symmetry MBPI|

Article

Copulas Arisen from Degradation-Based Time-to-Failure Models

Lolwa Alshagrawi © and Mohamed Kayid *

check for
updates

Citation: Alshagrawi, L.; Kayid, M.
Copulas Arisen from
Degradation-Based Time-to-Failure
Models. Symmetry 2022, 14, 785.
https://doi.org/10.3390/
sym14040785

Academic Editor: Yiying Zhang

Received: 7 March 2022
Accepted: 6 April 2022
Published: 9 April 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 2455,
Riyadh 11451, Saudi Arabia; 438204091@student.ksu.edu.sa
* Correspondence: drkayid@ksu.edu.sa

Abstract: There are a variety of degradation models in the literature, each with a certain effect of
random variation around the mean degradation path on the time-to-failure of the device being
degraded. To assess the dependence that the random variation around the mean degradation path
exerts on the resulting time-to-failure, this paper presents copula functions for time-to-failure-based
degradation models with respect to two well-known degradation models, namely, the multiplicative
degradation model and the additive degradation model. The implied copula functions for the case
of the multiplicative degradation model have explicit forms. The implied copula functions are
proved to be symmetric in the case of deterministic effect of degradation on failure, but the copulas
obtained when failure is affected uncertainly by degradation are asymmetric. Necessary and sufficient
conditions for the implicit copula functions to be symmetric are given.
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1. Introduction

In general, copulas are multivariate functions and, in a special case, bivariate func-
tions that are useful to describe the dependence structure of multivariate and bivariate
distributions, regardless of what the marginal distributions of the underlying multivariate
and bivariate distributions are. More precisely, copulas allow the separation of the depen-
dence effect from the effects of the marginal distributions. Nelsen [1] provides a set of
methods for constructing bivariate distributions over bivariate copulas. For the study of
dependence in some bivariate families, we refer to Genest [2], Joe [3], Nadarajah et al. [4],
Durante [5], and Tang et al. [6], among others. We now begin with the definition of copula,
our preliminary work, and auxiliary results.

A bivariate function C : [0,1]2 — [0,1] is a copula if it satisfies the following conditions:

1. Boundary condition, For 0 < x,y < 1; C(x,0) = C(0,y) = 0, C(x,1) = x, and
CLy) =v.

2. Increasing property. Forall0 < x; <y; <land0<x <y, <1,

C(xllyl) - C(xZIyl) + C(XZ/yZ) - C(xlzl/Z) 2 0.

Sklar’s theorem states that if F(x,y) is a bivariate df. and F;(x) and F,(y) are its
marginal distributions, then there is a unique copula C(-, -) such that

F(x,y) = C(R(x), F2(y)). @

If C is a copula and F; and F, are univariate continuous distributions, then (1) defines
a bivariate distribution with marginal cumulative distribution functions (c.d.f.s) F; and
E,. Let F, F; and F, denote the survival functions (s.f.s) of (X,Y), X and Y, respectively.
The previous formula leads to

F(x,y) = C(F(x),B(y)) forall (x,y) € R2, )
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The function C is called the survival copula, which is linked to C via the next formula
Cu,0) =u+v—-14+C(1—u,1-0v) forall (u,0) € [0,1]

Notice that C and C coincide with independent copula when X and Y are independent,
that is,
C(u,v) = C(u,v) =T(u,v) = uv forall (u,v) € [0,1]%

It is well known that for any copula C and for all u,v € [0,1],
(u+v—1)+ <C(u,v) <min(u,v), ©)]

where 4. = max{0,a}. Note that previous bivariate functions W(u,v) = (u+v—1)4
and M(u,v) = min(u, v) are themselves copulas called Fréchet-Hoeffding bounds. More
information about the construction of these bounds is presented in Fréchet [7]. For more
details on the notion of copulas, we refer the interested reader to Nelsen [1]. One of the
attractive properties of copulas is symmetry. A bivariate copula function C is said to be
symmetric if C(u,v) = C(v,u) forall u,v € [0,1] (see, e.g., Genest et al. [8]). The copulas
W and M are both symmetric copulas.

