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Abstract: In engineering applications, where we demand more and more precision, the modeling
of systems with hysteretic nonlinearity has received considerable attention. The classical Preisach
model (CPM) is currently the most popular for characterizing systems with hysteresis, and this model
can represent the hysteresis with an infinite but countable first-order inversion curve (FORC). The
table method is a method used to realize CPM in practice. The data in the table corresponds to a
limited number of FORC samples. There are two problems with this approach: First, in order to
reflect the timing effects of elements with hysteresis, it needs to consume a lot of memory space
to obtain accurate data table. Second, it is difficult to come up with an efficient way to modify the
data table to reflect the timing effects of elements with hysteresis. To overcome these shortcomings,
this paper proposes to use a set of polynomials instead of the table method to implement the CPM.
The proposed method only needs to store a small number of polynomial coefficients, and thus it
reduces the required memory usage. In addition, to obtain polynomial coefficients, we can use
least squares approximation or adaptive identification algorithms, which can track hysteresis model
parameters. We developed an adaptive algorithm for the identification of polynomial coefficients
of micro-piezoelectric actuators by applying the least mean method, which not only reduces the
required memory size compared to the table method implementation, but also achieves a significantly
improved model accuracy, and the proposed method was successfully verified for displacement
prediction and tracking control of micro-piezoelectric actuators.

Keywords: hysteresis; classical Preisach model (CPM); polynomial approximation (PA); micro-
piezoelectric actuator

1. Introduction

With the development of computer and numerical techniques, the use of hysteresis
models has become more and more popular in finite element (FE) method (FEM)-based
computer-aided design (CAD) simulations for calculating magnetization properties and
iron losses [1]. Hysteresis appears in many engineering devices or smart materials, such as
micro-piezoelectric actuators (PZA), piezoelectric ceramics, shape memory alloys (SMA),
and ferromagnetic components [2–6], which is a nonlinear phenomenon. Systems with
hysteresis are often difficult to describe accurately, and without feedback control, may
lead to unstable behavior of the system. When a device exhibits nonlinearity, the system
often exhibits inaccuracies or oscillations, even instability caused by the non-differentiable
hysteresis and non-memoryless properties of magnetic hysteresis [7–9]. Therefore, ac-
curate hysteresis models are crucial for developing suitable control algorithms or appli-
cations using these systems [10]. Several models have been developed to characterize
systems with hysteresis; commonly used models include the Bouc–Wen, Preisach-like
Krasnosel’skii–Pokrovskii (KP), Prandtl–Ishlinskii model (PIM), and the classical Preisach
model (CPM) [11]. CPM has long been known as the most familiar model for characterizing
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hysteretic behavior. It uses double integrals with relay operators and weighting parameters
to describe the system input/output relation, which can be further represented by an
infinite but countable first-order inversion curve (FORC), which can be experimentally
measured in many applications [12]. The traditional method to implement CPM for systems
with hysteresis approximate by sampling a finite number of FORCs and storing the sample
data in a table [13]. The model output is then evaluated from the table data and the given
input by simple linear interpolation. However, this approach has two drawbacks: One is
that when the number and sampling resolution of FORC should be increased, it requires
a large amount of memory space to accurately predict the hysteresis behavior. The other
is that it is difficult to find an efficient way to adjust the data table to reflect changes in
parameters with aging or time. As a result, execution accuracy may degrade over time and
even require rebuilding of the table.

To overcome these drawbacks, we recommend implementing CPM using a set of
polynomials rather than data tables. It only needs to store a small number of polynomial
coefficients to reduce the required storage space. Specifically, polynomial coefficients can be
obtained using a least squares approximation or an adaptive identification algorithm [14],
allowing tracking of hysteresis model parameters. The proposed method has been applied
to computer simulations of CPM output predictions. We apply the least mean squares (LMS)
adaptation algorithm to develop an adaptive algorithm for identifying the polynomial
coefficients of FORC. Compared to the implementation of the table method, the results
show that it has higher model accuracy than the table method and requires significantly
less memory. Furthermore, the proposed method combined with an adaptive algorithm
can achieve dynamic modification of CPM parameters instead of rebuilding the table.
According to [15], the proposed method has been applied to simulate the displacement
of micro-piezo actuators. The modeled RMS error changes from 1.0098 µm for the table
method to 0.4539 µm.

The remainder of this paper is divided to five sections including conclusions. Section 2
reviews the hysteresis and the Preisach model. Section 3 introduces the basic definition and
the numerical implementation on the CPM. Section 4 present the computer simulations
to verify capabilities of different realizations of the CPM. Section 5 demonstrates the
applications of the micro-piezoelectric actuators. The final section presents the conclusions.

