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Abstract: Owing to the symmetry between drive–response systems, the discussions of synchronization
performance are greatly significant while exploring the dynamics of neural network systems. This
paper investigates the quasi-synchronization (QS) and quasi-uniform synchronization (QUS) issues
between the drive–response systems on fractional-order variable-parameter neural networks (VPNNs)
including probabilistic time-varying delays. The effects of system parameters, probability distributions
and the order on QS and QUS are considered. By applying the Lyapunov–Krasovskii functional
approach, Hölder’s inequality and Jensen’s inequality, the synchronization criteria of fractional-order
VPNNs under controller designs with constant gain coefficients and time-varying gain coefficients are
derived. The obtained criteria are related to the probability distributions and the order of the Caputo
derivative, which can greatly avoid the situation in which the upper bound of an interval with time
delay is too large yet the probability of occurrence is very small, and information such as the size of
time delay and probability of occurrence is fully considered. Finally, two examples are presented to
further confirm the effectiveness of the algebraic criteria under different probability distributions.

Keywords: Caputo derivative; variable parameter; probabilistic time-varying delays; quasi-synchronization;
quasi-uniform synchronization

1. Introduction

Neural networks (NNs) form different network models according to different con-
nection modes of neurons, which have powerful functions and characteristics, including
nonlinear approximation, self-learning and adaptive ability [1–5]. The fractional derivative
has a nonlocal and weak singular kernel, which provides a wonderful tool to present the
memory and genetic characteristics of many phenomena and processes. Therefore, the
combination of NNs and fractional calculus is a very meaningful research topic. Along with
Arena [6] establishing fractional-order cellular NNs with fractional-order cells, fractional-
order NNs have become a popular field among scholars [7–12].

As far as we know, most works relative to fractional-order NNs involve constant
coefficients, while many factors affect the speed and communication between neurons, and
the transmission speed and the weight of the connection matrix usually change with time.
Thus, the variable-parameter fractional-order NN model is an excellent tool to precisely
describe the information transmission process between neurons. Recently, Wang et al. [13]
utilized differential inclusion theory to discuss the finite-time synchronization of fractional-
order NNs with time-varying parameters.

Actually, time delays are inescapable because signal processing and transmission are
not finished immediately. The discussions of delayed NNs of fractional order have obtained
extensive attention recently [14–21]. Utilizing the Gronwall–Bellman integral inequality,
Pratap et al. [15] investigated the synchronization issue of fractional competitive delayed
NNs based on a finite-time output feedback controller. Cao et al. [19] established the almost
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periodicity criteria for fractional-order delayed NNs including reaction-diffusion terms and
impulsive perturbations. Zhang et al. [20] discussed synchronization stability for Riemann–
Liouville coupled NNs with delays by the LMI method. As far as we know, although some
delay values are very large in applications such as high-performance aircrafts, they hardly
happen. If only the change of delay is simply considered, the results may be conservative.
Up until now, there has not been enough discussion about fractional NNs with probabilistic
time-varying delays in the existing literature. Therefore, it is challenging and meaningful
to explore the dynamics of fractional NNs with probabilistic time-varying delays.

Synchronization has been favored by researchers in information security and confi-
dential communication over recent years. However, the synchronization phenomenon
is two-sided, which is both beneficial and harmful. Therefore, how to amplify its ad-
vantages, increase favorable synchronization, reduce harmful synchronization and make
synchronization better serve the real world is the original intention of scholars to study the
synchronization phenomenon. Hitherto, synchronization methods can be roughly divided
into several types [22–33], such as quasi-synchronization [22], cluster synchronization [23],
projective synchronization [24–26], lag synchronization [27], Mittag–Leffler synchroniza-
tion [28–30], finite-time synchronization [31], quasi-uniform synchronization [32,33] and
so on. In [24], Zhang et al. chose the appropriate adaptive controllers to obtain the pro-
jective synchronization criteria for fractional-order delayed NNs, where the probability
time-varying delays and variable parameters had not been considered.

As we have yet seen, the results of QS and QUS for fractional-order VPNNs including
probabilistic time-varying delays in the existing literature have not been found. In this
paper, by means of the Lyapunov functional technique and the Volterra expansion method,
the algebraic criteria for the QS and QUS of fractional-order VPNNs with probabilistic time-
varying delays are derived by designing the controllers about the constant gain coefficient
and the control gain time-dependent coefficient. In addition, inspired by the simulation
method in [34,35], we improve the numerical simulation based on the predictor-corrector
scheme of fractional delayed differential equations. Thus, the appropriate sampling step
can be selected to ensure the stability and acceptable quality of the considered systems. The
highlights and innovations of this paper are summarized below:

• The effects of the system parameters, the probability distributions and the order of
Caputo derivative on QS and QUS are discussed.