In many cases, it may be difficult to measure or maintain the lifetime of a particular
item because of longevity and/or failures caused by unexpected cumulative random
shocks. In such situations, if a cumulative degradation feature related to lifetime can
be observed, then the reliability or percentile of lifetime can be modeled using these
degradation measurements. Degradation modeling has been an effective reliability analysis
approach for products with failures caused by degradation. Stochastic degradation process
models are developed on the basis of cumulative degradation signals of systems under
three types of thresholds: namely, alarm line and two different failure thresholds. One
of the failure thresholds is the degradation amount, and the other corresponds to the
duration. Degradation models are mainly classified into three classes: namely, stochastic
process models, general path models, and other models beyond the both (cf. Ye and Xie [9]).
In recent years, the analysis of degradation data has played an important role in various
disciplines such as reliability, health sciences, and finance. For example, by analyzing
degradation data, information can be obtained about the reliability of a highly reliable
product. Statistical modeling and inference techniques have been developed based on
various degradation measures. Degradation data can provide much more information than
failure data because they provide more information about product life status than failure
data if a specific degradation mechanism can be identified. Modeling and analysis with
the degradation signal is useful in predicting product life. Systems used in the production
of goods and the delivery of services comprise the majority of capital in most industries.
These systems are subject to degradation with use and age (see, e.g., Valdez-Flores and
Feldman [10]). We review methods developed in the field of degradation-based modeling
that are considered indispensable and operational for making inferences about the lifetimes
of various types of deteriorating systems (see, e.g., Kharoufeh and Cox [11], Park and
Padgett [12], Gebraeel and Pan [13], Kharoufeh et al. [14], Jiang et al. [15], Peng and
Tseng [16], Ye and Xie [9], Chen et al. [17], Chen and Ye [18], Bressi et al. [19], and He [20]).
The lifetime of deteriorating items that exhibit observable deterioration can generally be
modeled by a stochastic process, particularly an inhomogeneous gamma process or an
inhomogeneous inverse Gaussian process. For example, a measurement error with respect
to a device that increases with time can be accounted for. For systems with high reliability,
strategies based on degradation data may be the only possible framework to achieve the
goal of reliability analysis. Therefore, the methods developed for degradation data analysis
have become typical tools in the last decades. The analysis of degradation data is possible
after the definition of lifetime has been established (see, e.g., Liu et al. [21]).

As stated by Bae et al. [22], most practical degradation strategies satisfy two degrada-
tion models, namely the multiplicative degradation model and the additive degradation
model. In these models, there is a mean degradation path #(t) and also a random factor
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X, which is called random variation around the mean degradation path. By applying
a deterministic criterion for the failure of a device subject to degradation, implicit dis-
tributions of lifetime are obtained. Recently, Albabtain et al. [23] developed a modified
dynamic criterion for the failure of a device under degradation. Denote by T the resulting
lifetime variable in each case. Bae et al. [22] studied the effect of stochastic changes with
respect to X on the stochastic variation of T based on different stochastic orders. Kayid and
Alshagrawi [24] applied degradation models with multiplicative and additive paths in the
model developed by Albabtain et al. [23], where a modified dynamic degradation-based
time-to-failure model has been introduced. They investigated the preservation of stochastic
orders on X to be preserved by T. To have a critical perspective on the foregoing literature,
it can be realized that most of the works that consider connections between X and T study
only how they are connected, and the question of why they are connected has not been
addressed anywhere. Continuing to look for a broader source of creation of the state or
the extent to which X and T are being connected remains as an unanswered problem. This
paper aims to find the copula function of the random pair (X, T) in different degradation
models which is considered to be the source of connection of X and T.

That a stochastic change in random variation X, which is a main component in
degradation models with a multiplicative path and also degradation models with an
additive path, leads to a same stochastic change in the resulting lifetime T may be an
indication that X and T are statistically dependent. Therefore, the dependence structure
induced by the pair (X, T) is worth considering. Izadkhah et al. [25] demonstrated that
some partial dependencies between X and T are characterized by stochastic order relations
between the conditional distribution of T at certain levels of X. However, to analyze the
dependency in a more complete framework not in a partial way, the joint distribution
function of T and X, if it can be obtained, may be used to identify the entire aspects of
dependency between T and X. Following the studies accomplished by Bae et al. [22] and
Kayid and Alshagrawi [24], it is realized that the influence of X on T is significant, which in
turn motivates us to consider the dependencies between X and T in multiple degradation
models as a meaningful problem. In this paper, we apply the notion of copula function
in the described context to present a mechanism for evaluating the dependence between
the random variation X and the resulting lifetime variable T in multiplicative degradation
model and also additive degradation model.

The paper is organized as follows. In Section 2, for time-to-failure models arising from
a set of degradation models in which an increasing (or decreasing) degree of degradation is
the only reason for failure, we characterize the copula functions of the implied lifetime and
random variation components in the degradation models. The implied copula functions are
known to be reputable in the literature. In Section 3, the two degradation models are placed
in the framework of the dynamic time-to-failure model proposed by Albabtain et al. [23]
to derive the implied copula function between the implied lifetime and random variation
components. The curves of the copulas are plotted along with the corresponding contour
plots. Section 4 concludes the paper with further intuitive remarks on the current work and
also contains some statements for future work.