2. Realization Numerical of CPM

The classical Preisach model (CPM) [16,17] represents the input and output relations
of a system with hysteresis by a double integral formula as below:

f (t) =
x

a≥β
µ(α, β)γαβ[u(·)](t)dαdβ (1)

where u(t) denotes the CPM input, f (t) is the CPM output, µ(α, β) is the Preisach density
function, and γαβ[u(·)](t) is an operator with two distinct outputs. The idea of the CPM
is to regard a hysteresis transducer as the superposition of infinitely weighted hysteresis
operators as shown in Figure 1.

The hysteresis operator is the most important core in the Preisach model. The values
α and β of the hysteresis operator correspond to “up” and “down” switching values of
input, respectively. In this paper, we assume that α ≥ β. The operator is characterized by
its switching values α and β, which are represented by a rectangular loop on its input and
output phase diagrams, as shown in Figure 2. As shown in the figure, the operator output
of γαβ[u(·)](t) remains −1 until the input is higher than the value of α, and the output
remains +1 until the input is lower than the value of β. A practical expectation for practical
applications is the limit of the integration, which requires us to set the saturation value of
the input, that is, uset ≥ α ≥ β ≥ −uset.
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A progressive evaluation of the CPM is demonstrated by the following example, de-
picted in Figure 3. In the example, we calculate a first order reversal curve (FORC), a curve 
is formed after the first reversal of the input, and a second order reversal curve. Any 
higher order reversal curve can be constructed by using the analogical method. 
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Figure 2. The hysteresis operator: the output follows trajectory ABCD when the input is increasing
and follows EFGH when the input is decreasing.

A progressive evaluation of the CPM is demonstrated by the following example,
depicted in Figure 3. In the example, we calculate a first order reversal curve (FORC), a
curve is formed after the first reversal of the input, and a second order reversal curve. Any
higher order reversal curve can be constructed by using the analogical method.
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Assume the system is first at negative saturation; that is, the CPM input is −usat and
all hysteresis operator outputs are −1. Then, the initial CPM output is

f (t) =
x

a≥β
µ(α, β)γαβ[u(·)](t)dαdβ (2)

As the CPM input increases from −umax to M1, the hysteresis operator output will be
switched to the −1 if the switching value α is less than the current input value M1. Then,
the CPM output is

f (T1) = − fsat + 2
x

M1≥a≥β≥−usat
µ(α, β)dαdβ (3)

When the CPM input changes direction and decreases from M1 to a value m1, the
hysteresis operator output will be switched to the −1 state for the switching value β greater
than m1. Then, the FORC is

f (t1) = − f (T1)− 2
x

M1≥a≥β≥−m1
µ(α, β)dαdβ (4)

Evaluation of f (T2) is the same with f (T1), that is,

f (T2) = − f (t1)− 2
x

M2≥a≥β≥−m1
µ(α, β)dαdβ (5)

The wiping-out property appears as the input u(t) reaching M1 and then reaches M∗2 .
Hysteresis operators with a switching value α less than M∗2 but greater than M1 stay at the
+1 state after T2, so they have no influence on the current output. Additionally, hysteresis
operators with α greater than M1 but less than M∗2 are originally at the −1 state and would
be transitioned to +1. Summarizing all of the above,

f (T∗2 ) = f (T1) + 2
s

M∗2≥a≥β≥−usat
µ(α, β)dαdβ

= − fsat + 2
s

M∗2≥a≥β≥−usat
µ(α, β)dαdβ

(6)

It is clear that (M1, F1) and (m1, f1), which were wiped out, are not necessary to
determine f (T∗2 ) in (5).

In the CPM, hysteresis operator is a concern associated with the impact of the past
inputs for such scheme. The wiping-out property, however, clarifies that to determine the
current CPM the output does not have to memorize all of the history of CPM but only parts
of the extremum of the past inputs and outputs [18]. The CPM can be rewritten in such
a way to dichotomize a CPM output into two terms: the shifted term, depending on the
past outputs, and the integrated term, depending on the past inputs and the current input.
We can define alternating series, which are kept to determine the limits of integration and
the storage part of a CPM output, by generalizing the above-mentioned example as below.
Consider a particular input u(t) for a CPM in the time interval [t0, t] and u(t0) = −usat. We
use the notations Tk for the time the global maximum Mk of u(t) is reached and tk for the
time the global minimum mk of u(t) is reached, where Mk and mk satisfy that

