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Abstract: In this paper, we study the effect of detuning parameters and driven external classical field
parameters on a quantum system consisting of a ♦-configuration four-level atom inside a quantized
cavity field. Under some canonical conditional of dressed states, the exact solution of the Schrödinger
equation is obtained. The occupation of atomic levels and statistical population inversion is studied.
Our results show that the classical field parameter dissolved the collapse periods and increased the
maximum bounds of the upper state, while decreasing the lower bounds of the lower state. The
detuning parameters reduce the minimum bounds of atomic levels and their inversion. On the other
hand, the linear entropy and l1 norm of coherence are employed to measure the temporal evolution
of the mixedness and coherence. It is found that the driven classical field improves the temporal
evolution of the mixedness and lower bounds of coherence. However, the detuning parameters have
a destructive effect on the mixedness and lower bounds of coherence. The intensity of the external
classical field is regarded as a control parameter with different values of detuning parameters.

Keywords: four-level atom; external classical field; mixedness; coherence

1. Introduction

The interaction between a quantized field and atomic state is one of the most attractive
topics in quantum optics. The Rabi model is the first uncomplicated theoretical model
that describes a direct interaction between a single quantized photon and a two-level
atom [1]. Another theoretical model that has opened the way for numerous experimental
and theoretical quantum studies is called the Jaynes–Cummings model (JCM), which is
solved under the rotating wave approximation technique [2]. Overall, the generalization
of atom–field interaction has been demonstrated in many theoretical studies, e.g., the
interaction between an optical electromagnetic field and N-level atomic stat has been
investigated [3,4]. The resonance and non-resonance cases of multi-photon JCM have been
discussed [5]. Moreover, high-dimensional atomic states inside an electromagnetic field
have been widely studied. For example, the quantum correlation and some statistical
characteristics of the three-level atom, four-level atom, and five-level atom have been
explored [6–8]. Additionally, the influence of some external effects on atom–field interaction
has been proposed, such as Kerr-like medium [9,10], vibrating graphene membrane [11,12],
external classical field [13–15], and deformed fields [16,17]. In particular, the interaction
between a four-level atom and different types of a cavity mode field has been paid more
attention under different configurations [18–22]. The effect of external classical fields in the
two-level atom scheme coupled with a quantized electromagnetic field was studied [13].
The squeezing phenomenon and entanglement of JCM in the presence of driven classical
field has been discussed [23]. In SU(1,1) Lie algebra, the influence of the off-resonance case
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and driven classical field on a Λ configuration three-level atom interacting with SU(1,1) Lie
algebra has been displayed [24].

The degree of entanglement is one of the outstanding properties of quantum states,
which may be evaluated via different measurements. The quantum concurrence and
negativity are regarded as the best quantifiers of entanglement for finite dimensions [25,26].
The time evolution of entanglement in the presence of Kerr-like medium [27], driven
laser field [28], intrinsic decoherence [29], a classical homogeneous gravitational field [7],
and Stark-shift [30] has been investigated. Based on quantum information theory, an
optimal scheme to quantify the degree of quantum coherence [31] has been reconstructed.
In general, the behavior of coherence measurement may be used either as an entropic
or metric measure such as Jensen–Shannon divergence [32], the geometric measure of
coherence [33], the relative quantum of coherence [31], and the coherence of formation [34].

This study is motivated by the effect of an external classical field parameter on a
♦ four-level atom inside a quantized field. In the presence of an external classical field,
solving a four-level atom needs many approximations [35]. In our solution, we have used
some canonical transformations to solve the Hamiltonian. Moreover, this model and these
results are interesting, and will be useful for future experiments, such as studying the
process of four-wave mixing, both theoretically and experimentally for a ♦-configuration
four-level atomic system [36]. Experimental observation of a tripod configuration for a
four-level atom has been used to improve the cross-phase modulation based on a double
electromagnetically induced transparency [37]. A new technique is proposed to solve the
Hamiltonian physical model, where the classical field associates the two intermediate states
together and simultaneously associates the upper state with the lower state. The statistical
aspects and quantum correlation of this system is still an effective topic in experimental
and theoretical schemes.