2. Models with Deterministic Degradation Effect on Failure

For highly reliable products, the criterion for classifying a device as a failed device
is described in terms of the first passage time of a stochastic process. More specifically,
if stochastic processes with monotonic sampling paths are considered, then the traditional
definition of a degradation model assumes that the failure of an item/system occurs when
the degradation exceeds the given threshold D¢ > 0. Assume that failure is modeled by a
stochastic process {W(t),t > 0}, W(0) = 0 that maintains monotonically increasing pattern
paths, as is common in many practical situations. Let the time to failure be denoted by the
random variable T. According to the described failure criterion, T is the time of the first
pass to threshold Dy, given by T := inf{t : W(t) > Dy}. The corresponding distribution
function of failures is denoted by Fr, and the implied survival function is denoted by



Symmetry 2022, 14, 785

4 0f 20

Fr = 1 — Fr. The monotonicity of a realization of the stochastic process {W(t),t > 0}
ensures with probability one that D(t1) < D(t), for t; < tp. Therefore,

Fr(t) = P(T > t) = P(W(t) < Df) = Fy;)(Dy). )

As Bae et al. (2007) point out, in most practical applications, the degradation functions
go beyond the elementary functions listed in their work, including an additive degradation
model and a multiplicative degradation model as two frequently used degradation models.
The general multiplicative degradation model is given as follows.

W(t) = n(t)X, ©)

where 7 is the mean degradation path. The mean degradation path is considered to
be a monotonically increasing function. Let Fy((t) denote the s.f. of lifetime T under
the multiplicative degradation model (2). Since Fyy;)(w) = Gx(w/7(t)), the usual first
passage time criterion yields Fpi(t) = Gx(Dg/n(t)).

The general additive degradation model is given as follows.

W(t) =n(t) + X, (6)

where 77 is a deterministic mean degradation path for time t > 0. Since the mean degradation
path is usually a monotonic function, only the cases where # is monotonic are considered.
The random variable X represents the random variation around the deterministic mean
degradation path with c.d.f. Gx and probability density function (p.d.f.) gx. Denote by
F4(t) the s.f. of the lifetime T under the additive degradation model (3). Using the criterion
for device failure under degradation and relying on Fyy ;) (w) = Gx(w —7(t)), we then
conclude that Fr(t) = Gx(Ds —1(t)).

To determine the influence of the random variation X on the lifetime T in a degradation
model, the copula functions between X (random variation) and T (the resulting lifetime)
can be captured, through which various stochastic dependence properties between T and
X are realized.

If T is the lifetime, then models (2) and (3), respectively, define the transformation
to T = T(X) (see, e.g., Bae et al. [22]). The conservation properties of aging terms and
stochastic orderings on X for lifetime T have been studied by some researchers (see e.g.,
Bae et al. [22] and Li et al. [26]). In the multiplicative degradation model, consider the
conditional probability P(T > t|X = x) as the amount SF of T at X = x calculated by

_ Dy
Frp(tlx) = Ilx < —5]

n(t)

where I[A] is the indicator of the set A. Evidently, Fr.(t|x) = I[x > %] is the associated
conditional c.d.f. To obtain the bivariate c.d.f. of (T, X) we have

FTx(i’X) PT<tX<X)
t|x )dGx (x)
dGX(x/)

-

[
ooy
<

cr-adlh).
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Following that concluded from (2), we have Fr(t) = 1 — Gx/( G

u e 0,1],

), and thus, for all

Gx <Df> =1-Fr(F; (u) =1-u.
)

Hence, by Sklar’s theorem, the copula function associated with the couple (T, X) is
C(u,v) = Frx(F; ' (u), G (v))

_ (GX(G_l(U)) - GX(Df)>
X n(Friw)’ ),

=(u+v—1)4, forall u,ve[0,1]

which is the lower bound of Fréchet-Hoeffding for the copulas given in (3). This emphasizes
that X has the hardest possible negative effect on T, so the dependency is severely negative.

In the additive degradation model, let us derive the conditional probability P(T > t|X = x)
as the value of SF of T given X = x obtained by

Frix(t|x) = I[x < Dg = 5(t)].

For the associated conditional c.d.f., one gets Fr|,(t[x) = I[x > Dy —7(t)]. The bivari-
ate c.d.f. of (T, X) is grasped as

Frx(t,x) = /,xoo Frjo (t]x")dGx (')
- /jool[x/ > Dy — ()] dGx (x')
= (Gx(x) — Gx(Dy - U(t)))l[x 2 Dy —(t)]

= (Gx(x) ~ Gx(Dy () -

Following the conclusion of (3), one has Fr(t) = 1 — Gx(Dy — 1(t)) and, as a result,
forallu € [0,1],

G (Dy = y(Fr () = 1= Pr(Fy'(w) =1-u.
Therefore, by Sklar’s theorem, the copula function of (T, X) is acquired as
C(u,v) = Fr,x(F; ' (u), Gx' (v))

— (6x(Gx(0)) — Gx(Dy — y(Fr " (u))))
=(u+v—1)4, forall u,vel0,1]

+

which is again the lower bound of Fréchet-Hoeffding for copulas, and this is a sign that X
has the severest possible negative effect on the lifetime T. The implied copula function is
W(u,v) = (u+v —1)4, which is a symmetric copula.