• Different from the exploration method of the system in [7,17,20,21], in this paper,
Volterra integral expansion, Hölder’s inequality and Jensen’s inequality are applied to
establish two synchronization criteria between the drive–response systems.

• The presented results are related to the algebraic inequalities containing the probability
distributions and the order of the Caputo derivative, which deeply reveal the factors
affecting synchronization performance.

• Two examples are given to further substantiate the validity and applicability of the
criteria under the different probability distributions.

2. Preliminaries

This part mainly recalls some fundamental definitions, and the fractional-order VPNN
system is proposed.

Definition 1 ([36]). For any µ > 0, the Riemann–Liouville-type fractional integral is defined as

D−µv(t) =
1

Γ(µ)

∫ t

t0

(t− s)µ−1v(s)ds.

Definition 2 ([36]). For any µ ∈ (n− 1, n), the Caputo-type fractional derivative is defined as

Dµv(t) =
1

Γ(n− µ)

∫ t

t0

v(n)(s)
(t− s)µ−n+1 ds, t > t0.
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Definition 3 ([22,33]). For any positive number γ, if there exists a constant T > 0 such that
‖e(t)‖ < γ holds, then the error system in (3) can achieve QS. If there exists a constant δ ∈ (0, γ)
such that ‖e(t)‖ < γ holds when ‖e(0)‖ < δ, then the error system in (3) can realize QUS.

Lemma 1 ([22]). Suppose x(·) is a continuous function in the interval [0,+∞). If

Dεx(t) 6 −αx(t) + β,

then

x(t) 6
[

x(0)− β

α

]
Eε

(
− αtβ

)
+

β

α
, ε ∈ (0, 1), α 6= 0,

where x(0) is the initial value.

Lemma 2 ([32]). Suppose x(·), y(·) and z(·) are continuous functions in the interval [0,+∞). If
the function z(t) satisfies z(t) 6 x(t) +

∫ t
0 y(θ)z(θ)dθ, then

z(t) 6 x(t) exp
( ∫ t

0
y(θ)dθ

)
, t ∈ [0,+∞),

where x(t) is nondecreasing and y(t) > 0.

In this paper, the following drive–response systems (1) and (2) of fractional-order
VPNNs are considered:

Dµvk(t) = −ak(t)vk(t) +
M

∑
g=1

bkg(t)yg
(
vg(t)

)
+

M

∑
g=1

ckg(t)yg
(
vg(t− τ(t))

)
+ Jk, (1)

Dµv′k(t) = −ak(t)v
′
k(t) +

M

∑
g=1

bkg(t)yg
(
v′g(t)

)
+

M

∑
g=1

ckg(t)yg
(
v′g(t− τ(t))

)
+ Jk + Uk(t), (2)

where 0 < µ < 1, vk(t) and v′k(t) represent the state variables, D represents the fractional
Caputo-type operator, ak(t) denotes the self-regulating parameter, bkg(t), ckg(t) and dkg(t)
signify the connection weights, y(·) stands for the continuous activation function, τ(t) is
the time-varying delay, Jk is the external input and Uk(·) denotes the controller.

Remark 1. In this article, the QS and QUS of the fractional-order systems (1) and (2) with time-
varying parameters are discussed. The value of self-regulating parameter ak(t) and connection
weights bk(t) and ck(t) of the system are expressions of time t. As far as we know, most fractional-
order NNs’ parameters are fixed constants, yet that is actually not the case. Therefore, it is worth
exploring the dynamical behaviors of network systems with time-varying parameters.

Now, we describe the error system of Systems (1) and (2) by

Dµek(t) =− ak(t)ek(t) +
M

∑
g=1

bkg(t)[yg
(
v′g(t)

)
− yg

(
vg(t)

)
]

+
M

∑
g=1

ckg(t)[yg
(
v′g(t− τ(t))

)
− yg

(
vg(t− τ(t))

)
] + Uk(t),

(3)

where ek(t) = v′k(t)− vk(t).