The paper is organized as follows: in Section 2, the description of the physical model
and its exact solution is presented, in which we obtain the temporal wave function. Con-
sequently, the final atomic density state and the occupation of atomic levels are obtained.
Section 3 investigates the temporal evolution of statistical inversion under the influence of
driven classical field. The optimal behavior of the mixedness and purity via linear entropy,
and the temporal evolution of coherence via the l1 norm are discussed in Sections 4 and 5.
Finally, Section 6 displays our conclusions.

2. Description of the Physical Model

Let us assume that a physical system consists of a single ♦ configuration of a four-level
atom inside a single mode of a quantized field and simultaneously driven by an external
classical laser field. As schematically shown in Figure 1, the permitted transitions between
the atomic levels are |1〉 7→ {|2〉, |3〉}, and {|2〉, |3〉} 7→ |4〉, where |1〉, |4〉 are the top and
ground state, while |2〉, |3〉 are the two intermediate states. The classical field associates
the two intermediate states together and simultaneously associates the upper state with
the lower state. The Hamiltonian that describes this system under the rotating wave
approximation is written as (h̄ = 1),

Ĥ = Ĥ f ree + Ĥint + Ĥdriven, (1)

where

Ĥ f ree = ω f â† â +
4

∑
i=1

ωiσ̂ii,

Ĥint = λ1
(
â(σ̂12 + σ̂13 + σ̂24 + σ̂34) + h.c.

)
,

Ĥdriven = λ2(σ̂14 + σ̂23 + h.c.)

(2)

where ω f and ωi are the frequencies of the field and atomic transition, respectively, λ1
and λ2 donate the coupling of the strength atom field and external field, respectively. â
donates the bosonic annihilation of the quantized field with the Hermitian conjugate â†
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which satisfies [â, â†] = I, and σ̂ij = |i〉〈j| are the atomic raising operators with the lowering
operator σ̂ji = |j〉〈i|.

Figure 1. A sketch of a ♦ configuration of a four-level atom inside a cavity field influenced by the
classical field. Here, ω f is the frequency of the quantized field. The classical field is represented by
the transition from |1〉 to |4〉 and from |2〉 to |3〉.

Via denationalization for the free atomic subsystem ∑4
i=1 ωiσ̂ii and the driven Hamil-

tonian Ĥdriven, one can obtain the following eigenstates:

|1〉 = cos
ζ1

2
|e〉 − sin

ζ1

2
|g〉, |2〉 = cos

ζ2

2
|i〉 − sin

ζ2

2
| f 〉,

|3〉 = cos
ζ2

2
| f 〉+ sin

ζ2

2
|i〉, |4〉 = cos

ζ1

2
|g〉+ sin

ζ1

2
|e〉,

ζ1 = arctan
2λ2

ω1 −ω4
ζ2 = arctan

2λ2

ω2 −ω3

(3)

where the atomic states |1〉, |2〉, |3〉, |4〉 are transformed under the above conditional
dressed state to |e〉, |i〉, | f 〉, |g〉. Therefore, the total physical Hamiltonian (1) in the dressed
states (3) may be written as

Ĥ = ω f â† â + Ω1Ŝee + Ω2Ŝii + Ω3Ŝ f f + Ω4Ŝgg + â
(
Λ1Ŝei + Λ2Ŝe f + Λ3Ŝig + Λ4Ŝ f g

)
+ h.c., (4)

with
Ŝ = |r〉〈s|, r, s = e, i, f , g. (5)

Now, the atomic transitions are given by

Ω1 = ω1 cos2 ζ1

2
+ ω2 sin2 ζ1

2
+ λ2 sin ζ1, Ω2 = ω2 cos2 ζ2

2
+ ω3 sin2 ζ2

2
+ λ2 sin ζ2,

Ω3 = ω3 cos2 ζ2

2
+ ω2 sin2 ζ2

2
− λ2 sin ζ2, Ω4 = ω4 cos2 ζ1

2
+ ω1 sin2 ζ1

2
− λ2 sin ζ1,

(6)

Meanwhile, the coupling strengths are obtained by

Λ1 = cos
ζ1 − ζ2

2
+ sin

ζ1 + ζ2

2
, Λ2 = cos

ζ1 + ζ2

2
+ sin

ζ1 − ζ2

2
,

Λ3 = cos
ζ1 + ζ2

2
− sin

ζ1 − ζ2

2
, Λ4 = cos

ζ1 − ζ2

2
− sin

ζ1 + ζ2

2
.

