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Abstract: Image fusion is one of the most rapidly evolving fields in image processing today, and its
applications are widely expanded in various fields. In the field of image fusion, the method based
on multi-scale decomposition plays an important role. However, it faces many difficult puzzles,
such as the risk of over-smoothing during decomposition, blurring of fusion results, and loss of
details. Aiming at these problems, this paper proposes a novel decomposition-based image fusion
framework, which overcomes the problems of noise, blurring, and loss of details. Both the symmetry
and asymmetry between infrared and visible images are important research hotspots in this paper.
The experiments confirmed that the fusion framework outperforms other methods in both subjective
observation and objective evaluation.

Keywords: image fusion; side window filtering; edge-preserving; infrared image; visible image

1. Introduction

Image fusion integrates the information of different spectral bands in the same scene.
The sensors of infrared (IR) imaging can capture the thermal radiation emitted by objects
and are extremely sensitive to thermal targets. However, IR images miss background
texture details. The visible (VI) image sensors can obtain rich scene information, and they
will be interfered with by illumination conditions, fog, occlusion, and so on. The fusion
of infrared and visible images has received more and more attention to retain the target
and enhance the detail and other useful information for extending the ability of visual
perception [1–3].

There is a number of image fusion methods proposed for IR and VI images. Existing
fusion methods can be classified into four categories: multi-scale transform (MST) [4–15],
deep learning (DL) [16–19], sparse representation (SR) [20–22], and other methods [23–25].
In recent years, deep learning has proved superior and successful in many applications.
However, there are some key issues unsolved. One is the complexity of the algorithm.
DL needs strong hardware support and is difficult to deploy on embedded platforms. In
particular, the training of DL needs a large number of registered image pairs, and the data
set is difficult to obtain. Considering the inherent sparse representation of the human
visual system, sparse representation methods have also been widely developed [20]. Other
methods include total variation [15], principal components analysis (PCA) and robust PCA
(RPCA) [24,25], intensity-hue-saturation (IHS) transform [26], etc. As a popular image
fusion method, the multi-scale fusion theory (MST) has been successfully used in various
application scenarios. The large-scale structure of an image usually contains background
information and large size targets, while the small-scale structure usually represents details
and texture information. A large number of algorithms have been widely proposed, such
as the Laplacian pyramid (LAP) [4], discrete wavelet decomposition (DWT) [6,7], dual-
tree complex wavelet transform (DTCWT) [8,9], non-subsampled contourlet transform
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(NSCT) [10], curvelet transform (CVT) [11], multi-resolution singular value decomposition
(MSVD) [12], etc. However, these decomposition-based fusion methods have problems
such as detail blurring due to excessive smoothing.

To tackle the above challenge, guided filtering (GF) was proposed by Li et al. for their
image fusion framework [13]. Especially in recent years, various edge-preserving filtering
methods have shown promising applications in image fusion [14,27–31]. For example, Ma
et al. [28] used rolling guided filters to construct multi-scale images, which can separate
scale information better in scale space and make the fused image have a good visual effect.
Although these methods can improve the fusion results, they cannot reach the right scale
separation for image features and often lose some salient information of the source image.
In addition, they are still seriously troubled by low contrast and blurred details.

In the traditional filtering process, the filtering window always slides on the image. If
the edge in an image is just in the center of a filter window, the filtering outputs a weighted
average value of the filter window. However, the edge of the filtering operation on the
image may be blurred. To avoid the problem, Yin et al. [29] proposed the method called side
window filtering (SWF). Yan and Li [30] first used SWF to improve the two linear filters and
applied it to the decomposition stage in image fusion, which proved the great potential of
SWF. Subsequently, Yin et al. [31] applied the SWF technology to improve the guided filter
called side window guided filter (SWGF), which has better edge protection performance
than the improved linear filter. In this paper, the good edge-preserving property of SWF
technology has been used to guide the process of image fusion.

In general, the filter based on the MST image fusion method consists of three steps.
(1) The scale space is constructed to obtain the detail components with high-frequency
information and the base components with low-frequency information; (2) According to
the characteristics of the corresponding scale components, the fusion strategy is formulated;
(3) The fusion image is reconstructed. After multi-scale decomposition, the base compo-
nents mainly describe the energy distribution of the source image, without details and
noise. Detail components mainly describe texture information, including detail distribution
and noise. However, IR images are characterized by high contrast, strong edges, and a lack
of detailed information. A VI image is characterized by uniform brightness and contains a
lot of detailed information. Therefore, it is crucial to choose the right integration strategy.
Most of the base components adopt simple “average” fusion rules. This rule is fast and
effective, but it ignores the difference in brightness between the two bands of images.

