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Abstract: Image fusion is one of the most rapidly evolving fields in image processing today, and its 
applications are widely expanded in various fields. In the field of image fusion, the method based 
on multi-scale decomposition plays an important role. However, it faces many difficult puzzles, 
such as the risk of over-smoothing during decomposition, blurring of fusion results, and loss of 
details. Aiming at these problems, this paper proposes a novel decomposition-based image fusion 
framework, which overcomes the problems of noise, blurring, and loss of details. Both the symmetry 
and asymmetry between infrared and visible images are important research hotspots in this paper. 
The experiments confirmed that the fusion framework outperforms other methods in both subjec-
tive observation and objective evaluation. 
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1. Introduction 
Image fusion integrates the information of different spectral bands in the same scene. 

The sensors of infrared (IR) imaging can capture the thermal radiation emitted by objects 
and are extremely sensitive to thermal targets. However, IR images miss background tex-
ture details. The visible (VI) image sensors can obtain rich scene information, and they 
will be interfered with by illumination conditions, fog, occlusion, and so on. The fusion of 
infrared and visible images has received more and more attention to retain the target and 
enhance the detail and other useful information for extending the ability of visual percep-
tion [1–3]. 

There is a number of image fusion methods proposed for IR and VI images. Existing 
fusion methods can be classified into four categories: multi-scale transform (MST) [4–15], 
deep learning (DL) [16–19], sparse representation (SR) [20–22], and other methods [23–
25]. In recent years, deep learning has proved superior and successful in many applica-
tions. However, there are some key issues unsolved. One is the complexity of the algo-
rithm. DL needs strong hardware support and is difficult to deploy on embedded plat-
forms. In particular, the training of DL needs a large number of registered image pairs, 
and the data set is difficult to obtain. Considering the inherent sparse representation of 
the human visual system, sparse representation methods have also been widely devel-
oped [20]. Other methods include total variation [15], principal components analysis 
(PCA) and robust PCA (RPCA) [24,25], intensity-hue-saturation (IHS) transform [26], etc. 
As a popular image fusion method, the multi-scale fusion theory (MST) has been success-
fully used in various application scenarios. The large-scale structure of an image usually 
contains background information and large size targets, while the small-scale structure 
usually represents details and texture information. A large number of algorithms have 
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been widely proposed, such as the Laplacian pyramid (LAP) [4], discrete wavelet decom-
position (DWT) [6,7], dual-tree complex wavelet transform (DTCWT) [8,9], non-subsam-
pled contourlet transform (NSCT) [10], curvelet transform (CVT) [11], multi-resolution 
singular value decomposition (MSVD) [12], etc. However, these decomposition-based fu-
sion methods have problems such as detail blurring due to excessive smoothing. 

To tackle the above challenge, guided filtering (GF) was proposed by Li et al. for their 
image fusion framework [13]. Especially in recent years, various edge-preserving filtering 
methods have shown promising applications in image fusion [14,27–31]. For example, Ma 
et al. [28] used rolling guided filters to construct multi-scale images, which can separate 
scale information better in scale space and make the fused image have a good visual effect. 
Although these methods can improve the fusion results, they cannot reach the right scale 
separation for image features and often lose some salient information of the source image. 
In addition, they are still seriously troubled by low contrast and blurred details. 

In the traditional filtering process, the filtering window always slides on the image. 
If the edge in an image is just in the center of a filter window, the filtering outputs a 
weighted average value of the filter window. However, the edge of the filtering operation 
on the image may be blurred. To avoid the problem, Yin et al. [29] proposed the method 
called side window filtering (SWF). Yan and Li [30] first used SWF to improve the two 
linear filters and applied it to the decomposition stage in image fusion, which proved the 
great potential of SWF. Subsequently, Yin et al. [31] applied the SWF technology to im-
prove the guided filter called side window guided filter (SWGF), which has better edge 
protection performance than the improved linear filter. In this paper, the good edge-pre-
serving property of SWF technology has been used to guide the process of image fusion. 

In general, the filter based on the MST image fusion method consists of three steps. 
(1) The scale space is constructed to obtain the detail components with high-frequency 
information and the base components with low-frequency information; (2) According to 
the characteristics of the corresponding scale components, the fusion strategy is formu-
lated; (3) The fusion image is reconstructed. After multi-scale decomposition, the base 
components mainly describe the energy distribution of the source image, without details 
and noise. Detail components mainly describe texture information, including detail dis-
tribution and noise. However, IR images are characterized by high contrast, strong edges, 
and a lack of detailed information. A VI image is characterized by uniform brightness and 
contains a lot of detailed information. Therefore, it is crucial to choose the right integration 
strategy. Most of the base components adopt simple “average” fusion rules. This rule is 
fast and effective, but it ignores the difference in brightness between the two bands of 
images. 