3. Models with Uncertain Degradation Effect on Failure

Albabtain et al. [23] initiated a new methodology for modeling time-to-failure data
based on degradation processes. They considered it controversial to consider a predeter-
mined threshold Dy as the cutoff value for the degree of degradation that causes an item
to fail. They established a modified criterion for the failure of an item under degradation
that satisfies many situations to increase the risks of hard failure and also soft failure for
the item under consideration. From the definition of T in the traditional method, the only
reason for the failure of the system is a degradation increase up to a certain level such
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that P(T > t|W(t) < ®5) = 1and P(T > t|W(t) > D) = 0. However, this property
applies to systems with high reliability that can be assigned a stepwise failure. Consider-
ation of such a fixed threshold may not be appropriate in realistic situations. It is better
to consider the possibility of sudden failure, since the link between the time to failure
and the degradation process may not be deterministic to obtain the s.f. of T as usual.
Albabtain et al. [23] have proposed a dynamic degradation-based time-to-failure model in
which S(w;t) = P(T > t|W(t) € (w,w + §)) as a probability measure adjusts the failure
probabilities at different degradation levels.

The amount of degradation at time f is denoted by W(t) following p.d.f. fyy(;) and the
c.d.f. Fyy ;). According to the dynamic model of Albabtain et al. [23], the time-to-failure T
that follows the implied lifetime distribution under the degradation process {W(t), t> 0}
has the s.f.

_ oo
Fr() = [ S@it)fiwg (w) do = ES(W(D:1)), @)
where S(w; t) is a conditional limiting probability given by

S(w;t) = lim P(T >t | W(t) € (w,w+ d]).

B 6—0+
Kayid and Alshagrawi [24] developed the model (7) under both the additive degrada-
tion model and the multiplicative degradation model. Let X follow p.d.f. gx and c.d.f. Gx.

In this regard, when a multiplicative degradation model is under consideration, then they
deduced that (7) leads to

Frin) = [ St ngx (s = ESC0n(1:1). ®)
in which
Stupt) — tim Frx(b0/1() = Prx(t, (w+8) /(1)
T s S0t gx(w/n(t)) ‘
Therefore,

S(ep(H);t) = lim Frx(t,x) — Frx(t,x5)
60+ gx(x)
It is deduced that S(w; t) = Fr, = (t] %) For the additive degradation model, Kayid
7
and Alshagrawi [24] established that (7) leads to

Fr(t) = [ S(x+n(t: Dgx(x)dx = E(S(X +(2)0), ©)

in which the expectation is with respect to X. By considering the additive degradation
model (3), we get

) = i rx(bw—n(6) = Frx(tw+6 —n(t))
S(wit) = lim, sx(@— 1)

7

where Fr x is the joint s.f. of T and X. We can write

5—0+ ox(x)

in which Fy|,(-|x) is the conditional s.f. of T given X = x. Therefore, S(w;t) = Frjyy_y 1) ( |

w —1(t))-
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In the rest of the paper, the copulas resulting from the model (5) and the model (6) for
(T, X) will be characterized. First, we present general formulas for the copula functions
associated with (T, X).

In the context of the model (8) where W(t) = X (t) for all t > 0, the implied lifetime
distribution has s.f. Fr(t) = E[S(W(t);t)] = E[S(X#(t);t)]. Denote by Fr, the conditional
s.f. of T given X = x and also denote by I(A) the indicator function of the set A. To derive
the joint c.d.f. of (T, X) we can write

Firx) (%) = [ a —FT|x'(f\x'))de(x/)

= / 1(8);£))dGx ()
EI(1 = (X (1)) I(X < %)) (10)

The associated joint p.d.f., whenever Fr x) is absolutely continuous, is given by

aZ
forx)(tx) = Sox Frx)(t, x)

d
= 2 (0 (e )sx ()
d
= —gx(x) oS (1)),
In parallel, the model (9) when it applied where W(t) = X + #(t) for all t > 0

is considered, then the implied lifetime distribution has s.f. Fr(t) = E[S(W(t);t)] =
E[S(X + n(t);t)]. The joint c.d.f. of (T, X) can be obtained in this case as

Firx)(bx) = [ (1= (¢ +5(1;0)dGx()
= E[(1 = S(X+ (1 0)1(X < ). a

If F(7 x) in (11) is absolutely continuous, then the joint density of (T, X) is derived as

fir)(62) = = (1= S(x+n(8);)gx(x)
= —gx() 2 S(x (B0,

In a more general setting, when the degradation W (¢, X) satisfies other forms, T and
X have ajoint c.d.f.

Firx) (%) = L Xm(1 ~ S(W(tx');£))dGx (%)
= E[(1— S(W(t, X); 1)) [(X < x)]. (12)

Provided that F(7 x) in (12) is absolutely continuous, the associated joint p.d.f. is
obtained as

Fir) (%) = (1= SOW(L);1))gx(x)

= —gx(V) S (W (L))
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By Sklar’s theorem, we develop the copula formula in terms of (12) as will be followed
from which copula functions in both multiplicative and additive models, respectively, when
W(t,X) = Xn(t) and W(t, X) = X + 7(t) can be built:

C(u,v) = Firx)(Fr (1), Gx'(v))
6x' (@) -1 —1
= [ = SO (), %); Fr (1)))dGx (x)
v
= | (= SOV (T (), G ) B () dy
v
=0~ | ST (), Gx W) Er () dy. (13)

On the other hand, Fy(t) =1 — E[S(W(t);t)] = u for all u € [0,1] if, and only if,
+o0
1—u :/ S(W(t, x); 1)dGx (x)
0
1
= [ sw(e, G5 w))it) ay

- /Ols(W(FT—l(u),G;(l(y));FT_l(u)) dy.