In order to conveniently derive the main results, we divide the time-varying delay
τ(t) into two parts τ1(t) and τ2(t). The following hypothetical conditions are satisfied
throughout this paper.
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Assumption 1. τ1(t) and τ2(t) are bounded with 0 6 τ1 6 τ1(t) 6 τ2 6 τ2(t) 6 τ3. When
t ∈ [τ1, τ2], the stochastic variable is ε(t) = 1; when t ∈ (τ2, τ3], the stochastic variable is ε(t) = 0.
Moreover, τ1(t) and τ2(t) are derivable, θ1 6 τ̇1(t) 6 θ2, θ3 6 τ̇2(t) 6 θ4 and

τ4 = max
{

sup
s∈[0,T]

1
|1− τ̇1(s)|

, sup
s∈[0,T]

1
|1− τ̇2(s)|

}
. (4)

Assumption 2. If t ∈ [τ1, τ3], then the probability distributions are given by{
prob{ε(t) = 1} = E{ε(t)} = ε0, τ1 6 τ(t) 6 τ2,

prob{ε(t) = 0} = 1−E{ε(t)} = 1− ε0, τ2 < τ(t) 6 τ3,
(5)

where E signifies the mathematical expectation.

Assumption 3. For any activation function y(·), the following inequality holds:∣∣yg(v1)− yg(v2)
∣∣ 6 lg

∣∣v1 − v2
∣∣, (6)

where lg is the Lipschitz constant.

From Assumption 1, System (3) is equivalent to

Dµek(t) =− ak(t)ek(t) +
M

∑
g=1

bkg(t)[yg
(
v′g(t)

)
− yg

(
vg(t)

)
]

+ ε(t)
M

∑
g=1

ckg(t)[yg
(
v′g(t− τ1(t))

)
− yg

(
vg(t− τ1(t))

)
] (7)

+ (1− ε(t))
M

∑
g=1

ckg(t)[yg
(
v′g(t− τ2(t))

)
− yg

(
vg(t− τ2(t))

)
] + Uk(t).

Remark 2. Compared with the systems in [3,7,9,12,15,19], a novel network model is extended
including the probability distributions of time-varying delays in the different intervals. Although
the upper bound of some time delays may be too large, it will hardly happen. The processing method
is to segment the time delay and describe the probability of different intervals by introducing a
random variable subject to the Bernoulli distribution. By comparing Systems (3) and (7), it can be
seen that when ε(t) = 0, System (7) can be rewritten in the form of System (3).

Remark 3. This article discusses the case that the time-varying delay is divided into two parts
based on the probability distributions in Assumption 2. In practical applications, it can be divided
into multiple parts according to the probability distributions of each part.

3. Main Results

In this section, the synchronization criteria of the QS and QUS of fractional-order
VPNNs under controller designs with constant gain coefficients and time-varying gain co-
efficients are derived by applying the Lyapunov–Krasovskii functional approach, Hölder’s
inequality and Jensen’s inequality.

The controller Uk(·) can be configured as

Uk(t) = −wkek(t) +
rkek(t)

‖e(t)‖4 + r4
k

, (8)

where wk, rk ∈ R are constant gain coefficients.

Theorem 1. Under Assumptions 1–3, if there exist positive constants θ1, θ2 > 1 such that

Ψ1 − θ1Ψ2 − θ2Ψ3 > 0, (9)
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then Systems (1) and (2) can reach QS, where

Ψ1 = min
k∈M

{
2wk + 2ak(t)−

M

∑
g=1

lg|bkg(t)| −
M

∑
g=1

lk|bgk(t)| −
M

∑
g=1

lg|ckg(t)|
}

,

Ψ2 = max
k∈M

{
ε0

M

∑
g=1

lk|cgk(t)|
}

,

Ψ3 = max
k∈M

{
(1− ε0)

M

∑
g=1

lk|cgk(t)|
}

.

Proof. We take the function V(·) below:

V(t) =
M

∑
k=1

e2
k(t). (10)

Calculating the µ-order derivative of V(t) and based on Assumption 3, we have

DµV(t) 6
M

∑
k=1

2ek(t)Dµek(t)

=
M

∑
k=1

2ek(t)
{
− ak(t)ek(t) +

M

∑
g=1

bkg(t)[yg
(
v′g(t)

)
− yg

(
vg(t)

)
]

+ ε(t)
M

∑
g=1

ckg(t)[yg
(
v′g(t− τ1(t))

)
− yg

(
vg(t− τ1(t))

)
]

+ (1− ε(t))
M

∑
g=1

ckg(t)[yg
(
v′g(t− τ2(t))

)
− yg

(
vg(t− τ2(t))

)
]

}
+ 2ek(t)Uk(t)

6
M

∑
k=1

2ek(t)
{
− ak(t)ek(t) +

M

∑
g=1

bkg(t)lgeg(t) + ε(t)
M

∑
g=1

ckg(t)lgeg(t− τ1(t)) (11)

+ (1− ε(t))
M

∑
g=1

ckg(t)lgeg(t− τ2(t))
}
+

M

∑
k=1

2ek(t)
(
− wkek(t) +

rkek(t)
‖e(t)‖4 + r4

k

)
6

M

∑
k=1

[
− 2wk − 2ak(t) +

M

∑
g=1

lg|bkg(t)|+
M

∑
g=1

lk|bgk(t)|+
M

∑
g=1

lg|ckg(t)|
]
e2

k(t)

+ ε(t)
M

∑
k=1

M

∑
g=1

lk|cgk(t)|e2
k(t− τ1(t)) + (1− ε(t))

M

∑
k=1

M

∑
g=1

lk|cgk(t)|e2
k(t− τ2(t))

+ 2
r‖e(t)‖

‖e(t)‖4 + r4 .