This paper proposes a novel fusion scheme based on the SWGF, which can selectively 
retain the details of interest parts and effectively suppress noise. The common issue be-
tween infrared and visible images is the symmetry of visual quality for implementing 
practical applications. Furthermore, the asymmetry between infrared and visible images 
can produce complementarity to improve visual quality and system performance. Both 
the symmetry and asymmetry between infrared and visible images are important research 
hotspots in this paper. The main contributions of our work are as follows: (1) We propose 
a novel decomposition method using the SWF-Gaussian filter. The saliency information 
can be retained to the maximum extent during the image fusion process, and the halo 
artifact near the firm edges can be reduced. (2) We develop a brand-new framework for 
IR and VI image fusion. Moreover, regularization technology is employed to balance the 
degree of fusion. 

The rest of the paper is organized as follows: Section 2 introduces the new fusion 
framework based on SWF technology in detail. In Section 3, the subjective and objective 
experiments are compared. Section 4 concludes the whole paper. 
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2. Materials and Methods 
In this paper, we propose a new decomposition method to obtain the scale feature 

information of infrared and visible light images by scale decomposition, and then a new 
fusion framework is proposed to well reconstruct this scale feature information in the 
fused image. Figure 1 shows the flowchart of the proposed new fusion framework. 
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Figure 1. The algorithm flowchart of our fusion framework. 

It is proposed to decompose the information contained in the source image into basic 
components and detail components, which correspond to the high-frequency and low-
frequency information of the source image, respectively, as shown in Figures 2–5. It is also 
demonstrated that the benefits of having fewer artifacts and halos in detail components. 
The guiding strategy of multi-strategy fusion is to preserve and balance the basic compo-
nents of infrared and visible light images as much as possible, and to highlight the detail 
components in both. The purpose of regularization and nonlinearity is to remap the gray 
levels of infrared and visible light images, balance the gray level difference between the 
two, and retain large-scale information as much as possible. The control fusion ratio of IR 
and VI images is to provide the user with an optional parameter to adjust the background 
tendency of the fused image. 

     
(a) (b) (c) (d) (e) 

Figure 2. The results of Gaussian filtering: (a) IR source image; (b–e) iteration 4 times. 

     
(a) (b) (c) (d) (e) 

Figure 3. The results of SWF-Gaussian filtering: (a) IR source image; (b–d) iteration 3 times; (e) The 
result of Gaussian filtering of (d). 
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(a) (b) (c) (d) 

Figure 4. Detail components obtained from the difference between the blurring images in Figure 
2b–e and the source image Figure 2a. 

    
(a) (b) (c) (d) 

Figure 5. Detail components: from left to right is the difference between the blurring images in 
Figure 3b–e and the source image Figure 3a. 

2.1. Multi-Scale Decomposition Based on SWF-Gaussian Filtering 
Gaussian filter is a kind of simple linear filter, which is easy to use and has little cal-

culation. However, Gaussian filter blurs all edges, which may cause halos and artifacts 
near the edges [28]. As an edge-preserving technology, the SWF technology was first pro-
posed by Yin et al. The main idea of this technique is to keep the kernel function of the 
filter unchanged and construct several side windows around the image edge pixels in the 
filtering process. The output of the optimal side window is selected as the filtering result 
to avoid the blur caused by the filter window crossing the edge. Gaussian filtering and 
SWF-Gaussian filtering are respectively expressed as: G = Gaussian(J, 𝑟 , 𝜎 ), (1)SWF־G = SWF־Gaussian J, 𝑟 ־ , 𝜎 ־ , (2)

J represents the input image. The parameters 𝑟 and 𝜎 are the filtering radius and 
standard deviation, respectively. Their iterative updating formulas can be expressed by 
Equations (3) and (4), respectively. 𝐽 = 𝐺(𝐽 , 𝑟 , 𝜎 ), (3)𝐽 ־ = 𝑆𝑊𝐹־𝐺 𝐽 ־ , 𝑟 ־ , 𝜎 ־ ,  (4)

here 𝑟 ,  𝑟 ־ ,  𝜎 ,  𝜎 ־  are the same as those in Equations (1) and (2), 𝐽  and 𝐽 ־  represent iteration t-time filtered images obtained by Gaussian filtering and SWF-
Gaussian filtering, respectively. The initial input images are  𝐽  and 𝐽 ־ . 