Therefore, Equation (13) concludes that

Clu,0) =0 [ SOW(ER (), G () B () dy + [ SOW (R 1), G () B () dy
_ u+v—1+/vlS(W(FT_l(u),G;(l(y));FT_l(u)) dy (14)

We present some necessary and sufficient conditions under which the copula func-
tion (13) or equivalently (14) is symmetric. Suppose that S(w; t) =1 — S(w; t).

Theorem 1. Let there exist functions R : u — R(u) and L : (v,y) — L(v,y) on [0,1] such that
O S(W(Fr (), Gy (29)): Fr () — SOW(F (), Gy (v)): By ' () = R(u)L(v,y). Then,
the implied copula function (14) is symmetric, if and only if L(v,y) = 0 forall v,y € [0,1].

Proof. Note that the copula function (13) satisfies C(u,v) = C(v,u), for all u,v € [0,1] and
thus, it is symmetric if, and only if for all u, v € [0,1],

SO (), G )i )y = [ SOW(ER (0), G5 ()i i o),

which is equivalent to saying that for all u, v € [0,1],

| SO @), 65 ()i Fr (w) = SOW(FT (), G (1) Fr (1)) )y = .

This holds by assumption if, and only if,

L

E[L(v,Y)] :/ L;'y)dy: 0, forallu,0 € [0,1],
0

in which Y is a uniform random variable on [0, u]. It is straightforward that if L(v,y) =0,

forallo,y € [0, 1], then C is symmetric. Conversely, since the family of uniform distribution

on [0,u] where u > 0 is a complete family of distributions, thus, it is concluded that

L(v,y) =0, forall v,y € [0,1]. The proof is completed. [
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The copula function (14) can be developed for the cases where S(w; t) is partially or
fully specified. In this paper, we consider the cases where for all t > 0, S(0";¢) = 1 and
S(+o0;t) = 0, assuming W(#) is stochastically increasing and for all t > 0, S(0T;¢) = 0
and S(+o0;t) = 1 in situations where W () is stochastically decreasing. To apply these
conditions to the particular cases of the additive degradation model and the multiplicative
degradation model, the function 7(f) is considered to be increasing and decreasing in ¢,
respectively.

The following part of the paper contributes to characterizing the copula function in
some routine degradation-based time-to-failure models in the special cases of additive
and multiplicative degradation paths. As a fundamental property, the method is applied
to extract the exact forms of copula function in some respected time-to-failure models.
From another perspective, it has been shown that in a degradation-based time-to-failure
model, where the random variation around the mean degradation path is the underlying
independent variable, the copula function of the random variation around the mean
degradation path as the independent variable and the implied lifetime as the dependent
variable can be accurately determined in multiplicative degradation models, and thus, the
shape of the copula function in this case is free of the mean degradation path and is also
independent of the survival probability S(w;t) at certain levels of w. Thus, the explicit
copula functions that we will derive are owed to the multiplicative degradation model.

Systems with multiple components exhibit some degree of dependence between the
performances of their components, which are realized through some connections between
the lifetimes of the components. This dependence can be positive, for example, when
the time to failure of the components is subject to a common environment. Negative
dependencies arise, for example, in competing risk models where components compete for
a fixed number of resources. The statistical literature contains many references to various
measures of dependence, including the correlation and partial correlation coefficients.
The notion of association between random variables has many applications in reliability
and other life sciences.

Several copula functions are generated under four time-to-failure degradation models,
each of which evolves beyond a particular property of S(w; t) when w is a realization of
either the multiplicative model W(t) = X /(t) or the additive model W(t) = X + #(t).

Assume that W(t) = Xr(t), where the mean degradation path function 7 is an
increasing function. Assume that Sy € [0, 1] is a decreasing function. We consider the model

S(w;t) = P(T > t{W(t) = w) = S§'(t). (15)
where Sy(t) = P(T > t|W(t) = 1) indicates that S is the probability of survival until time
t at which the degradation is valued to be one unit. It is notable from (15) that S(07;¢) =1
and S(+oo;t) = 0 for all + > 0. The implied lifetime distribution under (15) when X has
exponential distribution with mean % has s.f.