According to Assumption 2, we obtain

E{DµV(t)} 6E
{ M

∑
k=1

[
− 2wk − 2ak(t) +

M

∑
g=1

lg|bkg(t)|+
M

∑
g=1

lk|bgk(t)|+
M

∑
g=1

lg|ckg(t)|
]
e2

k(t)

+ ε0

M

∑
k=1

M

∑
g=1

lk|cgk(t)|e2
k(t− τ1(t)) + (1− ε0)

M

∑
k=1

M

∑
g=1

lk|cgk(t)|e2
k(t− τ2(t))

+ 2
r‖e(t)‖
‖e(t)‖4 + r4

}
(12)

6E
{
−Ψ1V(t) + Ψ2V(t− τ1(t)) + Ψ3V(t− τ2(t)) + 2

r‖e(t)‖
‖e(t)‖4 + r4

}
6E
{
− (Ψ1 − θ1Ψ2 − θ2Ψ3)V(t) + 2

r‖e(t)‖
‖e(t)‖4 + r4

}
.
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With the help of the significant inequality 2(x4 + y4) > xy(x + y)2 for x, y ∈ R, we
can obtain

E{DµV(t)} 6E
{
− (Ψ1 − θ1Ψ2 − θ2Ψ3)V(t) +

4
(‖e(t)‖+ r)2

}
6E
{
− (Ψ1 − θ1Ψ2 − θ2Ψ3)V(t) +

4
r2

}
.

(13)

From Lemma 1, one has

E{V(t)} 6E
{[

V(0)− 4
r2(Ψ1 − θ1Ψ2 − θ2Ψ3)

]
Eµ(−(Ψ1 − θ1Ψ2 − θ2Ψ3)tµ)

+
4

r2(Ψ1 − θ1Ψ2 − θ2Ψ3)

}
.

(14)

Namely,

E{‖e(t)‖} 6E
{[(
‖e(0)‖ − 4

r2(Ψ1 − θ1Ψ2 − θ2Ψ3)

)
Eµ

(
− (Ψ1 − θ1Ψ2 − θ2Ψ3)tµ

)
+

4
r2(Ψ1 − θ1Ψ2 − θ2Ψ3)

] 1
2

}
.

(15)

Note that if Eµ(αtµ) is monotonically nonincreasing and Eµ(αtµ) ∈ (0, 1) for α 6 0,
then both sides can take the limit at the same time:

lim
t→+∞

E{‖e(t)‖} 6 2√
r2(Ψ1 − θ1Ψ2 − θ2Ψ3)

. (16)

Thus, Systems (1) and (2) achieve QS.

In order to discuss the QUS of System (6), a linear feedback controller with variable
control gain is designed as

Uk(t) = −ζk(t)ek(t). (17)

Remark 4. In contrast to the controller (8) in Theorem 1, the control gain of the controller in (17)
by QUS is time-dependent in Theorem 2. The advantage of this kind of design is that the control
coefficient can be changed automatically according to the change of time t so that the controller can
be better applied to the actual situation.

Theorem 2. If there exists a positive number M = max
{

A(t), B(t), C(t), ζ(t)
}

such that

[
1 + ε0et−τ1 H1H2 + (1− ε0)et−τ2 H1H2

]
H1M

[
(2 + L)et + ε0τ4Let−τ1 + (1− ε0)τ4Let−τ2

]
(1− e−t) 6

γ

δ
, (18)

then Systems (1) and (2) can achieve QUS, where α, β > 0, 1
α + 1

β = 1 and

H1 =
1

Γ(µ)

[Γ
(
α(µ− 1) + 1

)
ααµ−α+1

] 1
α
, H2 = ML

[ (eβτ2 − 1)τ4

β

] 1
β .