Mk = max
[tk−1,t ]

u(t) = u(Tk), mk = max
[Tk,t ]

u(tk) (7)

The alternating series of the input in [t0, t] is defined as a tuple si = {−usat, M1, m1, · · · , u(t)},
and the alternating series of the output in [t0, t] is so = {− fsat, F1, f1, · · · , f (t)}, where
Fk = f (Tk) and fk = f (tk). Furthermore, for a given alternating series si and so, except f (t)
at some point, the CPM output is obtained by

f (t) = fn + 2
x

u(t)≥a≥β≥mn
µ(α, β)dαdβ (8)
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If u(t) is increasing, and

f (t) = Fn − 2
x

Mn≥a≥β≥−u(t)
µ(α, β)dαdβ (9)

If u(t) is decreasing. In the ensuing discussion, the alternating series except f (t) are
assumed to be recorded.

So far, we developed forthright mathematical Formulas (8) and (9) to simplify the
CPM with the known Preisach density function and given alternating series. However,
the identification of µ(α, β) requires the differentiation of experimental data, which may
amplify errors in the experimental data. There are some algorithms [19,20] published to
remove sensitivity of identification of µ(α, β), but the approach using µ(α, β) to evaluate
CPM outputs is still unappealing. Although we could find an accurate µ(α, β) of CPM, the
double integration would be very time consuming and mathematically intractable. The
congruency property of CPM supplies another way of representing a CPM through use of
the FORC to replace integration with experimental data [16]. We introduce the property
and how to use FORC to numerically implement a CPM by examining (8) and (9). It is
expected that the integrated terms in (8) or (9) for a particular CPM input will be congruent
with other CPM input if their limits of integration are the same. Ground on this fact, we
can store integrated terms with variational limits of integration beforehand. The FORC
measuring experiment is used for this notion. In order to connect FORC and the algebraic
calculation of the CPM output, a function fa(m, M) is defined as the output of a CPM with
si = {usat, m, M} and a function fd(M, m) is the output of a CPM with si = {−usat, M, m}.
Hence, fa(m, M) denotes an ascending FORC and fd(M, m) denotes a descending FORC.
Thus, (8) is equivalent to

f (t) = fn + fa(mn, u(t))− fa(mn, mn) (10)

Additionally, (9) is equivalent to

f (t) = Fn + fd(Mn, u(t))− fd(Mn, Mn) (11)

From the above discussion, the numerical implementation of the CPM can be obtained
by combining the alternating series and the FORC, which can be used for evaluation of the
CPM output; this approach avoids the trouble of differentiation and integration shown in
Figure 4.

Symmetry 2022, 14, x FOR PEER REVIEW 6 of 24 
 

 

𝑓(𝑡) = 𝑓 + 𝑓 𝑚 , 𝑢(𝑡) − 𝑓 (𝑚 , 𝑚 ) (10)

Additionally, (9) is equivalent to 𝑓(𝑡) = 𝐹 + 𝑓 𝑀 , 𝑢(𝑡) − 𝑓 (𝑀 , 𝑀 ) (11)

From the above discussion, the numerical implementation of the CPM can be ob-
tained by combining the alternating series and the FORC, which can be used for evalua-
tion of the CPM output; this approach avoids the trouble of differentiation and integration 
shown in Figure 4. 

( )u t

( )f t

orn nm M

o rn nf F

( , ( )) ( , ) or
( , ( )) ( , )
a n a n n

d n d n n

f m u t f m m
f M u t f M M

−
−

FORC
mapping

alternating series
determing

++

 
Figure 4. Block diagram of the numerical implementation of the CPM. 

3. Realizations of the CPM 
In the previous section, we introduced the basic definition and the numerical imple-

mentation on the CPM. We also developed ( , )af m M  and ( , )df M m  as an algebraic 
representation of a CPM. Because the ( , )af m M  and ( , )df M m  can be explicitly ob-
tained by experiments of the FORC-measuring experiments, they play the central roles in 
the realization of a CPM. In practice, however, it is impossible to obtain all values of FORC 
which requires infinite and uncountable experiments. One realizable method to approxi-
mate values of FORC is to find finite data of ( , )af m M  and ( , )df M m , store them as 
tables, and we can obtain values of ( , )af m M  or ( , )df M m  by the interpolation using 
its neighbors stored in tables. In this section, we take an introductory look at different 
realizations of a CPM using finite-FORC, including the table method [21,22], polynomial 
approximation, and adaptive polynomial approximation. 