(7)

By applying the Heisenberg equation of motion, the physical Hamiltonian (4) can be
written as

Ĥ = ω fN + Ω1I +Hint, (8)

Here, I = ∑r=1 Ŝrr, N = â† â− Ŝii − Ŝ f f − 2Ŝgg, and the interaction HamiltonianHint
is obtained by
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Hint =


0 Λ1 â Λ2 â 0

Λ1 â† δ1 0 Λ3 â
Λ2 â† 0 δ2 Λ4 â

0 Λ3 â† Λ4 â† δ3

 (9)

with δ1 = ω + Ω2 −Ω1, δ2 = ω + Ω3 −Ω1, and δ3 = 2ω + Ω4 −Ω1.
To investigate the effect of the external field, we shall obtain the exact solution of the

wavefunction |ψ(t)〉 associated with the interaction Hamiltonian (9), which takes the form

|ψ(t)〉 =
∞

∑
n=0

(
A1(n, t)|n, e〉+A2(n + 1, t)|n + 1, i〉+A3(n + 1, t)|n + 1, f 〉+A4(n + 2, t)|n + 2, g〉

)
. (10)

Altogether, the time-dependent Schrödinger equation i ∂
∂t |ψ(t)〉 = Hint|ψ(t)〉 leads to

a system of four ordinary differential equations:

i
∂A1(n, t)

∂t
= ν[n]

(
Λ1A2(n + 1, t) + Λ2A3(n + 1, t)

)
,

i
∂A2(n + 1, t)

∂t
= δ1A2(n + 1, t) + ν[n]Λ1A1(n, t) + ν[n + 1]Λ3A4(n + 2, t)

)
,

i
∂A3(n + 1, t)

∂t
= δ2A3(n + 1, t) + ν[n]Λ2A1(n, t) + ν[n + 1]Λ4A4(n + 2, t)

)
,

i
∂A4(n + 2, t)

∂t
= δ3A4(n + 2, t) + ν[n + 1]

(
Λ3A2(n + 1, t) + Λ4A3(n + 1, t)

)
,

(11)

where ν[n] = λ1
√

n + 1. Now, we assume that the initial atomic state is initially prepared
in the upper state, while the field is initially prepared in the coherent state |α〉 with

|α〉 =
∞

∑
n=0

zn|n〉, zn =
αn
√

n!
e−
|α|2

2 . (12)

The exact solution of the time-dependence of probability amplitudes in differential
Equations (11) by employing the Laplace transform method is given by

A1(n, t)
A2(n + 1, t)
A3(n + 1, t)
A4(n + 2, t)

 =


f11 f12 f13 f14
f21 f22 f23 f24
f31 f32 f33 f34
f41 f42 f43 f44




eη1t

eη2t

eη3t

eη4t

 (13)

where
f1j
f2j
f3j
f4j

 =
zn

ηjiηjkηjl


q1 + ηj(q2 + ηj(q3 + ηj))

w1 + ηj(w2 + ηjw3)
e1 + ηj(e2 + ηje3)

r1 + ηjr2

with ηjk = ηj − ηk, i 6= j 6= k 6= l = 1, 2, 3, 4 (14)