Proof. System (6) can be rewritten as
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ek(t) =ek(0) +
∫ t

0

(t− s)µ−1

Γ(µ)

{
− ak(s)ek(s) +

M

∑
g=1

bkg(s)[yg
(
v′g(s)

)
− yg

(
vg(s)

)
]

+ ε(s)
M

∑
g=1

ckg(s)[yg
(
v′g(s− τ1(s))

)
− yg

(
vg(s− τ1(s))

)
]

+ (1− ε(s))
M

∑
g=1

ckg(s)[yg
(
v′g(s− τ2(s))

)
− yg

(
vg(s− τ2(s))

)
]− ζk(s)ek(s)

}
ds (19)

6ek(0) +
∫ t

0

(t− s)µ−1

Γ(µ)

{
− ak(s)ek(s) +

M

∑
g=1

bkg(s)lgeg(s) + ε(s)
M

∑
g=1

ckg(s)lgeg(s

− τ1(s)) + (1− ε(s))
M

∑
g=1

ckg(s)lgeg(s− τ2(s))− ζk(s)ek(s)
}

ds.

We can write (19) in vector form and take norms on both sides of the inequality at the
same time:

‖e(t)‖ 6‖e(0)‖+
∫ t

0

(t− s)µ−1

Γ(µ)
(
‖A(s)‖+ ‖B(s)‖L + ‖ζ(s)‖

)
‖e(s)‖ds

+
∫ t

0

(t− s)µ−1

Γ(µ)
‖ε(s)‖‖C(s)‖L‖e(s− τ1(s)‖ds (20)

+
∫ t

0

(t− s)µ−1

Γ(µ)
‖1− ε(s)‖‖C(s)‖L‖e(s− τ2(s)‖ds.

From Assumption 2 and Hölder’s inequality, we have

E
{
‖e(t)‖

}
6E
{
‖e(0)‖+

∫ t

0

(t− s)µ−1

Γ(µ)
(
‖A(s)‖+ ‖B(s)‖L + ‖ζ(s)‖

)
‖e(s)‖ds

+
∫ t

0

(t− s)µ−1

Γ(µ)
ε0‖C(s)‖L‖e(s− τ1(s)‖ds

+
∫ t

0

(t− s)µ−1

Γ(µ)
(1− ε0)‖C(s)‖L‖e(s− τ2(s)‖ds

}
6E
{
‖e(0)‖+ 2M + ML

Γ(µ)

∫ t

0
(t− s)µ−1ese−s‖e(s)‖ds

+
ε0ML
Γ(µ)

∫ t

0
(t− s)µ−1ese−s‖e(s− τ1(s)‖ds (21)

+
(1− ε0)ML

Γ(µ)

∫ t

0
(t− s)µ−1ese−s‖e(s− τ2(s)‖ds

}
6E
{
‖e(0)‖+ 2M + ML

Γ(µ)
[ ∫ t

0
(t− s)α(µ−1)eαsds

] 1
α
[ ∫ t

0
e−βs‖e(s)‖βds

] 1
β

+
ε0ML
Γ(µ)

[ ∫ t

0
(t− s)α(µ−1)eαsds

] 1
α
[ ∫ t

0
e−βs‖e(s− τ1(s)‖βds

] 1
β

+
(1− ε0)ML

Γ(µ)
[ ∫ t

0
(t− s)α(µ−1)eαsds

] 1
α
[ ∫ t

0
e−βs‖e(s− τ2(s)‖βds

] 1
β

}
.
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Since∫ t

0
(t− s)α(µ−1)eαsds =

∫ t

0
vα(µ−1)eα(1−v)dv = eαt

∫ t

0
vαµ−1e−αvdv

=
eαt

ααµ−α+1

∫ αt

0
κα(µ−1)e−κdκ 6

eαt

ααµ−α+1 Γ
(
α(µ− 1) + 1

)
,

(22)

thus, combining (21) and (22) and using Jensen’s inequality, one has

E
{
‖e(t)‖

}
6E
{
‖e(0)‖+ 2M + ML

Γ(µ)

[
eαtΓ

(
α(µ− 1) + 1

)
ααµ−α+1

] 1
α [ ∫ t

0
e−βs‖e(s)‖βds

] 1
β

+
ε0ML
Γ(µ)

[
eαtΓ

(
α(µ− 1) + 1

)
ααµ−α+1

] 1
α
[ ∫ t

0
e−β(s−τ1(s))e−βτ1(s)

× ‖e(s− τ1(s)‖β

|1− τ̇1(s)|
d(s− τ1(s))

] 1
β

+
(1− ε0)ML

Γ(µ)

[
eαtΓ

(
α(µ− 1) + 1

)
ααµ−α+1

] 1
α

×
[ ∫ t

0
e−β(s−τ2(s))e−βτ2(s) ‖e(s− τ2(s)‖β

|1− τ̇2(s)|
d(s− τ2(s))