Linear interpolation is a very intuitive way to estimate values between known values 
and we adopt this method to approximate ( , )af m M  or ( , )df M m . If a point ( , )M m  
belongs to a rectangular cell formed by 1 1( , )M m , 1 2( , )M m , 2 1( , )M m , 2 2( , )M m , and we 
have 1 1 1 1( , )d M mf M m f= , 1 2 1 2( , )d M mf M m f= , 2 1 1 1( , )d M mf M m f= , 2 2 2 2( , )d M mf M m f= . 
Then, ( , )df M m  is approximated by 𝑓 = (𝑀 − 𝑀)𝑓 + (𝑀 − 𝑀 )𝑓𝑀 − 𝑀 , 

𝑓 = (𝑀 − 𝑀)𝑓 + (𝑀 − 𝑀 )𝑓𝑀 − 𝑀 , 
𝑓 (𝑀, 𝑚) = (𝑚 − 𝑚 )𝑓 + (𝑚 − 𝑚)𝑓𝑚 − 𝑚 . 

(12)

If a point ( , )M m  belongs to a triangular cell formed by 1 1( , )M m , 2 1( , )M m , 

2 2( , )M m , then ( , )df M m  is approximated by 

Figure 4. Block diagram of the numerical implementation of the CPM.

3. Realizations of the CPM

In the previous section, we introduced the basic definition and the numerical im-
plementation on the CPM. We also developed fa(m, M) and fd(M, m) as an algebraic
representation of a CPM. Because the fa(m, M) and fd(M, m) can be explicitly obtained
by experiments of the FORC-measuring experiments, they play the central roles in the
realization of a CPM. In practice, however, it is impossible to obtain all values of FORC
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which requires infinite and uncountable experiments. One realizable method to approxi-
mate values of FORC is to find finite data of fa(m, M) and fd(M, m), store them as tables,
and we can obtain values of fa(m, M) or fd(M, m) by the interpolation using its neighbors
stored in tables. In this section, we take an introductory look at different realizations of a
CPM using finite-FORC, including the table method [21,22], polynomial approximation,
and adaptive polynomial approximation.

Linear interpolation is a very intuitive way to estimate values between known values
and we adopt this method to approximate fa(m, M) or fd(M, m). If a point (M, m) belongs
to a rectangular cell formed by (M1, m1), (M1, m2), (M2, m1), (M2, m2), and we have
fd(M1, m1) = fM1m1, fd(M1, m2) = fM1m2, fd(M2, m1) = fM1m1, fd(M2, m2) = fM2m2.
Then, fd(M, m) is approximated by

fL = (M2−M) fM1m2+(M−M1) fM2m2
M2−M1

,

fR = (M2−M) fM1m1+(M−M1) fM2m1
M2−M1

,

fd(M, m) =
(m−m1) fL+(m2−m) fR

m2−m1
.

(12)

If a point (M, m) belongs to a triangular cell formed by (M1, m1), (M2, m1), (M2, m2),
then fd(M, m) is approximated by

fR = fM2m2 , fL = (M2−M) fM1m2+(M−M1) fM2m2
M2−M1

,

fd(M, m) =
(m−m1) fL+(m2−m) fR

m2−m1
.

(13)

The Formulas (12) and (13) also exist for fa(m, M).
It is convenient to investigate the measured data using an analyzable function called

curve fitting and the polynomial function is commonly used. Our goal is to fit the samples of
a finite number of FORC using polynomial functions. For instance, we can use a quadratic
polynomial function of single variable M to fit fa(m, M) with a particular m. That is,

fa(m, M) = a0(m) + a1(m)M + a1(m)M2 (14)

Additionally, fd(M, m) also can be approximated as

fd(M, m) = d0(M) + d1(M)m + d2(M)m2 (15)

where ai(m) and di(m) are notations to indicate the polynomial coefficients corresponding
with m and M, respectively. The coefficients of the curve fitting method vary with m or
M, so to know all of them is also impossible. Hence, we also use the interpolation to
approximate coefficients that are not derived from experiments. For mk < m < mk+1,

ai(m) =
mk+1ai(mk) + mkai(mk+1)

mk+1 −mk
, where i = 0, 1, 2. (16)

For Mk < M < Mk+1,

di(M) =
Mk+1di(Mk) + Mkdi(Mk+1)

Mk+1 −Mk
(17)

According to (10) and (11), a CPM output can be determined by a sifted term and a
combination of FORC. Now, we substitute for FORC by using (14) and (15). If the input
u(t) is ascending,

f (t) = fn + a2(mn)
(

u2(t)−m2
n

)
+ a1(mn)(u(t)−mn) (18)
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Define ai(p∆) = asi[p], i = 0, 1, 2; for mn = p∆ + r = u, 0 ≤ r < ∆, then

ai(mn) =
(

1− r
∆

)
asi[p] +

r
∆

asi[p + 1] (19)