This paper proposes a novel fusion scheme based on the SWGF, which can selectively
retain the details of interest parts and effectively suppress noise. The common issue
between infrared and visible images is the symmetry of visual quality for implementing
practical applications. Furthermore, the asymmetry between infrared and visible images
can produce complementarity to improve visual quality and system performance. Both
the symmetry and asymmetry between infrared and visible images are important research
hotspots in this paper. The main contributions of our work are as follows: (1) We propose a
novel decomposition method using the SWF-Gaussian filter. The saliency information can
be retained to the maximum extent during the image fusion process, and the halo artifact
near the firm edges can be reduced. (2) We develop a brand-new framework for IR and VI
image fusion. Moreover, regularization technology is employed to balance the degree of
fusion.

The rest of the paper is organized as follows: Section 2 introduces the new fusion
framework based on SWF technology in detail. In Section 3, the subjective and objective
experiments are compared. Section 4 concludes the whole paper.

2. Materials and Methods

In this paper, we propose a new decomposition method to obtain the scale feature
information of infrared and visible light images by scale decomposition, and then a new
fusion framework is proposed to well reconstruct this scale feature information in the fused
image. Figure 1 shows the flowchart of the proposed new fusion framework.
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Figure 1. The algorithm flowchart of our fusion framework.

It is proposed to decompose the information contained in the source image into
basic components and detail components, which correspond to the high-frequency and
low-frequency information of the source image, respectively, as shown in Figures 2–5.
It is also demonstrated that the benefits of having fewer artifacts and halos in detail
components. The guiding strategy of multi-strategy fusion is to preserve and balance
the basic components of infrared and visible light images as much as possible, and to
highlight the detail components in both. The purpose of regularization and nonlinearity
is to remap the gray levels of infrared and visible light images, balance the gray level
difference between the two, and retain large-scale information as much as possible. The
control fusion ratio of IR and VI images is to provide the user with an optional parameter
to adjust the background tendency of the fused image.
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2.1. Multi-Scale Decomposition Based on SWF-Gaussian Filtering

Gaussian filter is a kind of simple linear filter, which is easy to use and has little
calculation. However, Gaussian filter blurs all edges, which may cause halos and artifacts
near the edges [28]. As an edge-preserving technology, the SWF technology was first
proposed by Yin et al. The main idea of this technique is to keep the kernel function of the
filter unchanged and construct several side windows around the image edge pixels in the
filtering process. The output of the optimal side window is selected as the filtering result
to avoid the blur caused by the filter window crossing the edge. Gaussian filtering and
SWF-Gaussian filtering are respectively expressed as:

G = Gaussian(J, rG, σG), (1)

SWF-G = SWF-Gaussian(J, rSWG-G, σSWG-G), (2)

J represents the input image. The parameters r and σ are the filtering radius and
standard deviation, respectively. Their iterative updating formulas can be expressed by
Equations (3) and (4), respectively.

Jt+1
G = G

(
Jt
G, rG, σG

)
, (3)

Jt+1
SWF-G = SWF-G

(
Jt
SWF-G, rSWF-G, σSWF-G

)
, (4)

here rG, rSWF-G, σG, σSWF-G are the same as those in Equations (1) and (2), Jt+1
G and Jt+1

SWF-G
represent iteration t-time filtered images obtained by Gaussian filtering and SWF-Gaussian
filtering, respectively. The initial input images are J1

G and J1
SWF-G.

Figures 2a and 3a are input images. Figure 2b–e shows the results of iterating the input
images using a Gaussian filter and repeating the smoothing four times. It can be seen that
the edge features become more and more blurred. It will cause bad results when extracting
the detail components, which will be explained in the following section. Figure 3b–d show
three iterations of smoothing using the SWF-Gaussian filter. They can not only blur the
image but also preserve the edges of the large-scale structure. Figure 3e is the blurring
image of Figure 3d with the Gaussian filter, which will be used as the base components for
obtaining the detail components.
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The detail components are obtained by the difference between the blurring images and
the source image. In Figure 4, we can see that the Gaussian filter can output better detail
components, but it has inevitable halo artifacts phenomena. For example, there is a circle of
halo artifacts around the “person” in the image. The target person is not well-extracted.
In contrast, Figure 5 is almost free of halos. Especially, Figure 5d shows that not only the
detailed information is effectively extracted, but also the edge of the target is preserved.
This effectively overcomes the halo artifacts.