] 1
β
}

6E
{
‖e(0)‖+ 2M + ML

Γ(µ)

[
eαtΓ

(
α(µ− 1) + 1

)
ααµ−α+1

] 1
α [ ∫ t

0
e−βs‖e(s)‖βds

] 1
β

+
ε0ML
Γ(µ)

[
eαtΓ

(
α(µ− 1) + 1

)
ααµ−α+1

] 1
α [ ∫ 0

−τ2

τ4e−βse−βτ1‖e(0)‖βds

+
∫ t

0
τ4e−βse−βτ1‖e(s)‖βds

] 1
β +

(1− ε0)ML
Γ(µ)

[
eαtΓ

(
α(µ− 1) + 1

)
ααµ−α+1

] 1
α

×
[ ∫ 0

−τ3

τ4e−βse−βτ2‖e(0)‖βds +
∫ t

0
τ4e−βse−βτ2‖e(s)‖βds

] 1
β

}

=E
{
‖e(0)‖+ 2M + ML

Γ(µ)

[
eαtΓ

(
α(µ− 1) + 1

)
ααµ−α+1

] 1
α [ ∫ t

0
e−βs‖e(s)‖βds

] 1
β (23)

+
ε0ML
Γ(µ)

[
eαtΓ

(
α(µ− 1) + 1

)
ααµ−α+1

] 1
α
[
(eβτ2 − 1)τ4e−βτ1

β
‖e(0)‖β

+
∫ t

0
τ4e−βse−βτ1‖e(s)‖βds

] 1
β

+
(1− ε0)ML

Γ(µ)

[
eαtΓ

(
α(µ− 1) + 1

)
ααµ−α+1

] 1
α

×
[
(eβτ3 − 1)τ4e−βτ2

β
‖e(0)‖β +

∫ t

0
τ4e−βse−βτ2‖e(s)‖βds

] 1
β
}

6E
{[

1 +
ε0MLet

Γ(µ)

(
Γ
(
α(µ− 1) + 1

)
ααµ−α+1

) 1
α
(
(eβτ2 − 1)τ4

β

) 1
β

e−τ1

+
(1− ε0)MLet

Γ(µ)

(
Γ
(
α(µ− 1) + 1

)
ααµ−α+1

) 1
α
(
(eβτ3 − 1)τ4

β

) 1
β

e−τ2

]
‖e(0)‖

+

[
(2M + ML)et

Γ(µ)

(
Γ
(
α(µ− 1) + 1

)
ααµ−α+1

) 1
α

+
ε0τ4MLet−τ1

Γ(µ)

×
(

Γ
(
α(µ− 1) + 1

)
ααµ−α+1

) 1
α

+
(1− ε0)τ4MLet−τ2

Γ(µ)

(
Γ
(
α(µ− 1) + 1

)
ααµ−α+1

) 1
α
]

×
∫ t

0
e−s‖e(s)‖ds.
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An application of Lemma 2 yields that

E
{
‖e(t)‖

}
6E
{[

1 +
ε0MLet

Γ(µ)

(
Γ
(
α(µ− 1) + 1

)
ααµ−α+1

) 1
α
(
(eβτ2 − 1)τ4

β

) 1
β

e−τ1

+
(1− ε0)MLet

Γ(µ)

(
Γ
(
α(µ− 1) + 1

)
ααµ−α+1

) 1
α
(
(eβτ3 − 1)τ4

β

) 1
β

e−τ2

]
‖e(0)‖

×
[
(2M + ML)et

Γ(µ)

(
Γ
(
α(µ− 1) + 1

)
ααµ−α+1

) 1
α

+
ε0τ4MLet−τ1

Γ(µ)

×
(

Γ
(
α(µ− 1) + 1

)
ααµ−α+1

) 1
α

+
(1− ε0)τ4MLet−τ2

Γ(µ)

(
Γ
(
α(µ− 1) + 1

)
ααµ−α+1

) 1
α
]

× exp
( ∫ t

0
e−sds

)}

=E
{[

1 +
ε0MLet

Γ(µ)

(
Γ
(
α(µ− 1) + 1

)
ααµ−α+1

) 1
α
(
(eβτ2 − 1)τ4

β

) 1
β

e−τ1

+
(1− ε0)MLet

Γ(µ)

(
Γ
(
α(µ− 1) + 1

)
ααµ−α+1

) 1
α
(
(eβτ3 − 1)τ4

β

) 1
β

e−τ2

]
‖e(0)‖

×
[
(2M + ML)et

Γ(µ)