Fr(t) = E[So(t)]"®
= E[So(1))*1)
+o00
_ /0 S0 (1) gx (x)dx
_ / 2 (B n(s0(0) ) o A¥ gy
0

A
~ A=y n(S(0)

,forallt > 0. (16)
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Note that the construction of copula functions is independent of the choice of marginal
distributions. Let us assume that X has an arbitrary c.d.f. Gx. Then, by total probability,
formula T follows the c.d.f. Fr given by

Fr(t)= [ Fry(ilx) dGx (x)
= [ Erga (G ) dy
= [P <66k () =y) dy
:/01P(T§t;V:y)dy,

where V = Gx(X) follows the uniform distribution on [0, 1] for every arbitrary choice of
Gx. It is trivial that the probability P(T < t;V = y) does not depend on Gx because the
influences of this distribution have been fixed to the uniform distribution, and thus, the
derivation of Fr is not affected by the choice of Gx but only the copula function of T and X.
Notice that C(u,v) = P(Fr(T) < u, Gx(X) < v) which makes copula as an independent
identity of bivariate distribution of (T, X) apart from the marginal distributions Fr and Gy.
Thus, from (10), if we take X as a random variable with exponential distribution with mean
1 having c.d.f. Gx(x) = 1 —e~**, then

Fir)(t) = [ (1= S(n(8);)dGx (¥
= [[a=si" e)dcx(x)

= Gx(x) — /Ox er "n(t) ln(so(t))/\e—)\x'dxl

A
A —1(t) In(Sp(t))

By using (16), the bivariate c.d.f. of (T, X) in (17) is modified as

= Gx(x) — (1 — e~ A=n(B) In(So(£)))xy, (17)

- Ax
Firx)(t,x) = Gx(x) — Fr(t)(1—e Fr(®)), (18)

Therefore, the copula function is obtained by (18) and applying Sklar’s theorem
as follows:

C1(u,0) = Fipx)(F7 ' (u), Gk (v))
= Gx(Gx'(v)) — Er(Fy 1 (u))(1 —e Fr(F7 ' (u)) )

A
:v—(l—u)l—e1—11(—)1&111(1—0))
1
=ut+ov—1—(1-u)(1-0v)1—-u, u0el01]. (19)

The curve of the copula function C; in (19) is plotted in Figure 1, and also, the contour
lines associated with this copula function are drawn in Figure 2.



Symmetry 2022, 14, 785 11 of 20

The curve of copula function Cy(u, v) =u+v—1+(1-u)(1 -v)*Y)

wbeH

..

Figure 1. The curve of the implied copula function Cy (1, v).
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L

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2. Copula contour plot of Cy (#,0) =u+v—1—(1—u)(1—-0v)1—u,

We now suppose that W(t) = X#/(t) in which the mean degradation path function 7 is
increasing. Let Sy € [0, 1] be a decreasing function. The probability for survival until time ¢
at degradation level W(t) = w is considered as

1
S(w;t) = P(T > W(t) = w) =1 — (1 — So(t))w. (20)

Note that So(t) = P(T > t{W(t) = 1) and denote Sy(t) = 1 — Sp(#). It is once again
obvious from (20) that S(0*;t) = 1 and S(+4o0;t) = 0 for all t > 0. The implied lifetime
distribution after imposing (20) with X following inverse Weibull distribution with c.d.f.
Gx(x) = e~ ¥ where a > O has s.f.
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——In(So(t))

4 ——
~e x%dx
x

= Jforallt > 0.

In(So(t))

a
In the spirit of (10), if X follows the c.d.f. Gx(x) = e X,then

X

Fir(tx) = [ (1= S(x'n(1);1))dGx(x')

—00

I
x

By applying (21), the c.d.f. of (T, X) in (22) can be rewritten as

a
Firx)(t,x) = Fr(t)e xFr(t) |

(21)

(22)

(23)

Then, the associated copula function is obtained from (23) when Sklar’s theorem is

applied. We have

Ca(u,v) = Frx) (Fr (1), Gx' ()

— Fr(E (u))e Ox (@)Fr(Fr'(w))
1

—en In(v)
1

= uv;, u,v € [0,1].

(24)

The plot of the copula function C; in (24) is drawn in Figure 3, and the contour lines

for this copula function are plotted in Figure 4.
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The curve of copula function C,(u, v) = uv*"

wbeH

Figure 3. The curve of the implied copula function C;(u, v).

<
-

0.8
1

0.6
1

0.4

0.2
1

0.0
L

0.0 0.2 0.4 0.6 0.8 1.0

1
Figure 4. Copula contour plot of C,(u,v) = uoll .

Let us now consider multiplicative degradation models with a decreasing mean degra-
dation path. Suppose that W(t) = X7 (t), where 7 is a decreasing function. The function
So € [0,1] is considered to be decreasing. We assume that

1
S(w;t) = P(T > t{W(t) = w) =S¥ (¢). (25)
Note that So(t) = P(T > t|W(t) = 1). To examine the limits of S(w; t) at endpoints of
degradation levels from (25), we realize that S(0;t) = 1 and S(+oc0;t) = 0 for all ¢ > 0.