Thus, (18) becomes
f (t) = fn + θT

1 x1 (20)

where

θ1 =


as2[p]

as2[p + 1]
as1[p]

as1[p + 1]

, x1 = (u−mn)


(
1− r

∆
)
(u + mn)

r
∆ (u + mn)(

1− r
∆
)

r
∆

 (21)

Additionally, u indicates u(t). Similarly, if the input u(t) is descending,

f (t) = Fn + θT
2 x2 (22)

where

θ2 =


ds2[p]

ds2[p + 1]
ds1[p]

ds1[p + 1]

, x2 = (u−Mn)


(
1− r

∆
)
(u + Mn)

r
∆ (u + Mn)(

1− r
∆
)

r
∆

 (23)

Additionally, Mn = p∆ + r, 0 ≤ r < ∆. The polynomial coefficients represent the
parameters of the CPM and are suitable for model identification because they are adjustable.

Based on the polynomial approximation, we obtain a set of coefficients that can be
used to describe FORC. However, these coefficients may not be accurate. For a system
model with inaccurate parameters, we can use adaptive algorithms such as LMS or RLS [18]
to update the parameters. Compared with the adaptive model output and plant output, this
error is used to update adaptive system parameters. Assume the adaptive model output
fm = (θ, x) = θTx is a function of parameters θ and the input x, and the plant output fp(x)
is a function of the input x. Define the error as

e = fp(x)− fm(θ, x) (24)

The steepest descent algorithm is:

θ(k+1) = θ(k) + 2ηex (25)

where η is a step size. Using (20), (22), (25), we obtain following updated formulations:
If the input u(t) is ascending,

θ
(k+1)
1 = θ

(k)
1 + 2ηex1 =


a(k)s2 [p]

a(k)s2 [p + 1]
a(k)s1 [p]

a(k)s1 [p + 1]

+ 2ηe(u−mn)


(
1− r

∆
)
(u + mn)

r
∆ (u + mn)(

1− r
∆
)

r
∆

 (26)

If the input u(t) is descending,

θ
(k+1)
2 = θ

(k)
2 + 2ηex2 =


d(k)s2 [p]

d(k)s2 [p + 1]
d(k)s1 [p]

d(k)s1 [p + 1]

+ 2ηe(u−Mn)


(
1− r

∆
)
(u + Mn)

r
∆ (u + Mn)(

1− r
∆
)

r
∆

 (27)

Then, we can obtain CPM outputs by applying polynomial coefficients adapted by
(26) or (27) to (20) or (22).
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4. CPM Simulation and Discussion

In this section, we demonstrate the computer simulations to verify capabilities of
different realizations of the CPM proposed in Section 3. Consider a special CPM with
Preisach density function,

µ(α, β) = kexp

(
−1

2

{(
α− αc

σ1

)2
+

(
β− βc

σ2

)2
})

(28)

We chose k = 50, αc = βc = 0, σ1 = 1.5, σ2 = 1.8, and usat = 3 in our simulations.
The exact CPM outputs are calculated by numerical integral of Matlab. The FORC are
measured and sampled in the tables first; these sampled data are used to obtain polynomial
coefficients. The CPM outputs are predicted via different realizations and the root mean
square error (RMS) is adopted as the judgment of how close the prediction is to the CPM.
We can also observe the tracking ability of the adaptive polynomial approximation by
disturbing µ(α, β) slightly.

To implement the table method, the samples of the ascending FORC and descending
FORC are measured first. By dividing −3 ∼ +3 into 6 segments, the CPM input is
decreased from +3 to some divided point and then increased to +3. After the input begins
decreasing from some divided point to +3, we sample the CPM outputs every unit change
in the CPM input and store these sampling data in Table 1 which presents the samples of
ascending FORC. The first column denotes the value of m of fa(m, M), and the first row
denotes the value of M. The samples of descending FORC are stored in Table 2 using a
similar procedure and both ascending and descending FORC are plotted in Figure 5.

Table 1. Sampling data of ascending FORC.

m/M −3 −2 −1 0 1 2 3

−3 −21.58 −13.70 −1.09 11.60 19.02 21.31 21.58
−2 −13.70 −12.40 −5.90 5.75 16.29 21.58
−1 −1.10 1.54 9.34 17.35 21.58
0 11.60 14.18 18.08 21.58
1 19.02 20.24 21.58
2 21.31 21.58
3 21.58

Table 2. Sampling data of descending FORC.