Based on the above analysis, we propose a novel scheme to address halo artifacts. The
scheme can obtain the base components with a combination of SWF-Gaussian filter and
Gaussian filter. First, the SWF-Gaussian filter is iteratively used to produce blurred images
with good edges, and then Gaussian blurring is used to produce the base components for
obtaining detail components that are rich in detail but free of halos and artifacts, as follows:

It+1
SWF-G = SWF-G

(
It
SWF-G, rSWF-G, σSWF-G

)
, (5)

Vt+1
SWF-G = SWF-G

(
Vt

SWF-G, rSWF-G, σSWF-G
)
, (6)

BI = G
(

It+1
SWF-G, rG, σG

)
, (7)

BV = G
(

Vt+1
SWF-G, rG, σG

)
, (8)

where I and V represent IR and VI source images, respectively, and superscript repre-
sents the SWF-Gaussian filter iteratively from time t to t + 1. In our method, the IR base
components BI and the VI base components BV are obtained by SWF-Gaussian filtering
iteratively followed by Gaussian blurring. After that, the IR detail components BI and VI
detail components BV are obtained by Equations (9) and (10).

DI = I − BI, (9)

DV = V − BV. (10)

The base components are not necessary to be iteratively produced through the SWF-
Gaussian filtering. It is a fast and effective method to select a larger standard deviation to
obtain the base components.

2.2. Base Components Fusion Base on Regularization and Nonlinearity

The decomposition components of different scale-spaces were obtained from the
source image. The base components contain the general appearance structure of the source
image and determine the overall brightness distribution. To keep the robustness of the base
components, the imaging differences of two different bands need to be considered. The
purpose of base components is to keep the large-scale structure and salient target of the two
band images unchanged. The target in the infrared image is bright, while the background
appears black in the IR image. Moreover, the dynamic range is extensive, so normalization
was performed for better fusion.

B′I =
(

BI − µBI

)σBV

σBI

+ µBV , (11)

where B′I represents the brightness of the IR base components with normalized brightness and
µ is the mean. To further enlarge the distance of the effective value, B′I is further processed.

LI =
B′I −min(B′I)

max
(

B′I
)
−min

(
B′I

) , (12)

where max() and min() are the maximum and minimum functions. LI reflects the char-
acteristic distribution of IR base components. The base fusion components of IR and VI
directly determine the background style of the fusion image. This paper proposes to use a
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nonlinear mapping function to adjust the propensity of fused image background style in IR
and VI source images. Here, a nonlinear transform Sλ() is introduced to further control the
fusion ratio of IR and VI images:

Sλ(α) =
arctan(λa)

arctan λ
, (13)

where the range of α is (0,1), λ represents a regularization parameter greater than 0 entered
by the user. From Figure 6, we can see that when λ→ 1 , the value Sλ(α) is close to α, and
the fusion rule tends to “average” fusion rule. When λ→ ∞ , the value Sλ(α) is close to 1,
and the fusion process tends to the “maximum absolute value” fusion. Therefore, the IR
image fusion ratio can be controlled by adjusting the value of the parameter λ. Finally, the
fusion weights WB

I and WB
V of the base components are obtained.

WB
I =

arctan(λLI)

arctan λ
(14)

WB
V = 1−WB

I (15)
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The base components fusion can be expressed by

BF = WB
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V BV (16)

2.3. Detail Components Fusion Base on SWGF

In general, the detail components contain the texture information. However, the
detail components of the two band images are very inconsistent and have complementary
properties. The target of the detail components obtained by our decomposition method
is prominent and the edge is good, but it also inevitably contains significant noise. Our
objective is to transmit valid information and not noise. In this paper, we apply a simple
and practical technique to inject bright and significant features from IR images directly into
VI images, as follows:

PI =

{
|DI | − |DV | i f |DI | − |DV | > 0

0 otherwise
(17)

where PI represents the salient feature of the IR detail components. PV is calculated with
the same method. At the same time, the transmission of noise should be reduced. In
this work, a practical optimization method based on the SWF technique improved side
window guidance filter (SWGF) is proposed. SWGF can effectively reduce the interference
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of noise in the process of information transmission and better preserve the edges of the
target. Filtering operation is denoted as follows:

WD
I = SWGF

(
I, PI , rD

SWGF, σD
SWGF

)
, (18)

WD
V = SWGF

(
V, PV , rD

SWGF, σD
SWGF

)
, (19)

where SWGF(; ) represents the side window guided filtering function operation, and WD
I

and WD
V represent the weights of the detail components of the two waveform images,

respectively. rD
SWGF and σD

SWGF represent the window radius and standard deviation param-
eters of SWGF, respectively.

Then, the detail components fusion DF is obtained from the linear weighting of the
weight map. It is worth noting that the weight map of the detail components should be
normalized to [0, 1].

DF = WD
I DI + WD

V DV (20)

2.4. Reconstruction

Generally, image reconstruction is the inverse operation of image decomposition.
In the multi-scale image decomposition process proposed in this paper, the detail layer
component is obtained by subtracting the base layer component from the original image.
Based on this idea, the fusion image reconstruction is performed by adding the base layer
fusion component and the detail layer fusion component.

Eventually, the fused image F is reconstructed by simple linear addition.

F = BF + DF (21)

The flow of the proposed Algorithm 1 in this paper is shown as follows:

Algorithm 1: New algorithms for fusing IR and VI images

Input: IR image I, VI image V, iteration times t, parameter λ.
1: Decompose the input images (I, V) into base components (BI , BV) and detail components
(DI , DV) through Gaussian filtering and SWF-Gaussian filtering.
2: Calculate the fusion weight (WB

I , WB
V) of base components part according to Equations (11),

(12), (14) and (15).
3: According to Equation (16), the fusion result (BF) of the base components part is obtained.
4: Calculate the fusion weight (WD

I , WD
V ) of detail components part according to

Equations (17)–(19).
5: According to Equation (20), the fusion result (DF) of the detail components part is obtained.
6: The final fusion image (F) is reconstructed by Equation (21).
Output: Fused image (F).

Figure 7 shows the fusion results, where Figure 7a,b show the IR and VI source images.
Figure 7c–f show the fusion results when the base components fusion coefficient λ is set to
λ = 1, 5, 50, 500, respectively, and the rest of the parameters are set the same. By observing
Figure 7c–f, we can learn that when λ = 1, the background of the fusion image “sky” is
relatively bright, and then as the value of λ becomes larger and larger, the background
of “sky” becomes darker and darker. The reason for this phenomenon is that λ is the
parameter to control the fusion ratio of the IR base components. When the λ value is small,
the VI base components occupy a larger fusion ratio, and the background tends to the VI
image style as a whole. When the λ value is large, the IR base components image occupies
a large proportion of fusion, and the background as a whole tends to the IR image style.
Users can adjust the proportion of fusion by setting λ to obtain fusion images with different
background styles.
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3. Results

In this section, several state-of-the-art methods were employed to evaluate the per-
formance of the proposed fusion framework. Both subjective evaluation and objective
evaluation were adopted. The comparison algorithms used are as follows: LAP [4], DWT [6],
NSCT [10], CVT [11], GFF [14], GTF [15], IFE [32], LPSR [20], and MSVD [12]. The TNO
Image Fusion Dataset [31] was chosen for the data required for the fusion experiments.

3.1. Subjective Performance Evaluation

We selected five pairs of well-registered images, which contain various natural and
artificial scenes. The fusion results are shown in Figures 8–12.
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Figure 8 shows the fusion comparison results. Figure 8d–f have low contrast, which
results in less prominent targets. Although Figure 8c,g,i,j have normal contrast, the back-
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ground information loses a lot and the fusion effect is not uniform enough. Figure 8h
becomes very blurred and a lot of the source image information is lost. Figure 8k retains
much detailed information, but there are artifacts, such as people in the image. As shown
in Figure 8l, our new method can achieve not only good contrast but also an obvious target
and enough details.