(
Γ
(
α(µ− 1) + 1

)
ααµ−α+1

) 1
α

+
ε0τ4MLet−τ1

Γ(µ)

×
(

Γ
(
α(µ− 1) + 1

)
ααµ−α+1

) 1
α

+
(1− ε0)τ4MLet−τ2

Γ(µ)

(
Γ
(
α(µ− 1) + 1

)
ααµ−α+1

) 1
α
]

× (1− e−t)

}
=E
{(

1 + ε0et−τ1 H1H2 + (1− ε0)et−τ2 H1H2
)

H1M
(
(2 + L)et + ε0τ4Let−τ1

+ (1− ε0)τ4Let−τ2
)
(1− e−t)‖e(0)‖

}
.

(24)

From the condition given in (18), we have E{‖e(t)‖} 6 γ. Thus, Systems (1) and (2)
achieve QUS.

Remark 5. Different from the methods in [8,12,18,20,24–26,28,30], Hölder’s inequality and
Jensen’s inequality are applied to explore QUS. Theorem 2 is not only related to the parame-
ters of the system and expectation E but also related to the order of the system. Therefore, we can take
different orders to compress, match and recognize the images in the applications of image processing.

Remark 6. In Theorems 1 and 2, the Lyapunov–Krasovskii functional approach and Volterra
integral expansion are used to deduce the synchronization criteria, respectively, which is different
from the usual way of dealing with probabilistic time-varying delay. In [17,21], the approaches to
process probabilistic time-varying delay are applied by linear matrix inequalities (LMIs), where the
obtained synchronization criteria are independent of the value of the derivative order. In this paper,
Theorems 1 and 2 deeply reflect the influence of the order on the synchronization performance.
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4. Examples

Two illustrative examples are presented to further validate the theoretical results.

Example 1. The two-state system given by (1) is considered, with µ = 0.89 and activation func-
tions y1(v) = v + 1

6 |v|, y2(v) = tanh(v), τ1(t) = 0.2 + 0.2 cos(t), τ2(t) = 0.35 + 0.1 cos(t),
J = 0,

A(t) =

(
2

1+t2 0
0 2

1+t

)
, B(t) =

(
0.02 cos t 0.5 sin t
0.1 sin t 0.3 cos t

)
, C(t) =

(
0.1 sin t 0.29 tanh t

0.13 cos t 0.22 sin t

)
.

According to the time-varying delay, we obtain θ1 = −0.2, θ2 = 0.2, θ3 = −0.35,
θ4 = 0.35, τ1 = 0.1, τ2 = 0.3 and τ3 = 0.4. The constructed controller is

U1(t) = −2.5e1(t) +
6.9e1(t)

‖e(t)‖4 + 6.94 , U2(t) = −4e2(t) +
7.8e2(t)

‖e(t)‖4 + 7.84 .

When ε0 = 0.6, l1 = l2 = 1, θ1 = 2.5 and θ2 = 1.5, it is not difficult to confirm that
Ψ1 = 3.97, Ψ2 = 0.21 and Ψ3 = 0.14 satisfy the condition given in (9). Thus, Systems (1)
and (2) can achieve QS under the order µ = 0.89. The initial values are chosen as v10 = −0.5,
v20 = −3, v′10 = −2.5 and v′20 = 1.5.

By MATLAB numerical simulations, Figures 1 and 2 characterize the trajectory curves
of Systems (1) and (2) under the controller given in (8). Figure 3 presents the trajectory
curves of the error system in (7). As can be seen from Figures 1 and 2, the trajectory curves
of vi(t) and v′i(t)(i = 1, 2) are not synchronized at the beginning (i.e., their trajectory curves
do not coincide), subject to the initial values of the systems, the systems’ parameters and
the orders of the Caputo derivatives. However, the two trajectory curves gradually tend to
coincide under the action of the controller given in (8), that is, they reach QS.

Figure 1. The trajectory lines of Systems (1) and (2) with µ = 0.89 under the controller given in (8).
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Figure 2. The trajectory lines of Systems (1) and (2) with µ = 0.89 under the controller given in (8).

Figure 3. The trajectory lines of the error system in (3) with µ = 0.89 under the controller given in (8).