Figures 2a and 3a are input images. Figure 2b–e shows the results of iterating the 
input images using a Gaussian filter and repeating the smoothing four times. It can be 
seen that the edge features become more and more blurred. It will cause bad results when 
extracting the detail components, which will be explained in the following section. Figure 
3b–d show three iterations of smoothing using the SWF-Gaussian filter. They can not only 
blur the image but also preserve the edges of the large-scale structure. Figure 3e is the 
blurring image of Figure 3d with the Gaussian filter, which will be used as the base com-
ponents for obtaining the detail components. 
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The detail components are obtained by the difference between the blurring images 
and the source image. In Figure 4, we can see that the Gaussian filter can output better 
detail components, but it has inevitable halo artifacts phenomena. For example, there is a 
circle of halo artifacts around the “person“ in the image. The target person is not well-
extracted. In contrast, Figure 5 is almost free of halos. Especially, Figure 5d shows that not 
only the detailed information is effectively extracted, but also the edge of the target is 
preserved. This effectively overcomes the halo artifacts. 

Based on the above analysis, we propose a novel scheme to address halo artifacts. 
The scheme can obtain the base components with a combination of SWF-Gaussian filter 
and Gaussian filter. First, the SWF-Gaussian filter is iteratively used to produce blurred 
images with good edges, and then Gaussian blurring is used to produce the base compo-
nents for obtaining detail components that are rich in detail but free of halos and artifacts, 
as follows: 𝐼 ־ = 𝑆𝑊𝐹־𝐺 𝐼 ־ , 𝑟 ־ , 𝜎 ־ , (5)

𝑉 ־ = 𝑆𝑊𝐹־𝐺 𝑉 ־ , 𝑟 ־ , 𝜎 ־ , (6)

𝐵 = 𝐺 𝐼 ־ , 𝑟 , 𝜎 ,  (7)

𝐵 = 𝐺 𝑉 ־ , 𝑟 , 𝜎 ,  (8)

where  𝐼 and 𝑉 represent IR and VI source images, respectively, and superscript repre-
sents the SWF-Gaussian filter iteratively from time t to t + 1. In our method, the IR base 
components  𝐵  and the VI base components 𝐵  are obtained by SWF-Gaussian filtering 
iteratively followed by Gaussian blurring. After that, the IR detail components  𝐵  and 
VI detail components  𝐵  are obtained by Equations (9) and (10). 𝐷 = 𝐼 − 𝐵 , (9)𝐷 = 𝑉 − 𝐵 . (10)

The base components are not necessary to be iteratively produced through the SWF-
Gaussian filtering. It is a fast and effective method to select a larger standard deviation to 
obtain the base components. 

2.2. Base Components Fusion Base on Regularization and Nonlinearity 
The decomposition components of different scale-spaces were obtained from the 

source image. The base components contain the general appearance structure of the 
source image and determine the overall brightness distribution. To keep the robustness 
of the base components, the imaging differences of two different bands need to be consid-
ered. The purpose of base components is to keep the large-scale structure and salient tar-
get of the two band images unchanged. The target in the infrared image is bright, while 
the background appears black in the IR image. Moreover, the dynamic range is extensive, 
so normalization was performed for better fusion. 𝐵 = 𝐵 − 𝜇 𝜎𝜎 + 𝜇 , (11)

where 𝐵  represents the brightness of the IR base components with normalized bright-
ness and 𝜇 is the mean. To further enlarge the distance of the effective value, 𝐵  is fur-
ther processed. 𝐿 =  ( ) ( ),  (12)
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where max() and min() are the maximum and minimum functions. 𝐿  reflects the charac-
teristic distribution of IR base components. The base fusion components of IR and VI di-
rectly determine the background style of the fusion image. This paper proposes to use a 
nonlinear mapping function to adjust the propensity of fused image background style in 
IR and VI source images. Here, a nonlinear transform  𝑆 () is introduced to further con-
trol the fusion ratio of IR and VI images: 𝑆 (α) = arctan (𝜆𝑎)𝑎𝑟𝑐𝑡𝑎𝑛𝜆 , (13)

where the range of α is (0,1), 𝜆 represents a regularization parameter greater than 0 en-
tered by the user. From Figure 6, we can see that when 𝜆 → 1, the value 𝑆 (α) is close to α, and the fusion rule tends to “average” fusion rule. When 𝜆 → ∞, the value 𝑆 (α) is 
close to 1, and the fusion process tends to the “maximum absolute value” fusion. There-
fore, the IR image fusion ratio can be controlled by adjusting the value of the parameter 𝜆. Finally, the fusion weights 𝑊 and 𝑊  of the base components are obtained. 𝑊 =  (𝜆𝐿𝐼)𝜆   (14)