The fusion images in Figure 9d–f,k have low contrast. In addition, the critical target
information in the VI source image is dim, such as billboards and people. Figure 9c,g,h have
artifacts and halos. The visual effect is not right. Figure 9h looks very blurry. The contrast
and overall details of Figure 9i,l are well-preserved. However, the effect of Figure 9l is
better than others. For example, the character edges of billboards in the fused images of the
new method are much better.

The fusion images shown in Figure 10 have a large range of brightness, which can be
used to verify the robustness of the fusion method. The fusion effect of Figure 10g,i,j is very
poor for the “sky”, and the background of “cloud” in the IR image is unseen, especially
the obvious halo phenomenon in Figure 10j. The IR fusion of Figure 10c,h is too high,
and the VI information is seriously lost. From the images of “roof”, “floor tile”, and “car
windshield”, it can be seen that Figure 10d–f,k are less ideal than Figure 10l in retaining
details and edges.

Figure 11l is the result of our method, in which the edges of pedestrian and water
surface reflection are transparent. There are no artifacts and halos in our method. Besides,
the fused images have high contrast and less noise.

The sky area in Figure 12g,h is polluted. Figure 12d–f,k have low contrast and dark
areas of the sky. Moreover, there is a halo around the pedestrian, and the target is polluted.
Figure 12c,i,j highlight the details, but there are apparent artifacts on the edge of the right
tree. Figure 12l shows that our method has the capability of complementing IR and VI
source images and overcoming edge artifacts and halos.

In addition to the above state-of-the-art classical methods, some latest deep learning-
based fusion methods were employed to compare with the proposed method in subjective
performance analysis, such as DenseFuse [33], FusionGAN [16], U2Fusion [34], GAN-
McC [35], and DDcGAN [36]. Qualitative comparisons were performed on image pairs in
the TNO dataset [37] and the RoadScene dataset [35], respectively. The qualitative results
on the TNO datasets and RoadScene datasets are shown respectively in Figures 13 and 14.
Overall, the proposed method exhibits a better appearance than its competitors. As shown
in regions rich in texture information, the competitors lost some details, e.g., the texture
of the clothes, the details of the door, and the texture of the leaves, as shown in Figure 13.
Furthermore, the proposed method was also applied to fuse VIS and IR images in the
RoadScene. As shown in Figure 14, the details in the fusion results appear for better scene
representation because the detail layer process was performed. The promising results show
that the proposed method achieves a better appearance representation and less distortion,
noise, or artifacts.

3.2. Objective Performance Evaluation

In addition to subjective observation, there are seven popular objective metrics for
performance evaluation: information entropy (EN) [38], mutual information (MI) [38],
QAB/F [38], QW [39], visual information fidelity fusion metrics (VIFF) [40], spatial frequency
(SF) [38], and feature mutual information (FMI) [41]. EN is used to evaluate the amount
of information on fusion results. MI reflects the quantity of effective information transfer
in the process of fusion. QAB/F and QW represent the similarity between the strong edges
of the target before and after the fusion process. VIFF is used to evaluate the fidelity
of visual information before and after fusion. SF can represent the clarity and spatial
variation of fusion results. FMI measures the feature mutual information for fusion results,
and the gradient map is usually used as the evaluation feature. We used these methods
to examine the fusion results of the five image pairs. Figure 15 shows the quantitative
evaluation results applied to the images shown in Figures 8–12. A separate evaluation
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cannot comprehensively measure the image quality. Different methods perform differently
in different metrics, so we could not analyze the performance of each index in isolation.
Therefore, we needed to combine a variety of evaluation indicators. As shown in Figure 15,
although our method was not optimal in all the indicators, the average evaluation was the
best overall. Our method was optimal in both EI and QW metrics. This fully illustrates
the advantage of our method in conveying edge structure and texture information. The
overall edge structure and visual effect also have good performance. Although our method
was not the best one in SF, MI, QAB/F, and FMI, it could work very well on most of the
image pairs. However, our method could overcome halo and artifact issues better than
other methods.
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In recent years, deep learning-based fusion methods have improved fusion perfor-
mance. Some of the Representative DL-based methods were compared with the proposed
method, such as DenseFuse, FusionGAN, U2Fusion, GANMcC, and DDcGAN. Quantita-
tive comparisons were performed on image pairs in the TNO dataset, as shown in Figure 13.
FMI, MI, QAB/F, QW , and SF metrics were used for evaluation. The comparison results are
shown in Table 1. On the TNO dataset, the proposed method achieves the best performance
on FMI, MI, QAB/F, and QW . The results on SF follow behind U2Fusion and DDcGAN by
2.82 and 2.26, respectively. These results show that in the proposed model, the similarity
and correlation between the fusion image and source images are higher and have less
distortion and larger gradient amplitude. A bold number indicates the performance of the
best method among all methods in terms of a particular metric.