Example 2. The three-state fractional-order VPNN model (1) is considered, with µ = 0.85 and
activation functions y1(v) = tanh(v), y2(v) = cos(v), y3(v) = sin(v), J = 0,

A(t) =


2

1+
√

t
0 0

0 2
1+t 0

0 0 2
1+t2

, B(t) =

0.02 cos t 0.5 sin t 0.3 tanh t
0.1 cos t 0.4 sin t 0.2 tanh t
0.1 cos t 0.25 sin t 0.2 tanh t

,

C(t) =


1

1+
√

t
1

1+t
1

1+t2

2
1+
√

t
2

1+t
2

1+t2

3
1+
√

t
3

1+t
3

1+t2

.
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The time-varying delay is consistent with Example 1. Then, we can obtain θ1 = −0.2,
θ2 = 0.2, θ3 = −0.35, θ4 = 0.35, τ1 = 0.1, τ2 = 0.3 and τ3 = 0.4. The constructed variable-
parameter control gain is as follows:

ζ(t) =


1

1+t 0 0
0 1

1+t2 0
0 0 1

1+t3

.

Thus, we can calculate that τ4 ≈ 1.54 and M = 3. If ε0 = 0.4, l1 = l2 = l3 = 1, α = β = 2,
δ = 0.03 and γ = 1, then ζ(t), β(t) and σ(t) satisfy the condition in (18). Namely, System (3)
can achieve QUS. The QUS time is estimated as T ≈ 6.0882. The initial values are chosen
as v10 = −0.5, v20 = −3, v30 = −2.5, v′10 = 2.5, v′20 = 1.5 and v′30 = 1.5. By MATLAB
numerical simulations, Figures 4–6 show the trajectory curves of System (7) under the
controller given in (17). Similarly, the trajectory curves of vi(t) and v′i(t)(i = 1, 2, 3) are not
synchronized at the beginning, from Figures 4–6. However, the trajectory curves gradually
tend to coincide under the action of the controller given in (17), that is, they reach QUS.
The controller can make the nodes in the NNs tend to be consistent from different states
so that whole NNs will reach a synchronized state. Figure 7 characterizes the trajectory
curves of the error system in (7). Therefore, Systems (1) and (2) can achieve QUS under the
order µ = 0.85.

Remark 7. Inspired by the simulation method in [34,35], we improve the predictor-corrector scheme
of fractional delayed differential equations to verify the effectiveness and correctness of the theoretical
results. The predictor-corrector scheme provides the predicted value by the iteration step by step
based on the initial value and an explicit formula, and then the correction value is obtained by an
implicit formula. That is, the fractional delayed differential equation is expressed as the Volterra
integral equation, and Adams–Bashforth predictor and corrector values are obtained on the basis of
selecting the appropriate step length. Finally, numerical simulations are performed based on the
corresponding error estimation and MATLAB toolbox.

Figure 4. The trajectory lines of Systems (1) and (2) with µ = 0.85 under the controller given in (17).
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Figure 5. The trajectory lines of Systems (1) and (2) with µ = 0.85 under the controller given in (17).

Figure 6. The trajectory lines of Systems (1) and (2) with µ = 0.85 under the controller given in (17).
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Figure 7. The trajectory lines of the error system in (3) with µ = 0.85 under the controller given
in (17).

5. Discussions

In this paper, we consider the effects of the system parameters, the probability distri-
butions and the order of Caputo derivative on QS and QUS. Different from the methods
in [8,12,18,20,24–26,28,30], Hölder’s inequality and Jensen’s inequality are applied to ex-
plore the QS and QUS.

Theorems 1 and 2 are related to the probability distributions and the order of the
Caputo derivative, which deeply reveals the factors affecting synchronization performance.

In the field of solving nonlinear fractional ordinary differential equations, there are not
as many numerical algorithms as there are in integer-order ordinary differential equations.
Only a limited number of common methods have been translated to the fractional domain,
such as the predictor-corrector path based on Adams–Bashforth–Moulton [34,35]. The syn-
chronization test of drive–response systems by the improved Adams–Bashforth–Moulton
predictor-corrector way is presented in this paper. By MATLAB numerical simulations,
Figures 1–7 show the trajectory curves of System (7) under the controllers given in (8) or
(17), which are consistent with Theorems 1 and 2.

6. Conclusions

This paper has focused on investigating the QS and QUS between drive–response
systems for fractional-order VPNNs (1) with probabilistic time-varying delays. We have
simultaneously taken into account the effects of the system parameters, the probability
distributions and the Caputo order on QS and QUS. By applying the Lyapunov functional
approach, Hölder’s inequality and Jensen’s inequality, Theorems 1 and 2 under controller
designs with the constant gain coefficient in (8) and the time-varying gain coefficient in (17)
have been established. The method and results of this paper can greatly reduce calculation
complexities. Under different probability distributions, two numerical simulation examples
have demonstrated the feasibility of Theorems 1 and 2. In the future, the dynamics of
fractional-order VPNNs with probabilistic time-varying delays in the complex field and
quaternion-valued field will be further explored.
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