𝑊 = 1 − 𝑊  (15)

The base components fusion can be expressed by 𝐵 = 𝑊 𝐵 + 𝑊 𝐵  (16)

 
Figure 6. The plot of S (α) with different α. 
2.3. Detail Components Fusion Base on SWGF 

In general, the detail components contain the texture information. However, the de-
tail components of the two band images are very inconsistent and have complementary 
properties. The target of the detail components obtained by our decomposition method is 
prominent and the edge is good, but it also inevitably contains significant noise. Our ob-
jective is to transmit valid information and not noise. In this paper, we apply a simple and 
practical technique to inject bright and significant features from IR images directly into VI 
images, as follows: 𝑃 = |𝐷 | − |𝐷 | 𝑖𝑓|𝐷 | − |𝐷 | > 00 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (17)

where 𝑃  represents the salient feature of the IR detail components. 𝑃  is calculated with 
the same method. At the same time, the transmission of noise should be reduced. In this 
work, a practical optimization method based on the SWF technique improved side win-
dow guidance filter (SWGF) is proposed. SWGF can effectively reduce the interference of 
noise in the process of information transmission and better preserve the edges of the tar-
get. Filtering operation is denoted as follows: 
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𝑊 = 𝑆𝑊𝐺𝐹(𝐼, 𝑃 , 𝑟 , 𝜎 ), (18)𝑊 = 𝑆𝑊𝐺𝐹(𝑉, 𝑃 , 𝑟 , 𝜎 ), (19)

where  𝑆𝑊𝐺𝐹(·) represents the side window guided filtering function operation, and 𝑊  and 𝑊  represent the weights of the detail components of the two waveform im-
ages, respectively. 𝑟  and 𝜎  represent the window radius and standard devia-
tion parameters of SWGF, respectively. 

Then, the detail components fusion 𝐷  is obtained from the linear weighting of the 
weight map. It is worth noting that the weight map of the detail components should be 
normalized to [0, 1]. 𝐷 = 𝑊 𝐷 + 𝑊 𝐷  (20)

2.4. Reconstruction 
Generally, image reconstruction is the inverse operation of image decomposition. In 

the multi-scale image decomposition process proposed in this paper, the detail layer com-
ponent is obtained by subtracting the base layer component from the original image. 
Based on this idea, the fusion image reconstruction is performed by adding the base layer 
fusion component and the detail layer fusion component. 

Eventually, the fused image F is reconstructed by simple linear addition. F = 𝐵 + 𝐷  (21)

The flow of the proposed Algorithm 1 in this paper is shown as follows: 

Algorithm 1: New algorithms for fusing IR and VI images 

Input: IR image I , VI image V , iteration times t, parameter λ . 

1: Decompose the input images ( , )I V  into base components 
( , )I VB B

 and detail components 

( , )I VD D
 through Gaussian filtering and SWF-Gaussian filtering. 

2: Calculate the fusion weight ( , )B B
I VW W  of base components part according to Equations (11), 

(12), (14), and (15). 

3: According to Equation (16), the fusion result 
( )FB  of the base components part is obtained. 

4: Calculate the fusion weight ( , )D D
I VW W  of detail components part according to Equations 

(17)–(19). 

5: According to Equation (20), the fusion result 
( )FD  of the detail components part is obtained. 

6: The final fusion image ( )F  is reconstructed by Equation (21). 

Output: Fused image ( )F . 