M/m −3 −2 −1 0 1 2 3

−3 −21.58
−2 −21.58 −21.28
−1 −21.58 −19.89 −18.59
0 −21.58 −17.78 −12.62 −9.98
1 −21.58 −15.67 −6.64 1.21 3.79
2 −21.58 −14.29 −2.75 8.50 14.48 15.70
3 −21.58 −13.70 −1.09 11.60 19.02 21.31 21.58

We apply the least-square approximation to sampling data of Tables 1 and 2 to identify
the polynomial coefficients directly in this simulation. Because of the establishment of
saturated boundaries, FORC are much more gradual and cannot be fit by polynomials
adequately. Hence, fa(m, 3) and fd(M,−3) are rejected in the procedure of the least-square
approximation and the table method is used if they are needed. The polynomial coefficients
are stored in Tables 3 and 4. Based on (20) and (22), the polynomial coefficients a0 and d0
are not needed for the polynomial approximation. The polynomial coefficients of fa(m, M)
and fd(M, m) are plotted in Figure 6.
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Table 3. Polynomial coefficients of fa(m, M).

m a2 a1 a0

−3 1.83 9.55 −9.67
−2 1.69 7.81 −5.37
−1 1.34 4.97 2.28
0 1.02 1.56 11.60
1 0 −1.22 21.46
2 0 0 21.31

Table 4. Polynomial coefficients of fd(M, m).

M d2 d1 d0

−2 0 0 −21.28
−1 0 1.30 −17.30
0 −1.26 1.38 −9.98
1 −1.61 5.01 0.59
2 −1.85 7.72 8.03
3 −1.84 9.02 11.12
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In our simulations, we use a sinusoidal CPM input that with a frequency of 1 Hz has
a sample time of 0.01 s, and a varying amplitude. The waveform of CPM input and the
input–output phase diagram are shown in Figure 7. The simulation results are shown in
Figures 8–11. The CPM output and CPM output realized via the table method are plotted
together in Figure 8a. The difference between these two outputs, defined as the prediction
error, are shown in Figure 8b. The RMS of the prediction error is 0.5256. The result of the
simulation of the polynomial approximation is shown in Figure 9, and its RMS is 1.0717.
We use a step size η = 0.005 and Tables 3 and 4 as initial parameters of the adaptive
polynomial approximation and the simulation result is shown in Figure 10. The RMS of the
adaptive polynomial approximation is 0.5909. We also plotted these three prediction errors
together in Figure 11 for comparison. We can find that the performance of the adaptive
polynomial approximation and the table method are in the same range roughly and are
better than the polynomial approximation. This is because polynomial approximation uses
a single function to characterize a FORC but the table method uses a number of linear
functions. The adaptive polynomial approximation, however, adjusts the coefficients of the
polynomial so it can be viewed using several functions to fit FORC equivalently and has a
better effect than the polynomial approximation.
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We saw the performance of dissimilar realizations of the CPM with a fixed Preisach
density function. That is, we assume that the quality of the CPM is abiding for all situations.
This assumption is not cohere with systems in real applications. It is broad that the table
method and the polynomial approximation are static models and hard to be modify real
time. An advantage of the adaptive polynomial approximation is that the parameters of
such scheme are obtained on-line; this means that even if the CPM changed, the adaptive
polynomial approximation will trace the CPM by adjusting its parameters. To witness
this, we disturb µ(α, β) such that σ1 becomes from 1.5 to 1.3 and σ2 becomes from 1.8
to 2.1. Tables 1 and 2 are still used to implement the table method; Tables 3 and 4 are
still used to implement the polynomial approximation and are the initial parameters of
the adaptive polynomial approximation. We apply the same CPM input of previous
simulations and the new CPM output compared with the original CPM output is plotted
in Figure 12. Then, we use the different realizations to predict the new CPM output and
plot the prediction errors together in Figure 13. The RMS of each realization is 1.9707 for
the table method, 1.0746 for the polynomial approximation, and 0.6349 for the adaptive
polynomial approximation. It is clear that the adaptive polynomial approximation has the
best performance in this simulation.
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5. Applications for Piezoelectric Actuators

We use different realizations of Preisach model to predict the displacement of a micro-
piezoelectric actuator and the inverse Preisach model introduced in this thesis to control it.
In these applications, the input of the Preisach model is actuator voltage and the output of
the Preisach model is displacement.