By (25), the implied lifetime distribution with a random variable X from inverse Weibull
distribution with c.d.f. Gx(x) = e~ ¥ in which a > 0 is proved to have s.f.
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1
- /om So 1) (t)gx (x)dx

1
oo In(S a
[ e nS0) a -2
Jo x2
a
:a_ln@,foralltzo. (26)
n(t)

By Equation (10), if X is taken from the c.d.f. Gx(x) = e %, then
X

Fay(tx) = [ (1=S(x'n(t);1))dGx(x')

—00

1
= [a-s" ey

1
x In(So (¢ 4
— Gy() 7/0 (D) n(So( ))x,‘f 7 i
~ In(So(#))
. ~ n(t)
:GX(x)_a_ln(So(t))e x . (27)
n(t)
Using (26), the c.d.f. of (T, X) in (27) is obtained as
a
Fir(6%) = Gx(x) — Fr(e *Fr(1). (28)

Then, by Sklar’s theorem, the implied copula function is grasped from (28). One has

Cs(u,v) = Fir,x)(Fr ' (), G (¢v))

= Gx(Gx'(2) — Fr(Fy " (w))e *Fr(Fr (1)
! In(v)
=v—(1—u)el—u
1
=v—(1—u)wl—u, uoelo1]. (29)

The curve of the copula function C3 in (29) is plotted in Figure 5, and also, the contour
lines associated with this copula function are drawn in Figure 6.
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The curve of copula function Cs(u, v) = v — (1 - u)vt/)

wbeH

/

T

Figure 5. The curve of the implied copula function Cz(u, v).
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1
Figure 6. Copula contour plot of C3(u,0) = v — (1 —u)vl —u.

Let us suppose that W(t) = Xy(t) with # being an increasing function and let
So € [0,1] be a decreasing function. Then, consider the case where

S(w;t) = P(T > t{W(t) = w) = 1 — (1 — So(£))". (30)
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In this case, as with previously derived cases, So(t) = P(T > t|W(t) = 1). From (30),
we obtain S(0;t) = 1 and S(+4oc0;t) = 0 forall t > 0. The s.f. of T by using (20) and taking
X as an exponential random variable with c.d.f. Gx(x) = e~** where A > 0 is acquired as

Fr(t) =1—E]
=1-E

+oo
=1- [ 5 (hgx(x)dx

1 / Ty (H)In(So(6)) y p=Ax gy
0

1—So(t))" "]

(
(1= 50(£)*1"]

A
=1— e ln(go(t))'for allt > 0. 31)

By an application of (10) when X follows the c.d.f. Gx(x) = e~*%, then

X
Fa(bx) = [ (1= S(n(t);1)dCx (')
X _x/
= [ 1= a=s"0 1)dcx()
_ /x X 1(DIN(S0(D) 4 = A 7/
0

A —
— _ = (A=n(t)In(Sp(t)))x
A mGe) L C @2)

By appealing to (31), the c.d.f. of (T, X) in (32) is rewritten as

- Ax
Firx(t,x) = Fr((1—e Fr(t)). (33)

Then, the implied copula function is obtained from (33) by using Sklar’s theorem.
One gets

Cy(u,0) = Frx) (Fr ' (u), Gy (v))
G )
— Fr(Fr () (1—e FrFr' ()
1
(- o In(1 - v))
=u—u(l-0v)" uvel01] (34)

The curve of the copula function Cy in (34) is plotted in Figure 7, and furthermore, the
contour lines of this copula function are drawn in Figure 8.

It is worth mentioning that in the multiplicative degradation model, W(t) = X#(t),
which assumes that S(w; t) satisfies one of the four models considered, and the copula
functions C;,i = 1,2, 3,4 are not affected by the form of a monotonic mean degradation
function 7 nor by the form of the decreasing function Sy. Nevertheless, the implicit copula
function changes when either the direction of monotonicity of # is reversed or when the
formation of S(w; t) is changed. However, additive degradation models may not fall under
this general rule.
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The curve of copula function C4(u, v) =u-u(1-v)"

beH

Figure 7. The curve of the implied copula function C4(u,v).
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u

Figure 8. Copula contour plot of C4(u,v) = u — u(1 — o).

In the case of the additive degradation model W(t) = X + #(t), we show that when
1 is a function of Sy, the resulting copula function is not affected by the shape of the
decreasing function Sy. In the rest of the paper, we discuss copula functions arising from
additive degradation models. Let Sy € [0, 1] be a decreasing function. We consider

S(w;t) = P(T > t{W(t) = w) = h(So(t), w), (35)

where & is an appropriate bivariate function. We assume that 77(t) = ¢(So(t)), where ¢ is
a true function. Note that the function / and the function ¢ must satisfy some boundary
conditions for S(w, t) and 7(t), which depend on the limiting behavior of the probability
P(T > t|W(t) = w) inw = 0 and w = +o0 and further when t — 0" and t — +oc0 and also
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the limiting behavior of the function 7 in t = 0 and ¢ = +oo, respectively. Then, the implied
survival function is obtained as