Figure 7 shows the fusion results, where Figure 7a,b show the IR and VI source im-
ages. Figure 7c–f show the fusion results when the base components fusion coefficient 𝜆 
is set to 𝜆 = 1, 5, 50, 500, respectively, and the rest of the parameters are set the same. By 
observing Figure 7c–f, we can learn that when 𝜆 = 1, the background of the fusion image 
“sky” is relatively bright, and then as the value of 𝜆 becomes larger and larger, the back-
ground of “sky” becomes darker and darker. The reason for this phenomenon is that 𝜆 is 
the parameter to control the fusion ratio of the IR base components. When the 𝜆 value is 
small, the VI base components occupy a larger fusion ratio, and the background tends to 
the VI image style as a whole. When the 𝜆 value is large, the IR base components image 
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occupies a large proportion of fusion, and the background as a whole tends to the IR im-
age style. Users can adjust the proportion of fusion by setting 𝜆 to obtain fusion images 
with different background styles. 

  
(a) (b) 

    
(c) (d) (e) (f) 

Figure 7. Fusion results for various λ-value parameters: (a) IR image; (b) VI image; (c–f) fused im-
ages (λ = 1, λ = 5, λ = 50, λ = 50). 

3. Results 
In this section, several state-of-the-art methods were employed to evaluate the per-

formance of the proposed fusion framework. Both subjective evaluation and objective 
evaluation were adopted. The comparison algorithms used are as follows: LAP [4], DWT 
[6], NSCT [10], CVT [11], GFF [14], GTF [15], IFE [32], LPSR [20], and MSVD [12]. The TNO 
Image Fusion Dataset [31] was chosen for the data required for the fusion experiments. 

3.1. Subjective Performance Evaluation 
We selected five pairs of well-registered images, which contain various natural and 

artificial scenes. The fusion results are shown in Figures 8–12. 

    
(a) IR image (b) VI image (c) LAP (d) DWT 

    
(e) NSCT (f) CVT (g) GFF (h) GTF 

    
(i) IFE (j) LPSR (k) MVSD (l) Ours 

Figure 8. Fusion results of the ‘‘UNcamp” image pair using different methods. 
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(a) IR image (b) VI image (c) LAP (d) DWT 

    
(e) NSCT (f) CVT (g) GFF (h) GTF 

    
(i) IFE (j) LPSR (k) MVSD (l) Ours 

Figure 9. Fusion results of the ‘‘traffic” image pair using different fusion methods . 

    
(a) IR image (b) VI image (c) LAP (d) DWT 

    
(e) NSCT (f) CVT (g) GFF (h) GTF 

     
(i) IFE (j) LPSR (k) MVSD (l) Ours 

Figure 10. Fusion results of the ‘‘Marne_04” image pair using different methods. 
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(a) IR image (b) VI image (c) LAP (d) DWT 

    
(e) NSCT (f) CVT (g) GFF (h) GTF 

(i) IFE (j) LPSR (k) MVSD (l) Ours 

Figure 11. Fusion results of the ‘‘bench” image pair using different methods. 

    
(a) IR image (b) VI image (c) LAP (d) DWT 

    
(e) NSCT (f) CVT (g) GFF (h) GTF 

    
(i) IFE (j) LPSR (k) MVSD (l) Ours 

Figure 12. Fusion results of the ‘‘kaptein” source images using different methods. 

Figure 8 shows the fusion comparison results. Figure 8d–f have low contrast, which 
results in less prominent targets. Although Figure 8c,g,i,j have normal contrast, the back-
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ground information loses a lot and the fusion effect is not uniform enough. Figure 8h be-
comes very blurred and a lot of the source image information is lost. Figure 8k retains 
much detailed information, but there are artifacts, such as people in the image. As shown 
in Figure 8l, our new method can achieve not only good contrast but also an obvious target 
and enough details. 

The fusion images in Figure 9d–f,k have low contrast. In addition, the critical target 
information in the VI source image is dim, such as billboards and people. Figure 9c,g,h 
have artifacts and halos. The visual effect is not right. Figure 9h looks very blurry. The 
contrast and overall details of Figure 9i,l are well-preserved. However, the effect of Figure 
9l is better than others. For example, the character edges of billboards in the fused images 
of the new method are much better. 

The fusion images shown in Figure 10 have a large range of brightness, which can be 
used to verify the robustness of the fusion method. The fusion effect of Figure 10g,i,j is 
very poor for the “sky”, and the background of “cloud” in the IR image is unseen, espe-
cially the obvious halo phenomenon in Figure 10j. The IR fusion of Figure 10c,h is too 
high, and the VI information is seriously lost. From the images of “roof”, “floor tile”, and 
“car windshield”, it can be seen that Figure 10d–f,k are less ideal than Figure 10l in retain-
ing details and edges. 