with

η1,2 = χ− ± τ− η3,4 = χ+ ± τ+, χ± =
−x1

4
± y1

2
, τ± =

1
2

√
y2 ±

y3

4y1
,

y1 =

√
g1 +

g2

3g3
+

g3

3
, y2 = 2g1 −

g2

3g3
− g3

3
, y3 = 4x1x2 − x3

1 − 8x3,

g1 =
x2

1
4
− 2x2

3
, g2 = x2

2 + 12x4 − 3x1x3, g3 =
3

√√√√d +
√

d2 − 4g3
2

2
,

and d = 2x3
2 + 27(x2

3 + x2
1x4)− 72x2x4 − 9x1x2x3,

x1 = i(δ1 + δ2 + δ3), x2 = ν2
n
[
Λ2

1 + Λ2
2
]
+ ν2

n+1
[
Λ2

3 + Λ2
4
]
− δ1(δ2 + δ3)− δ2δ3,

x3 = i
(

δ1(ν
2
nΛ2

2 + ν2
n+1Λ2

4 − δ2δ3) + δ2(ν
2
nΛ2

1 + ν2
n+1Λ2

3) + δ3ν2
n(Λ

2
1 + Λ2

2)

)
,

x4 = ν2
nν2

n+1(Λ1Λ4 −Λ2Λ3)
2 − δ3ν2

n(Λ1δ2 + Λ2δ1).

(15)



Symmetry 2022, 14, 811 5 of 12

Additionally,

q1 = i(ν2
n+1(Λ

2
3δ2 + Λ2

4δ1)− δ1δ2δ3), q2 = ν2
n+1(Λ

2
3 + Λ2

4 − δ1(δ2 + δ3)− δ2δ3),

q3 = i(δ1 + δ2 + δ3), w1 = iνn(Λ1δ2δ3 + ν2
n+1Λ4(Λ2Λ3 −Λ1Λ4)), w2 = Λ1(δ2 + δ3),

w3 = −iΛ1, e1 = iνn(Λ2δ1δ3 + ν2
n+1Λ3(Λ1Λ4 −Λ2Λ3)), e2 = Λ2(δ2 + δ3), e3 = −iΛ2,

r1 = −iνnνn+1(Λ1Λ3δ2 + Λ2Λ4δ1), r2 = −νnνn+1(Λ1Λ3 + Λ2Λ4).

(16)

The main task of this manuscript is to investigate the influence of the driven classical
field on the behavior of the atomic inversion and quantum correlation. Therefore, it is
important to obtain the reduced density operator of the four-level atom sub-state. To obtain
the atomic sub-state, one traces out the field degree of freedom, i.e., ρ̂A = Tr f ield|ψ(t)〉〈ψ(t)|,
where |ψ(t)〉 is defined in Equation (10). Therefore, the reduced density operator using the
transformation (3) is given by

ρ̂A =


ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44

 (17)

