
	The Equation of the Free Vibrations 
	The Equation of the Forced Vibrations 
	Example 
	Case (i) 
	Case (ii) 
	Case (iii) 
	Case (iv) 
	Dependency on the Diameters of Bars 
	Dependency on the Length of Bars 
	Dependency on the Mass of the Shell 
	Dependency on the Elasticity Modulus 
	Forced Vibrations 

	Conclusions 
	Appendix A
	Appendix B
	Appendix C
	References