Figure 11l is the result of our method, in which the edges of pedestrian and water 
surface reflection are transparent. There are no artifacts and halos in our method. Besides, 
the fused images have high contrast and less noise. 

The sky area in Figure 12g,h is polluted. Figure 12d–f,k have low contrast and dark 
areas of the sky. Moreover, there is a halo around the pedestrian, and the target is pol-
luted. Figure 12c,i,j highlight the details, but there are apparent artifacts on the edge of the 
right tree. Figure 12l shows that our method has the capability of complementing IR and 
VI source images and overcoming edge artifacts and halos. 

In addition to the above state-of-the-art classical methods, some latest deep learning-
based fusion methods were employed to compare with the proposed method in subjective 
performance analysis, such as DenseFuse [33], FusionGAN [16], U2Fusion [34], GANMcC 
[35], and DDcGAN [36]. Qualitative comparisons were performed on image pairs in the 
TNO dataset [37] and the RoadScene dataset [35], respectively. The qualitative results on 
the TNO datasets and RoadScene datasets are shown respectively in Figures 13 and 14. 
Overall, the proposed method exhibits a better appearance than its competitors. As shown 
in regions rich in texture information, the competitors lost some details, e.g., the texture 
of the clothes, the details of the door, and the texture of the leaves, as shown in Figure 13. 
Furthermore, the proposed method was also applied to fuse VIS and IR images in the 
RoadScene. As shown in Figure 14, the details in the fusion results appear for better scene 
representation because the detail layer process was performed. The promising results 
show that the proposed method achieves a better appearance representation and less dis-
tortion, noise, or artifacts. 
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Figure 13. Qualitative comparison of the proposed method with five state-of-the-art methods on the 
TNO dataset. 

 
Figure 14. Qualitative comparison of the proposed method with five state-of-the-art methods on the 
RoadScene dataset. 

3.2 Objective Performance Evaluation 
In addition to subjective observation, there are seven popular objective metrics for 

performance evaluation: information entropy (EN) [38], mutual information (MI) [38], 𝑄 /  [38], 𝑄  [39], visual information fidelity fusion metrics (VIFF) [40], spatial fre-
quency (SF) [38], and feature mutual information (FMI) [41]. EN is used to evaluate the 
amount of information on fusion results. MI reflects the quantity of effective information 
transfer in the process of fusion. 𝑄 /  and 𝑄  represent the similarity between the 
strong edges of the target before and after the fusion process. VIFF is used to evaluate the 
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fidelity of visual information before and after fusion. SF can represent the clarity and spa-
tial variation of fusion results. FMI measures the feature mutual information for fusion 
results, and the gradient map is usually used as the evaluation feature. We used these 
methods to examine the fusion results of the five image pairs. Figure 15 shows the quan-
titative evaluation results applied to the images shown in Figures 8–12. A separate evalu-
ation cannot comprehensively measure the image quality. Different methods perform dif-
ferently in different metrics, so we could not analyze the performance of each index in 
isolation. Therefore, we needed to combine a variety of evaluation indicators. As shown 
in Figure 15, although our method was not optimal in all the indicators, the average eval-
uation was the best overall. Our method was optimal in both EI and 𝑄  metrics. This 
fully illustrates the advantage of our method in conveying edge structure and texture in-
formation. The overall edge structure and visual effect also have good performance. Alt-
hough our method was not the best one in SF, MI, Q / , and FMI, it could work very 
well on most of the image pairs. However, our method could overcome halo and artifact 
issues better than other methods. 
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Figure 15. Quantitative comparisons of seven image fusion metrics, i.e., EI, MI, Q / , Q , VIFF, 
SF, and FMI in the above five scenes. The nine advanced algorithms, i.e., LAP, DWT, NSCT, CVT, 
GFF, GTF, IFE, LPSR, and MVDS, are compared with our method. 

In recent years, deep learning-based fusion methods have improved fusion perfor-
mance. Some of the Representative DL-based methods were compared with the proposed 
method, such as DenseFuse, FusionGAN, U2Fusion, GANMcC, and DDcGAN. Quantita-
tive comparisons were performed on image pairs in the TNO dataset, as shown in Figure 
13. FMI, MI, 𝑄 / , 𝑄 , and SF metrics were used for evaluation. The comparison results 
are shown in Table 1. On the TNO dataset, the proposed method achieves the best perfor-
mance on FMI, MI,  𝑄 / , and 𝑄 . The results on SF follow behind U2Fusion and 
DDcGAN by 2.82 and 2.26, respectively. These results show that in the proposed model, 
the similarity and correlation between the fusion image and source images are higher and 
have less distortion and larger gradient amplitude. A bold number indicates the perfor-
mance of the best method among all methods in terms of a particular metric. 