ρ11 = |An
1 (t)|2 cos2 ζ1

2
− Re[An+2

1 (t)An∗
4 (t)] sin ζ1 + |An

4 (t)|2 sin2 ζ1

2
,

ρ22 = |An
2 (t)|2 cos2 ζ2

2
− Re[An

2 (t)An∗
3 (t)] sin ζ2 + |An

3 (t)|2 sin2 ζ2

2
,

ρ33 = |An
3 (t)|2 cos2 ζ2

2
+ Re[An

2 (t)An∗
3 (t)] sin ζ2 + |An

2 (t)|2 sin2 ζ2

2
,

ρ44 = |An
4 (t)|2 cos2 ζ1

2
+ Re[An+2

1 (t)An∗
4 (t)] sin ζ1 + |An

1 (t)|2 sin2 ζ1

2
,

ρ14 =
sin2 ζ1

2
(|An

1 (t)|2 − |An
4 (t)|2)−An+2

1 (t)An∗
4 (t) sin2 ζ1

2
+An+2∗

1 (t)An
4 (t) cos2 ζ1

2
= ρ∗41,

ρ23 =
sin2 ζ2

2
(|An

2 (t)|2 − |An
3 (t)|2)−An

3 (t)An∗
2 (t) sin2 ζ2

2
+An∗

3 (t)An
2 (t) cos2 ζ2

2
= ρ∗32,

ρ12 =

(
cos

ζ1

2
An+1

1 (t)− sin
ζ1

2
An

4 (t)
)(
An∗

2 (t) cos
ζ2

2
−An∗

3 (t) sin
ζ2

2

)
= ρ∗21,

ρ13 =

(
cos

ζ1

2
An+1

1 (t)− sin
ζ1

2
An

4 (t)
)(
An∗

2 (t) cos
ζ2

2
+An∗

3 (t) sin
ζ2

2

)
= ρ∗31,

ρ42 =

(
sin

ζ1

2
An+1

1 (t) + cos
ζ1

2
An

4 (t)
)(
An∗

2 (t) cos
ζ2

2
−An∗

3 (t) sin
ζ2

2

)
= ρ∗24,

ρ43 =

(
sin

ζ1

2
An+1

1 (t) + cos
ζ1

2
An

4 (t)
)(
An∗

2 (t) cos
ζ2

2
+An∗

3 (t) sin
ζ2

2

)
= ρ∗34,

(18)

Hereinafter, we shall employ the final reduced atomic density state to discuss some
statistical properties and quantum correlation of the system.

First, we have investigated the occupation of atomic levels by a plot of the diagonal
element of the final reduced density state (17). Figure 2 displays the effect of the detuning
parameter and the coupling strength of the external classical field on the occupation of
atomic levels when α = 5. The dynamical evolution of ρ11 (green-solid), ρ22 (blue-dot
dash), ρ33 (red-dash), and ρ44(black-dot) are represented in Figure 2a, where the coupling
strength of classical field is zero (λ2 = 0) and there are small values of the detunings
(δ1, δ2, δ3) = (ω f , 0.25 ω f , ω f ). It is clear that the populations of the levels ρ11 and ρ44 have
symmetric behaviors. Likewise, the two intermediate states ρ22 and ρ33 are symmetric, but
the upper bounds of the upper and lower states are frequently different to that depicted for
the two intermediate density states.
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Moreover, for the small strength of classical field (λ2 = 0.3) with detuning (δ1, δ2, δ3) =
(ω f , 0.25 ω f , ω f ), the collapse periods of upper and lower density states are removed, while
the two intermediate density states are identical. As the detuning increases (δ1, δ2, δ3) =
(6ω f , 3 ω f , 6ω f ) and (λ2 = 0), the occupation of atomic levels are totally separated, the
phenomena of collapse intervals disappears for ρ11, ρ33, and ρ44. The upper bounds of
ρ11, ρ33 increase and the lower bounds of ρ44 decrease, while the distribution of ρ22 keeps
his occupation. Figure 2d shows the effect of a small classical field (λ2 = 0.3) with
(δ1, δ2, δ3) = (6ω f , 3 ω f , 6ω f ). An increase in the fluctuation in the periods of collapse over
the four levels is noted. For large values of detuning (δ1, δ2, δ3) = (15ω f , 0.5δ1, 10ω f ) and
(λ2 = 0), Figure 2e depicts a decrease in the upper bounds of the atomic level occupation.
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Figure 2. The influence of detuning and external field on the population of atomic levels ρ11(green-
solid), ρ22(blue-dot dash), ρ33(red-dash), and ρ44(black-dot) with α = 5. (a) δ1 = δ3 = w, δ2 = 0.25δ1,
λ2 = 0, (b) δ1 = δ3 = w, δ2 = 0.25δ1, λ2 = 0.3, (c) δ1 = δ3 = 6w, δ2 = 0.5δ1, λ2 = 0, (d) δ1 = δ3 = 6w,
δ2 = 0.5δ1, λ2 = 0.3, (e) δ1 = 15ω f δ2 = 0.5δ1 , δ3 = 10ω f , λ2 = 0, (f) δ1 = 15ω f δ2 = 0.5δ1,
δ3 = 10ω f , λ2 = 2.

The collapse interval increases, and the distribution of ρ33 and ρ44 has symmetric
behavior. Finally, Figure 2f shows that the large strength of the classical field (λ2 = 2) and
large detuning decreases the upper bounds of the occupation phenomena. The collapse
periods disappear, and the lower state ρ44 is noticeably diminished.