To implement the Preisach model, several first order reversal curves are measured
for the micro-piezoelectric actuator first. By dividing 0∼5 V into 10 segments, the input
voltage of micro-piezoelectric actuator is increased from 0 V to some divided point and
then decreased to 0 V. After the input begins decreasing from some divided point to 0, we
sample the displacements of the micro-piezoelectric actuator every 0.45 V change in input
voltage and store these sampling data in Table 5. The first column denotes the value of M,
and the first row denotes the value of m. In the predication experiment, we use a sinusoidal
and input voltage with a frequency of 1 rad/s, an amplitude of 2.25 V, and a bias of 2.25 V;
the input and output waveforms of the micro-piezoelectric actuator of the predication
experiment are shown in Figure 14, and the phase transition is shown in Figure 15. In the
tracking control experiment, we use a sinusoidal desired output with with a frequency of
1 rad/s, an amplitude of 15 µm, and a bias of 16 µm. The sampling time of the experiment
is 0.01 s and the total time is 50 s.

Table 5. Sampling data of FORC.

M/m 0 0.45 0.90 1.35 1.80 2.25 2.70 3.15 3.60 4.05 4.50

0 0
0.45 0.02 3.43
0.90 0.09 4.07 7.73
1.35 0.11 5.28 9.38 12.76
1.80 0.14 5.36 10.13 14.11 18.15
2.25 0.23 5.68 70.79 15.32 19.34 23.32
2.70 0.28 5.94 11.31 16.22 20.58 24.48 28.03
3.15 0.36 6.17 11.72 16.68 21.27 25.41 29.01 32.65
3.60 0.45 6.35 12.09 17.29 21.96 26.27 30.13 33.51 36.49
4.05 0.48 6.61 12.35 17.58 22.40 26.81 30.74 34.35 37.74 40.15
4.50 0.67 6.87 12.87 18.07 22.98 27.33 31.38 34.93 38.13 40.96 43.18
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The displacement of the micro-piezoelectric actuator and the output of the Preisach
model realized via the table method are plotted together in Figure 16a. The difference
between these two outputs, defined as the model error, is shown in Figure 16b. The phase
transition of model and of plant are plotted together in Figure 17. The RMS of the model
error is 1.0098 µm, and the required amount of memory to store the table is 66.
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table method: (a) the displacement of the micro-piezoelectric actuator and the output of the Preisach
model; (b) the error between these two outputs.
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Figure 17. Phase transition of the micro-piezoelectric actuator using the Preisach model realization
via the table method.

We apply the least-square approximation to sampling numbers of Table 5 to identify
the polynomial coefficients directly in this experiment. The polynomial coefficients are
stored in Table 6. The polynomial coefficient c0 is not needed for the Preisach model
realization. The displacement of the micro-piezoelectric actuator is compared with the
output of the Preisach model which is realized via the table method as shown in Figure 18a,
and the model error is shown in Figure 18b. The phase transition of the model and of the
plant are plotted together in Figure 19. The RMS of the model error is 1.4817 µm, and the
amount of memory for polynomial coefficients is 22.

Table 6. The polynomial coefficients.

M c2 c1 c0

0 0 0 0
0.45 0 7.5778 0.02
0.90 −0.79012 9.2 0.09
1.35 −2.2099 12.328 0.1275
1.80 −1.1111 11.949 0.174
2.25 −1.0326 12.543 0.2525
2.70 −1.117 13.302 0.24619
3.15 −1.0256 13.439 0.37625
3.60 −1.091 13.954 0.39576
4.05 −1.058 14.075 0.49745
4.50 −1.0752 14.269 0.73091

We develop the least mean square (LMS) adaptive algorithm to obtain accuracy
polynomial coefficients and the data in Table 6 are used as the initial parameters. We test
the step sizes µ = 10 − 4, µ = 10 − 3, and µ = 0.00051 + u(t) and the process of each is shown
in Figure 20. The polynomial coefficients obtained by the LMS adaptive algorithm with
step size µ = 0.00051 + u(t) are stored in Table 7.
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Figure 19. Phase transition of the micro-piezoelectric actuator using the Preisach model realization
via polynomial approximation.

Table 7. The polynomial coefficients obtained using the LMS adaptive algorithm.

M c2 c1

0 0.5718 3.8438
0.45 −2.7323 7.3383
0.90 −2.3325 9.2038
1.35 −2.1626 10.8419
1.80 −1.7700 11.8186
2.25 −1.4588 12.3549
2.70 −1.1540 12.4685
3.15 −1.2125 13.2395
3.60 −1.2565 13.9011
4.05 −1.1797 14.0324
4.50 −1.0938 13.9965
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Figure 20. Mean square error of the prediction of the micro-piezoelectric actuator for varying step-size
µ using the adaptive polynomial approximation.