Table 1. Some of the Representative DL-based methods are compared. 

Metric Method Img1 Img2 Img3 Img4 Img5 Img6 Img7 Rank 

FMI 

U2Fusion 0.89 0.92 0.83 0.79 0.92 0.87 0.89 

1 

DDcGAN 0.88 0.9 0.82 0.81 0.9 0.86 0.88 
GANMcC 0.9 0.93 0.85 0.81 0.91 0.88 0.9 
DenseFuse 0.9 0.93 0.84 0.81 0.92 0.89 0.91 

FusionGAN 0.89 0.92 0.86 0.79 0.9 0.88 0.88 
Ours 0.92 0.94 0.86 0.83 0.92 0.9 0.91 

MI 

U2Fusion 1.38 1.86 2.07 2.16 2.41 1.95 1.83 

1 

DDcGAN 1.48 1.81 1.85 2.16 1.93 1.61 1.9 
GANMcC 1.86 2.45 2.44 2.58 2.62 2.13 2.45 
DenseFuse 2.11 2.23 2.23 3.56 2.62 2.15 1.88 

FusionGAN 1.93 2.87 1.72 1.36 2.37 1.95 2.58 
Ours 2.76 2.12 2.45 2.8 2.42 2.55 2.16 

𝑄 /  

U2Fusion 0.43 0.4 0.41 0.28 0.47 0.42 0.41 

1 

DDcGAN 0.4 0.27 0.28 0.44 0.35 0.36 0.28 
GANMcC 0.17 0.27 0.3 0.07 0.44 0.22 0.36 
DenseFuse 0.33 0.32 0.38 0.19 0.39 0.32 0.31 

FusionGAN 0.23 0.16 0.17 0.05 0.23 0.14 0.27 
Ours 0.56 0.51 0.53 0.55 0.58 0.57 0.52 

𝑄  

U2Fusion 0.71 0.71 0.73 0.52 0.81 0.77 0.75 

1 

DDcGAN 0.67 0.44 0.26 0.44 0.56 0.59 0.49 
GANMcC 0.49 0.58 0.59 0.32 0.73 0.55 0.68 
DenseFuse 0.71 0.66 0.66 0.49 0.68 0.68 0.6 

FusionGAN 0.47 0.45 0.27 0.21 0.37 0.41 0.49 
Ours 0.88 0.77 0.71 0.62 0.8 0.81 0.6 

SF U2Fusion 9.88 9.6 9.37 23.46 7.45 10.17 9.22 3 
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DDcGAN 12.24 7.72 11.29 26.02 7.52 11.46 8.66 
GANMcC 4.73 5.61 5.05 10.98 5.62 5.15 5.46 
DenseFuse 6.58 5.25 5.19 16.45 3.35 6.33 4.08 

FusionGAN 6.32 4.39 4.19 10 3.29 4.66 5.45 
Ours 11.85 8.1 7.28 28.24 5.8 10.68 6.4 

The efficiency of the algorithm is also an important metric. Table 2 reports the run-
ning time of the fusion algorithm shown in Figure 9. All algorithms were running on a 
computer of i7-8700 CPU and 8 G RAM, using MATLAB 2018b(MathWorks company, The 
United States). 

Table 2. Running time (seconds) is compared. 

LAP DWT NSCT CVT GFF GTF IFE LPSR MVSD Proposed 
0.2294 0.6356 0.8087 0.3890 0.2207 0.8208 0.4776 0.1210 0.3265 0.2021 

4. Conclusions 
This paper presents a novel decomposition-based image fusion framework, which 

overcomes the problems of noise, blurring, and loss of details. Firstly, the decomposition 
method of basic components and detail components based on SWF-Gaussian was pro-
posed. More importantly, we developed a base components fusion strategy through nor-
malization and nonlinear processing, which could control the fusion ratio by adjusting the 
regularization parameters. Furthermore, SWGF was applied to optimize the fusion pro-
cess of detail components, suppressing the noise transfer effect, and obtaining better vis-
ual perception. The quantitative results show that the method has the advantages of sim-
plicity, effectiveness, and robustness. 
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