3. Atomic Inversion

In this section, we discuss the influence of detuning and classical field parameters on
the difference between the atomic levels by using the atomic inversion. It is defined by

W(t) = ρ11 + ρ22 + ρ33 − ρ44. (19)
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Under the same values of Figure 2, the effect of different values of detuning and
the strength of the classical field on the statistical population inversion is displayed in
Figure 3. As displayed in Figure 3a, the temporal evolution of statistical inversion fluctuates
between negative and positive values, but the inversion has more positive values. This
means that the energy of the upper state is larger than that existing in the lower state.
After the onset interaction, the small strength of the classical field (λ2 = 0.3) dissolves
the collapse periods. However, the negative values of revivals is transposed to positive
values; therefore, the energy exchanges approach the upper state. As the detuning increases
(δ1, δ2, δ3) = (6ω f , 3 ω f , 6ω f ) and (λ2 = 0), Figure 3c shows that the upper bounds of the
statistical population inversion increase after the onset interaction. The collapse intervals
disappear, and the revival intervals fluctuate. By adding the classical field effect, the revival
intervals are regulated, and the upper bounds of the inversion increase. For large detuning
in the absence of the classical field effect, the statistical inversion shifts to non-negative
values. This means that the energy approach to the upper state and the amplitude of revival
periods are decreased. For a large strength of classical field and detuning, Figure 3f depicts
that the collapse periods vanish. Since the occupation of ρ11 is higher than ρ44, the upper
bounds of statistical inversion increase to approach to the upper excited state.

0 20 40 60 80
-1.0

-0.5

0.0

0.5

1.0

Scaled Time

A
to
m
ic
In
ve
rs
io
n

(a)

0 20 40 60 80

-0.5

0.0

0.5

1.0

Scaled Time

A
to
m
ic
In
ve
rs
io
n

(b)

0 20 40 60 80

-0.5

0.0

0.5

1.0

Scaled Time

A
to
m
ic
In
ve
rs
io
n

(c)

0 20 40 60 80

-0.5

0.0

0.5

1.0

Scaled Time

A
to
m
ic
In
ve
rs
io
n

(d)

0 20 40 60 80

0.2

0.4

0.6

0.8

1.0

Scaled Time

A
to
m
ic
In
ve
rs
io
n

(e)

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

Scaled Time

A
to
m
ic
In
ve
rs
io
n

(f)

Figure 3. Influence of detuning and external field on population inversion against the scaled time
λ1t, (a–f) the same as Figure 2.
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4. Linear Entropy

Linear entropy is one of the best and simplest quantifiers to calculate mixedness and
purity degree. For a pure state, the degree of linear entropy is zero, but it has a maximum
value for a maximally mixed state. This was derived for an arbitrary quantum state based
on purity P ≡ −Tr(ρ2) as [38],

SL(t) =
D
D − 1

(
1− Tr(ρ2

A)
)

(20)

where D is the dimension of atomic subsystem. By employing the wavefunction (10), one
can obtain explicitly the linear entropy of the atomic state as follows:

SL(t) =
4
3

(
1−

4

∑
i,j=1,i 6=j

(ρii + 2ρijρji)

)
(21)

As displayed in Figure 4, the degree of mixedness and purity via linear entropy is
related to the collapse–revival phenomenon. In the absence of the effect of the classical
field with a small detuning, Figure 4a shows that the mixedness increases after the onset
interaction between atom and field. As shown in Figure 4b, where a small effect of the
classical field and detuning are added, the mixedness increases as the scaled time increases,
and decreases once the atom–field interaction collapses. The external field increases the
lower bounds of the linear entropy; hence, the purity of the system increases. As the
detuning parameters increase (δ1, δ2, δ3) = (6ω f , 3ω f , 6ω f ) with (λ2 = 0), the maximum
bounds of linear entropy decrease. Therefore, the purity of the atomic state increases.
By taking the effect of the classical field into our account (λ2 = 0.3), the maximum
bounds of linear entropy grow as the scaled time increases. Additionally, the amplitudes
of the osculation increase. At robust detuning and deficiency of the classical field, the
upper bounds of linear entropy between the atom and field decrease, while the lower
bounds increase. This means that the purity of the system increases by increasing the
detuning. Nevertheless, the intense external classical field enhances the lower bounds
of the purity and grows the upper bounds as dimensionless time grows. Overall, the
destructive influence of the external field parameter may be resisted by raising the intensity
of the detuning parameter. Furthermore, at higher values of the classical field parameter,
purity is weak at high detuning, where the upper bounds of their amplitudes are extending.
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Figure 4. Cont.