The displacement of the micro-piezoelectric actuator is compared with the output
of the Preisach model, which is shown in Figure 21a, and the model error is shown in
Figure 21b. The phase transitions of the model and the plant are plotted together in
Figure 22. The RMS of the model error is 1.5898 µm.
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Figure 21. Prediction of the micro-piezoelectric actuator using the Preisach model realization via
the adaptive polynomial approximation: (a) the displacement of the micro-piezoelectric actuator is
compared with the output of the Preisach model; (b) the model error.
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Figure 22. Phase transition of the micro-piezoelectric actuator using the Preisach model realization
via the adaptive polynomial approximation.

Obviously, a bias exists in Figure 21b. This means that the Preisach model should be
modified in the beginning of the micro-piezoelectric actuator work. Figure 23 shows the
phase transition of the model error and the input in the beginning ascending branch.
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Figure 23. Phase transition of the model error and the input.

We predict the displacement of the micro-piezoelectric actuator again. The displace-
ment of the micro-piezoelectric actuator is compared with output of the Preisach model
which is shown in Figure 21a, and the model error is shown in Figure 24b. The phase
transition of the model and the plant are plotted together in Figure 25. The RMS of the
model error is 0.4539 µm. The model error of the Preisach model realization via the table
method and the modified polynomial approximation are plotted together in Figure 26
for comparison.
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Figure 24. Prediction of the micro-piezoelectric actuator using the Preisach model realization via
the modified polynomial approximation: (a) the displacement of the micro-piezoelectric actuator is
compared with output of the Preisach model; (b) the model error.
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Figure 25. Phase transition of the micro-piezoelectric actuator using the Preisach model realization
via the modified polynomial approximation.

An experimental inverse Preisach model for tracking control of micro-piezoelectric
actuators was developed. The desired output compared with the displacement of the
micro-piezoelectric of this experiment is plotted together in Figure 27a. The difference
between these two outputs, defined as the tracking error, is shown in Figure 27a. The
RMS of the tracking error is 0.7079 µm. To reduce tracking error, we combine the inverse
Preisach model with a PID controller. The parameters of the PID controller are Kp = 0.0452,
Ki = 2.9828, and Kd = 0.0024. The desired output compared with the displacement of the
micro-piezoelectric actuator of this experiment are plotted together in Figure 28a. The
tracking error is shown in Figure 28b. The RMS of tracking error is 0.2438 µm.
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Figure 27. Tracking of the micro-piezoelectric actuator using the inverse Preisach model: (a) the
desired output compared with the displacement of the micro-piezoelectric; (b) the difference between
these two outputs.
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Figure 28. Tracking of the micro-piezoelectric actuator using the inverse Preisach model with a PID
controller: (a) the desired output compared with the displacement of the micro-piezoelectric actuator;
(b) the tracking error.

6. Conclusions

We implemented the CPM with a polynomial approximation to characterize the
hysteresis. Compared with the traditional table method, this method requires less storage
space and enables parameter tracking of the hysteresis element through experiments. We
successfully obtained polynomial coefficients to model the CPM with a particular Preisach
density function in Section 4, and the polynomial coefficients to model the displacement of
a micro-piezoelectric actuator in Section 5. In Section 4, the obtained model compared with
that via the table method not only requires less memory but also yields a smaller modeling
RMS error from 1.0746 via the table method to 0.6349 as the CPM is changed. In Section 5,
the modeling RMS error changed from 1.0098 µm via the table method to 0.4539 µm as
CPM changes. We also established the inverse Preisach model based on the polynomial
approximation; this model was combined with the PID controller used for tracking control
and yielded small tracking RMS error of 0.2438 µm.
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Glossary

u(t) signal input
f (t) Preisach model output
µ(α,β) Preisach density function
γαβ[u(·)](t) hysteresis operator
α(β) hysteresis operator corresponds to ‘up’ (‘down’) switching values of input
±usat divides the range of input data
u(τ) input signal
{M1, M2, . . . , Mn−1 } peaks of the previous input signal
{m1, m2, . . . , mn−1 } valleys of the previous input signal
fαβ(M,m) polynomial function
Ci(M) indicates the coefficient corresponding with M
C0(M), C1(M), C2(M) polynomial coefficients
fn represents the effect of previous input
fp(t) polynomial approximation
e(t) output error
f (t) plant output
θ update algorithm for the vector
T transpose operation
X(t) function of the input
η constant step size
N normalization factor
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