Fr(t) = 1= [ (So(6) x + (1)) dGx (2

—+00
= 1= [ h(So(t), ¥+ ¢(50(1)))ACx ()
— p1(So(t)), (36)

where ¢1(a) =1 — E[h(a, X + ¢(a))] in which X follows the c.d.f. Gx. Notice that ¢; has to
be monotonically decreasing in order for Fr in (36) to be valid as a distribution function.
The joint c.d.f. of T and X in view of (11) is acquired as

x(x)
(63 = Gx(0) — [ h(So(1), G (4) + p(So(t)) )y
= Gx(x) = ¢2(S0(t), Gx(x)), (37)

where ¢, (a,v) = fov h(a, Fx'(y) + ¢(a)) when a,v € [0,1]. Let us observe that Equation (36)
concludes that Fr ! (1) = Sy o ¢ (u) forevery u € [0,1] and, therefore, S (F7 ' (1)) = ¢; ! (u)
for every u € [0,1]. By substituting t = F; ' (1) and x = Gy '(v) in Equation (37) and then
using Sklar’s theorem, the copula function is derived as

C(u,v) = v — ¢o(So(Fr ' (1)), v)
=7 — <p2((p1_1(u),v), u,v € 1[0,1]. (38)

In the particular cases h(u,w) = u® and h(u,w) =1— (1 — u)%, when 7 is an increas-
ing function and also the particular cases h(u, w) = u@ and h(u,w) =1— (1 —u)¥ in the
case of the multiplicative degradation model, the copula functions C;,i = 1,2,3,4 in (19),
(24), (29), and (34) presented. However, in view of (38), the derivation of explicit copula
functions in the additive degradation model depends on ¢;,i = 1,2.

4. Discussion

The copula functions that are generated by the time-to-failure models with a deter-
ministic effect of degradation on failure (see Section 2) persuade the random variation and
the lifetime to have more severe dependencies in comparison with the copula functions
generated by dynamic time-to-failure models (see Section 3). The former copula functions
are the cases when high-reliability devices for which a gradual failure are considered,
whereas the latter copula functions are related to the devices where the possibility for
both gradual failure and sudden failure is considered. The multiplicative degradation
model W(t, X) = 5(t)X provides copulas with a closed-form expression, but the additive
degradation model W(t, X) = 5(t) + X generates copula functions that do not have a
closed-form expression. Whether the functional form W (t, X) has for other possible degra-
dation models an influence on the dependency between X and T and the extent to which
the corresponding dependencies are affected by a variety of other degradation models can
be recognized by developing (13) and (14). In this framework, as observed in the generated
copula functions of T and X in the multiplicative degradation model, there is no depen-
dence parameter to make variations in dependencies between T and X. This parameter
can be produced either as a result of an external source or from the functional relation
W(t, X) provides. On the other hand, there are a variety of candidates for the distribution
of the random variation X: for example, the Weibull, gamma, and log-logistic distributions
(see, for instance, Bae et al. [22]) under which implied lifetime distributions are obtained.
Intuitively, it may be apparent that when any choice is made for the distribution of X,
the copula function of T and X is not affected, since the copula function indeed allows
us to separate the effect of marginal distributions from that of the function representing
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the dependence structure. Therefore, the copula function determines a novel perspective
on a given degradation model, as it can be characterized uniquely by the structure of
the model. In general, the literature on copula theory partly includes the methods of
construction of new copulas of two dependent random variables (cf. Balakrishnan and
Lai [27], Mesiar et al. [28], Durante et al. [29], Bedford and Wilson [30], Giakoumakis and
Papadopoulos [31], and Alshehri and Kayid [32]). In turn, this paper also plays its role in
the study of the generation of new copulas in the context of degradation models.

5. Concluding Remarks

The copula function for the random pair (T, X), where X is a random variation around
11(t) representing the underlying mean degradation path, and T is either the implied
random lifetime under the multiplicative degradation model W(t) = X#(t) or the additive
degradation model W(t) = X + 7(t), has been determined in this work. Both the cases
where the degradation plays a definite role in the failure of the component and the cases
where the degradation plays an uncertain competing role in the failure of the component
have been considered. In the latter case, the implied lifetime distribution depends on the
probability S(w;t) = P(T > t|W(t) = w), which assumes certain constructions such as

S(w;t) = S§(t) and S(w;t) =1 — (1 — So(t))% in situations where 7(t) increases in t and

S(w; t) = SO“% (t) and S(w;t) =1 — (1 — Sp(t))” when 5(t) decreases in t. It was found that
the derived copula functions in the case of the multiplicative degradation model do not
depend on Sy(t) and #(t), and thus, the dependence aspects between X and T are explicitly
addressed. The copula functions in this case are also known not to be affected by other
parameters. In the additive degradation model, the copula function with respect to T and
X cannot be obtained exactly considering the above four constructions of S(w; t) and needs
more restrictive conditions to be independent of both Sy () and #(t). The conclusion is that
the copula function in the additive degradation model is more dynamic compared to the
copula function in the multiplicative degradation model.

In the future of this study, using the dependence measures of the derived copula
functions, comparisons of copula functions can be made based on these measures. Partial
dependencies between T and X can be detected. Possible extensions to multivariate
cases and the derivation of multivariate copulas can be considered for the case where
the degradation model consists of additional random components besides the random
variation around the mean degradation path.
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