Symmetry 2022, 14, 811 9 of 12

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

Scaled Time

Li
n
ea
r
E
n
tr
o
p
y

(c)

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

Scaled Time

Li
n
ea
r
E
n
tr
o
p
y

(d)

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

Scaled Time

Li
n
ea
r
E
n
tr
o
p
y

(e)

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

Scaled Time

Li
n
ea
r
E
n
tr
o
p
y

(f)

Figure 4. Influence of detuning and external field on degree mixedness against the scaled time λ1t,
(a–f) with the same as Figure 2.

5. l1 Norm of Coherence

The l1 norm of coherence is one of the most common quantifiers of quantum coherence.
In the first place, it is a geometric (distance) measure, where it is defined as the sum of
the magnitudes of all off-diagonal entries. The l1 norm of coherence for a quantum state
ρ = ∑a,b ρa,b|a〉〈b| has the following form [31],

Cl1 = ∑
a 6=b
|ρa,b|, (22)

where ρa,b denotes all the off-diagonal elements of the total density operator.
In Figure 5, we discuss the influence of external classical fields and detuning parame-

ters on the degree of coherence by using the l1 norm of coherence. The general behavior of
quantum coherence indicates that the function Cl1 oscillates proportionally to the statistical
population inversion. It is clear that the detuning and the classical field parameters play as
control rules for minimizing or maximizing the coherence degree. In general, the numerical
behavior of coherence degree for large and small detuning at the onset interaction is zero.
In the presence of the classical field, the coherence at the onset interaction is 0.6, 0.1, or
0.5 depending on the strength of detuning. The minimum bounds of quantum coherence
are enhanced as the intensity of the classical field increases, while the maximum bounds
decrease. This means that by controlling the classical field parameter, one can improve the
possibility of restringing the decoherence of the system induced by the detuning parameter.
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Figure 5. Influence of detuning and external field on degree coherence against the scaled time λ1t,
(a–f) the same as Figure 2.

6. Conclusions

A quantum system consists of a single ♦-configuration four-level atom that interacts
locally with a single-mode quantized cavity field. It is assumed that the initial cavity field is
in the coherent state while the atomic system is in the upper state. The exact solution of the
Schrödinger equation under some canonical conditional of dressed states is solved. These
new states allow us to find a solution without taking any approximations into account. We
discuss the effect of the detuning parameter and external classical field on the behavior
of atomic levels, mixedness and coherence. Our results show that the maximum bounds
of the occupation of atomic levels depend on the strength of the classical field and the
detuning parameters. The classical field parameter reduces the energy of the lower state,
and increases the maximum bounds of the upper state.

We discuss the influence of the detuning parameter on the behaviors of the statistical
inversion, the mixedness and the coherence. It is shown that the decreasing rate of the
three phenomena depend on detuning. The lower bounds of statistical inversion and
quantum coherence decrease as the detuning parameters increase. However, the maximum
bounds of the mixedness degree decrease as the detuning increases, and consequently, the
maximum mixed state switches to a mixed or pure state.

The impacts of different values of the external classical field on the general behaviors
of the three phenomena in the presence of detuning parameters are investigated. It is
depicted that the destruction induced by the detuning parameters may be resisted by
raising the strength of the classical field parameter. At large values of the classical field, the
purity is weak, with high detunings, where amplitudes are extending. The lower bounds
of coherence are improved as the classical field increases. Therefore, by controlling the
classical field parameter, one can improve the possibility of restringing the decoherence
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of the system. Finally, the intensity of the external classical field may be considered to be
a control parameter that maximizes or minimizes the temporal evolution of mixedness
and coherence.
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