Table 1. Some of the Representative DL-based methods are compared.

Metric Method Img1 Img2 Img3 Img4 Img5 Img6 Img7 Rank

FMI

U2Fusion 0.89 0.92 0.83 0.79 0.92 0.87 0.89

1

DDcGAN 0.88 0.9 0.82 0.81 0.9 0.86 0.88
GANMcC 0.9 0.93 0.85 0.81 0.91 0.88 0.9
DenseFuse 0.9 0.93 0.84 0.81 0.92 0.89 0.91
FusionGAN 0.89 0.92 0.86 0.79 0.9 0.88 0.88

Ours 0.92 0.94 0.86 0.83 0.92 0.9 0.91

MI

U2Fusion 1.38 1.86 2.07 2.16 2.41 1.95 1.83

1

DDcGAN 1.48 1.81 1.85 2.16 1.93 1.61 1.9
GANMcC 1.86 2.45 2.44 2.58 2.62 2.13 2.45
DenseFuse 2.11 2.23 2.23 3.56 2.62 2.15 1.88
FusionGAN 1.93 2.87 1.72 1.36 2.37 1.95 2.58

Ours 2.76 2.12 2.45 2.8 2.42 2.55 2.16

QAB/F

U2Fusion 0.43 0.4 0.41 0.28 0.47 0.42 0.41

1

DDcGAN 0.4 0.27 0.28 0.44 0.35 0.36 0.28
GANMcC 0.17 0.27 0.3 0.07 0.44 0.22 0.36
DenseFuse 0.33 0.32 0.38 0.19 0.39 0.32 0.31
FusionGAN 0.23 0.16 0.17 0.05 0.23 0.14 0.27

Ours 0.56 0.51 0.53 0.55 0.58 0.57 0.52

QW

U2Fusion 0.71 0.71 0.73 0.52 0.81 0.77 0.75

1

DDcGAN 0.67 0.44 0.26 0.44 0.56 0.59 0.49
GANMcC 0.49 0.58 0.59 0.32 0.73 0.55 0.68
DenseFuse 0.71 0.66 0.66 0.49 0.68 0.68 0.6
FusionGAN 0.47 0.45 0.27 0.21 0.37 0.41 0.49

Ours 0.88 0.77 0.71 0.62 0.8 0.81 0.6

SF

U2Fusion 9.88 9.6 9.37 23.46 7.45 10.17 9.22

3

DDcGAN 12.24 7.72 11.29 26.02 7.52 11.46 8.66
GANMcC 4.73 5.61 5.05 10.98 5.62 5.15 5.46
DenseFuse 6.58 5.25 5.19 16.45 3.35 6.33 4.08
FusionGAN 6.32 4.39 4.19 10 3.29 4.66 5.45

Ours 11.85 8.1 7.28 28.24 5.8 10.68 6.4

The efficiency of the algorithm is also an important metric. Table 2 reports the running
time of the fusion algorithm shown in Figure 9. All algorithms were running on a computer
of i7-8700 CPU and 8 G RAM, using MATLAB 2018b (MathWorks company, Natick, MA,
USA).

Table 2. Running time (seconds) is compared.

LAP DWT NSCT CVT GFF GTF IFE LPSR MVSD Proposed

0.2294 0.6356 0.8087 0.3890 0.2207 0.8208 0.4776 0.1210 0.3265 0.2021
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4. Conclusions

This paper presents a novel decomposition-based image fusion framework, which
overcomes the problems of noise, blurring, and loss of details. Firstly, the decomposi-
tion method of basic components and detail components based on SWF-Gaussian was
proposed. More importantly, we developed a base components fusion strategy through
normalization and nonlinear processing, which could control the fusion ratio by adjusting
the regularization parameters. Furthermore, SWGF was applied to optimize the fusion
process of detail components, suppressing the noise transfer effect, and obtaining better
visual perception. The quantitative results show that the method has the advantages of
simplicity, effectiveness, and robustness.
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